Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnosis and management of pancreatic cystic neoplasms: current evidence and guidelines

Abstract

Pancreatic cystic neoplasms (PCN) are a heterogeneous group of pancreatic cysts that include intraductal papillary mucinous neoplasms, mucinous cystic neoplasms, serous cystic neoplasms and other rare cystic lesions, all with different biological behaviours and variable risk of progression to malignancy. As more pancreatic cysts are incidentally discovered on routine cross-sectional imaging, optimal surveillance for patients with PCN is becoming an increasingly common clinical problem, highlighting the need to balance cancer prevention with the risk of (surgical) overtreatment. This Review summarizes the latest developments in the diagnosis and management of PCN, including the quality of available evidence. Also discussed are the most important differences between the PCN guidelines from the American Gastroenterological Association, the International Association of Pancreatology and the European Study Group on Cystic Tumours of the Pancreas, including diagnostic and follow-up strategies and indications for surgery. Finally, new developments in the management of patients with PCN are addressed.

Key points

  • Pancreatic cysts are increasingly diagnosed and, although most are benign, some can develop into pancreatic cancer; uniform guidelines for diagnosis, treatment and follow-up of pancreatic cysts are therefore urgently required.

  • In revised guidelines, obstructive jaundice, a contrast-enhanced mural nodule or solid component ≥5 mm, a dilated pancreatic duct or positive cytology for advanced neoplasia are absolute indications for resection in patients with intraductal papillary mucinous neoplasms (IPMN).

  • In European guidelines, both a mucinous cystic neoplasm (MCN) and IPMN <40 mm are treated conservatively when other risk factors are absent.

  • In international and American guidelines, an MCN of any size is an absolute indication for resection; in the international guidelines, an IPMN >30 mm is a relative indication for resection.

  • Lifelong surveillance is indicated for patients with IPMN and MCN without risk factors, as long as they are fit and willing to undergo surgery.

  • Follow-up for IPMN after pancreatectomy is warranted because of the risk of developing recurrent disease, although evidence on the best surveillance interval is lacking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of different types of PCN.
Fig. 2: Contrast-enhanced EUS for discrimination between mural nodules and mucin clots.
Fig. 3: Surgical options for PCN.

Similar content being viewed by others

References

  1. Tanaka, M. et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 12, 183–197 (2012). An update to the 2006 guidelines, in which extensive research leads to new insights and the dichotomization of risk stratification (high-risk stigmata and worrisome features), recommending immediate resection in the case of high-risk features and a conservative approach in the case of worrisome features.

    Article  PubMed  Google Scholar 

  2. Del Chiaro, M. et al. European Experts Consensus Statement on cystic tumours of the pancreas. Dig. Liver. Dis. 45, 703–711 (2013). The European response to the Tanaka et al. (2012) guidelines, distinguishing absolute and relative indications for surgery and simplifying the surveillance intervals to 6 months in the first year and yearly afterwards.

    Article  PubMed  Google Scholar 

  3. Tanaka, M. et al. Revisions of International Consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 17, 738–753 (2017). This article gives minor revisions and updates to the International Association of Pancreatology guideline according to the recent literature.

    Article  PubMed  Google Scholar 

  4. European Study Group on Cystic Tumours of the Pancreas. European evidence-based guidelines on pancreatic cystic neoplasms. Gut 67, 789–804 (2018). This is the first evidence-based guideline on management of PCN, in which growth rate >5 mm per year, new-onset diabetes mellitus and acute pancreatitis caused IPMN were added to the list of relative indications for resection.

    Article  Google Scholar 

  5. Ikeda, M. et al. Morphologic changes in the pancreas detected by screening ultrasonography in a mass survey, with special reference to main duct dilatation, cyst formation, and calcification. Pancreas 9, 508–512 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Laffan, T. A. et al. Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am. J. Roentgenol. 191, 802–807 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Jong, K. et al. High prevalence of pancreatic cysts detected by screening magnetic resonance imaging examinations. Clin. Gastroenterol. Hepatol. 8, 806–811 (2010).

    Article  PubMed  Google Scholar 

  8. Zhang, X. M., Mitchell, D. G., Dohke, M., Holland, G. A. & Parker, L. Pancreatic cysts: depiction on single-shot fast spin-echo MR images. Radiology 223, 547–553 (2002).

    Article  PubMed  Google Scholar 

  9. Lee, K. S., Sekhar, A., Rofsky, N. M. & Pedrosa, I. Prevalence of incidental pancreatic cysts in the adult population on MR imaging. Am. J. Gastroenterol. 105, 2079–2084 (2010).

    Article  PubMed  Google Scholar 

  10. Kromrey, M. L. et al. Prospective study on the incidence, prevalence and 5-year pancreatic-related mortality of pancreatic cysts in a population-based study. Gut 67, 138–145 (2018). This is a prospective study on the incidence, prevalence and 5-year pancreatic-related mortality of pancreatic cysts showing that the prevalence of pancreatic cysts in the general population is 49.1% and that prevalence, number and maximum size of pancreatic cysts increases significantly with the age of the patients.

    Article  PubMed  Google Scholar 

  11. Kimura, W., Nagai, H., Kuroda, A., Muto, T. & Esaki, Y. Analysis of small cystic lesions of the pancreas. Int. J. Pancreatol. 18, 197–206 (1995).

    CAS  PubMed  Google Scholar 

  12. Zaheer, A., Pokharel, S. S., Wolfgang, C., Fishman, E. K. & Horton, K. M. Incidentally detected cystic lesions of the pancreas on CT: review of literature and management suggestions. Abdom. Imaging 38, 331–341 (2013).

    Article  PubMed  Google Scholar 

  13. Capurso, G. et al. Risk factors for intraductal papillary mucinous neoplasm (IPMN) of the pancreas: a multicentre case-control study. Am. J. Gastroenterol. 108, 1003–1009 (2013).

    Article  PubMed  Google Scholar 

  14. Lee, S. Y. et al. Long-term follow up results of intraductal papillary mucinous tumors of pancreas. J. Gastroenterol. Hepatol. 20, 1379–1384 (2005).

    Article  PubMed  Google Scholar 

  15. Crippa, S. et al. Mucin-producing neoplasms of the pancreas: an analysis of distinguishing clinical and epidemiologic characteristics. Clin. Gastroenterol. Hepatol. 8, 213–219 (2010).

    Article  PubMed  Google Scholar 

  16. Hwang, D. W. et al. Clinicopathologic analysis of surgically proven intraductal papillary mucinous neoplasms of the pancreas in SNUH: a 15-year experience at a single academic institution. Langenbecks Arch. Surg. 397, 93–102 (2012).

    Article  PubMed  Google Scholar 

  17. Salvia, R. et al. Main-duct intraductal papillary mucinous neoplasms of the pancreas: clinical predictors of malignancy and long-term survival following resection. Ann. Surg. 239, 678–685; discussion 685–677 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ohno, E. et al. Natural history of pancreatic cystic lesions: a multicenter prospective observational study for evaluating the risk of pancreatic cancer. J. Gastroenterol. Hepatol. 33, 320–328 (2018).

    Article  PubMed  Google Scholar 

  19. Nagai, K. et al. Intraductal papillary mucinous neoplasms of the pancreas: clinicopathologic characteristics and long-term follow-up after resection. World J. Surg. 32, 271–278; discussion 279–280 (2008).

    Article  PubMed  Google Scholar 

  20. Ridtitid, W. et al. Management of branch-duct intraductal papillary mucinous neoplasms: a large single-center study to assess predictors of malignancy and long-term outcomes. Gastrointest. Endosc. 84, 436–445 (2016).

    Article  PubMed  Google Scholar 

  21. Moris, M. et al. Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration cytology, carcinoembryonic antigen, and amylase in intraductal papillary mucinous neoplasm. Pancreas 45, 870–875 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Jang, J. Y. et al. Treatment guidelines for branch duct type intraductal papillary mucinous neoplasms of the pancreas: when can we operate or observe? Ann. Surg. Oncol. 15, 199–205 (2008).

    Article  PubMed  Google Scholar 

  23. Kanno, A. et al. Prediction of invasive carcinoma in branch type intraductal papillary mucinous neoplasms of the pancreas. J. Gastroenterol. 45, 952–959 (2010).

    Article  PubMed  Google Scholar 

  24. Rodriguez, J. R. et al. Branch-duct intraductal papillary mucinous neoplasms: observations in 145 patients who underwent resection. Gastroenterology 133, 72–79 (2007).

    Article  PubMed  Google Scholar 

  25. Schmidt, C. M. et al. Intraductal papillary mucinous neoplasms: predictors of malignant and invasive pathology. Ann. Surg. 246, 644–651; discussion 651–644. (2007).

    Article  PubMed  Google Scholar 

  26. Waters, J. A. et al. CT vs MRCP: optimal classification of IPMN type and extent. J. Gastrointest. Surg. 12, 101–109 (2008).

    Article  PubMed  Google Scholar 

  27. Suzuki, Y. et al. Cystic neoplasm of the pancreas: a Japanese multiinstitutional study of intraductal papillary mucinous tumor and mucinous cystic tumor. Pancreas 28, 241–246 (2004).

    Article  PubMed  Google Scholar 

  28. Schnelldorfer, T. et al. Experience with 208 resections for intraductal papillary mucinous neoplasm of the pancreas. Arch. Surg. 143, 639–646; discussion 646 (2008).

    Article  PubMed  Google Scholar 

  29. Kim, S. C. et al. Intraductal papillary mucinous neoplasm of the pancreas: clinical characteristics and treatment outcomes of 118 consecutive patients from a single center. J. Hepatobiliary Pancreat. Surg. 15, 183–188 (2008).

    Article  PubMed  Google Scholar 

  30. Ohno, E. et al. Intraductal papillary mucinous neoplasms of the pancreas: differentiation of malignant and benign tumors by endoscopic ultrasound findings of mural nodules. Ann. Surg. 249, 628–634 (2009).

    Article  PubMed  Google Scholar 

  31. Nara, S. et al. Preoperative evaluation of invasive and noninvasive intraductal papillary-mucinous neoplasms of the pancreas: clinical, radiological, and pathological analysis of 123 cases. Pancreas 38, 8–16 (2009).

    Article  PubMed  Google Scholar 

  32. Marchegiani, G. et al. IPMN involving the main pancreatic duct: biology, epidemiology, and long-term outcomes following resection. Ann. Surg. 261, 976–983 (2015).

    Article  PubMed  Google Scholar 

  33. Crippa, S. et al. Low progression of intraductal papillary mucinous neoplasms with worrisome features and high-risk stigmata undergoing non-operative management: a mid-term follow-up analysis. Gut 66, 495–506 (2017).

    Article  PubMed  Google Scholar 

  34. Tanno, S. et al. Incidence of synchronous and metachronous pancreatic carcinoma in 168 patients with branch duct intraductal papillary mucinous neoplasm. Pancreatology 10, 173–178 (2010).

    Article  PubMed  Google Scholar 

  35. Thornton, G. D. et al. Endoscopic ultrasound guided fine needle aspiration for the diagnosis of pancreatic cystic neoplasms: a meta-analysis. Pancreatology 13, 48–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Felsenstein, M. et al. IPMNs with co-occurring invasive cancers: neighbours but not always relatives. Gut 67, 1652–1662 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Jang, K. T. et al. Clinicopathologic characteristics of 29 invasive carcinomas arising in 178 pancreatic mucinous cystic neoplasms with ovarian-type stroma: implications for management and prognosis. Am. J. Surg. Pathol. 39, 179–187 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zamboni, G. et al. Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am. J. Surg. Pathol. 23, 410–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Sarr, M. G. et al. Clinical and pathologic correlation of 84 mucinous cystic neoplasms of the pancreas: can one reliably differentiate benign from malignant (or premalignant) neoplasms? Ann. Surg. 231, 205–212 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reddy, R. P. et al. Pancreatic mucinous cystic neoplasm defined by ovarian stroma: demographics, clinical features, and prevalence of cancer. Clin. Gastroenterol. Hepatol. 2, 1026–1031 (2004).

    Article  PubMed  Google Scholar 

  41. Goh, B. K. et al. A review of mucinous cystic neoplasms of the pancreas defined by ovarian-type stroma: clinicopathological features of 344 patients. World J. Surg. 30, 2236–2245 (2006).

    Article  PubMed  Google Scholar 

  42. Park, J. W. et al. Mucinous cystic neoplasm of the pancreas: is surgical resection recommended for all surgically fit patients? Pancreatology 14, 131–136 (2014).

    Article  PubMed  Google Scholar 

  43. Lee, S. E., Jang, J. Y., Hwang, D. W., Park, K. W. & Kim, S. W. Clinical features and outcome of solid pseudopapillary neoplasm: differences between adults and children. Arch. Surg. 143, 1218–1221 (2008).

    Article  PubMed  Google Scholar 

  44. Koh, Y. X., Chok, A. Y., Zheng, H. L., Tan, C. S. & Goh, B. K. A systematic review and meta-analysis of the clinicopathologic characteristics of cystic versus solid pancreatic neuroendocrine neoplasms. Surgery 156, 83–96.e2 (2014).

    Article  Google Scholar 

  45. Patra, K. C., Bardeesy, N. & Mizukami, Y. Diversity of precursor lesions for pancreatic cancer: the genetics and biology of intraductal papillary mucinous neoplasm. Clin. Transl. Gastroenterol. 8, e86 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Howlader, N. SEER cancer statistics review, 1975–2011. NIH http://seer.cancer.gov/csr/1975_2011/ (2014).

  48. Vege, S. S. et al. American Gastroenterological Association Institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology 148, 819–822 (2015).These American Gastroenterological Association guidelines suggest that patients with both a solid component and a dilated pancreatic duct and/or cytology positive for malignancy should undergo surgery to reduce the risk of mortality from invasive cancer; these guidelines have led to discussion owing to their recommendation to discontinue surveillance in the case of no significant change in the cyst during 5 years follow-up.

    Article  PubMed  Google Scholar 

  49. Hruban R. H. et al. in WHO Classification Tumours Digestive System 4th edn (eds Bosman F. T., Carneiro F. & Hruban R. H.) 280–330 (International Agency for Research on Cancer, 2010).

  50. Bosman F. T., Carneiro F. & Hruban R. H. (eds) WHO Classification Tumours Digestive System (International Agency for Research on Cancer, 2010).

  51. Basturk, O. et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am. J. Surg. Pathol. 39, 1730–1741 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Furukawa, T. et al. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch. 447, 794–799 (2005).

    Article  PubMed  Google Scholar 

  53. Koh, Y. X. et al. Systematic review and meta-analysis of the spectrum and outcomes of different histologic subtypes of noninvasive and invasive intraductal papillary mucinous neoplasms. Surgery 157, 496–509 (2015).

    Article  Google Scholar 

  54. Schaberg, K. B., DiMaio, M. A. & Longacre, T. A. Intraductal papillary mucinous neoplasms often contain epithelium from multiple subtypes and/or are unclassifiable. Am. J. Surg. Pathol. 40, 44–50 (2016).

    Article  PubMed  Google Scholar 

  55. Adsay, V. et al. Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of Verona consensus meeting. Ann. Surg. 263, 162–177 (2016).

    Article  PubMed  Google Scholar 

  56. Tsutsumi, K. et al. A history of acute pancreatitis in intraductal papillary mucinous neoplasms of the pancreas is a potential predictive factor for malignant papillary subtype. Pancreatology 10, 707–712 (2010).

    Article  PubMed  Google Scholar 

  57. Ringold, D. A. et al. Pancreatitis is frequent among patients with side-branch intraductal papillary mucinous neoplasia diagnosed by EUS. Gastrointest. Endosc. 70, 488–494 (2009).

    Article  PubMed  Google Scholar 

  58. Pelletier, A. L. et al. Acute pancreatitis in patients operated on for intraductal papillary mucinous neoplasms of the pancreas: frequency, severity, and clinicopathologic correlations. Pancreas 39, 658–661 (2010).

    Article  PubMed  Google Scholar 

  59. Sodickson, A. et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 251, 175–184 (2009).

    Article  PubMed  Google Scholar 

  60. Berland, L. L. et al. Managing incidental findings on abdominal CT: white paper of the ACR Incidental Findings Committee. J. Am. Coll. Radiol. 7, 754–773 (2010).

    Article  PubMed  Google Scholar 

  61. Pilleul, F. et al. Preoperative evaluation of intraductal papillary mucinous tumors performed by pancreatic magnetic resonance imaging and correlated with surgical and histopathologic findings. J. Magn. Reson. Imaging 21, 237–244 (2005).

    Article  PubMed  Google Scholar 

  62. Sugiyama, M. & Atomi, Y. Intraductal papillary mucinous tumors of the pancreas: imaging studies and treatment strategies. Ann. Surg. 228, 685–691 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Postlewait, L. M. et al. Association of preoperative risk factors with malignancy in pancreatic mucinous cystic neoplasms: a multicenter study. JAMA Surg. 152, 19–25 (2017). This multicentre retrospective study identifies HGD or invasive cancer to be present in 14.9% of resected MCN, for which risks include gender, pancreatic head and neck location, larger size, solid component or nodules, and duct dilatation.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Keane, M. G. et al. Risk of malignancy in resected pancreatic mucinous cystic neoplasms. Br. J. Surg. 105, 439–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Kimura, W. et al. Multicenter study of serous cystic neoplasm of the Japan pancreas society. Pancreas 41, 380–387 (2012).

    Article  PubMed  Google Scholar 

  66. Dietrich, C. F. et al. Serous pancreatic neoplasia, data and review. World J. Gastroenterol. 23, 5567–5578 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Leite, I. et al. Unilocular macrocystic serous cystadenoma of the pancreas-atypical features: a case report. Clin. Imaging 38, 336–339 (2014).

    Article  PubMed  Google Scholar 

  68. Papavramidis, T. & Papavramidis, S. Solid pseudopapillary tumors of the pancreas: review of 718 patients reported in English literature. J. Am. Coll. Surg. 200, 965–972 (2005).

    Article  PubMed  Google Scholar 

  69. Ligneau, B. et al. Cystic endocrine tumors of the pancreas: clinical, radiologic, and histopathologic features in 13 cases. Am. J. Surg. Pathol. 25, 752–760 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Lewis, R. B., Lattin, G. E. Jr. & Paal, E. Pancreatic endocrine tumors: radiologic-clinicopathologic correlation. Radiographics 30, 1445–1464 (2010).

    Article  PubMed  Google Scholar 

  71. Rastegar, N. et al. Incremental value of secretin-enhanced magnetic resonance cholangiopancreatography in detecting ductal communication in a population with high prevalence of small pancreatic cysts. Eur. J. Radiol. 84, 575–580 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chey, W. Y. & Chang, T. M. Secretin, 100 years later. J. Gastroenterol. 38, 1025–1035 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Carbognin, G. et al. Collateral branches IPMTs: secretin-enhanced MRCP. Abdom. Imaging 32, 374–380 (2007).

    Article  PubMed  Google Scholar 

  74. Akisik, M. F. et al. Dynamic secretin-enhanced MR cholangiopancreatography. Radiographics 26, 665–677 (2006).

    Article  PubMed  Google Scholar 

  75. Yamashita, Y. et al. Usefulness of contrast-enhanced endoscopic sonography for discriminating mural nodules from mucous clots in intraductal papillary mucinous neoplasms: a single-center prospective study. J. Ultrasound Med. 32, 61–68 (2013).

    Article  PubMed  Google Scholar 

  76. Fujita, M. et al. Effectiveness of contrast-enhanced endoscopic ultrasound for detecting mural nodules in intraductal papillary mucinous neoplasm of the pancreas and for making therapeutic decisions. Endosc. Ultrasound 5, 377–383 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yamamoto, N. et al. Contrast-enhanced harmonic endoscopic ultrasonography with time-intensity curve analysis for intraductal papillary mucinous neoplasms of the pancreas. Endoscopy 48, 26–34 (2016).

    PubMed  Google Scholar 

  78. Kamata, K. et al. Contrast-enhanced harmonic endoscopic ultrasonography for differential diagnosis of pancreatic cysts. Endoscopy 48, 35–41 (2016).

    Article  PubMed  Google Scholar 

  79. Fusaroli, P. et al. Contrast harmonic-endoscopic ultrasound is useful to identify neoplastic features of pancreatic cysts (with videos). Pancreas 45, 265–268 (2016).

    Article  PubMed  Google Scholar 

  80. Marchegiani, G. et al. Systematic review, meta-analysis, and a high-volume center experience supporting the new role of mural nodules proposed by the updated 2017 International Guidelines on IPMN of the pancreas. Surgery 163, 1272–1279 (2018). This meta-analysis includes 70 studies with 2,297 resected IPMN and reports a positive predictive value of an enhancing mural nodule on contrast-enhanced EUS of 62% for the presence of advanced neoplasia at final pathology.

    Article  Google Scholar 

  81. Ahmad, N. A. et al. Interobserver agreement among endosonographers for the diagnosis of neoplastic versus non-neoplastic pancreatic cystic lesions. Gastrointest. Endosc. 58, 59–64 (2003).

    Article  PubMed  Google Scholar 

  82. Fusaroli, P. et al. Interobserver agreement in contrast harmonic endoscopic ultrasound. J. Gastroenterol. Hepatol. 27, 1063–1069 (2012).

    Article  PubMed  Google Scholar 

  83. Krishna, S. G. et al. Validation of diagnostic characteristics of needle based confocal laser endomicroscopy in differentiation of pancreatic cystic lesions. Endosc. Int. Open 4, E1124–E1135 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nakai, Y. et al. Diagnosis of pancreatic cysts: EUS-guided, through-the-needle confocal laser-induced endomicroscopy and cystoscopy trial: DETECT study. Gastrointest. Endosc. 81, 1204–1214 (2015).

    Article  PubMed  Google Scholar 

  85. Napoleon, B. et al. A novel approach to the diagnosis of pancreatic serous cystadenoma: needle-based confocal laser endomicroscopy. Endoscopy 47, 26–32 (2015).

    Article  PubMed  Google Scholar 

  86. Modi, R. M., Swanson, B., Muscarella, P. 2nd, Conwell, D. L. & Krishna, S. G. Novel techniques for diagnosis of serous cystadenoma: fern pattern of vascularity confirmed by in vivo and ex vivo confocal laser endomicroscopy. Gastrointest. Endosc. 85, 258–259 (2017).

    Article  PubMed  Google Scholar 

  87. Konda, V. J. et al. A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance. Endoscopy 45, 1006–1013 (2013).

    Article  PubMed  Google Scholar 

  88. Modi, R. M., Kamboj, A. K., Swanson, B., Conwell, D. L. & Krishna, S. G. Novel technique for diagnosis of mucinous cystic neoplasms: in vivo and ex vivo confocal laser endomicroscopy. VideoGIE 2, 55–56 (2017).

    Article  PubMed  Google Scholar 

  89. Napoleon, B. et al. In vivo characterization of pancreatic cystic lesions by needle-based confocal laser endomicroscopy (nCLE): proposition of a comprehensive nCLE classification confirmed by an external retrospective evaluation. Surg. Endosc. 30, 2603–2612 (2016).

    Article  PubMed  Google Scholar 

  90. Dumonceau, J. M. et al. Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline — updated January 2017. Endoscopy 49, 695–714 (2017).

    Article  PubMed  Google Scholar 

  91. Polkowski, M. et al. Technical aspects of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) technical guideline – March 2017. Endoscopy 49, 989–1006 (2017).

    Article  PubMed  Google Scholar 

  92. Yoon, W. J. et al. Peritoneal seeding in intraductal papillary mucinous neoplasm of the pancreas patients who underwent endoscopic ultrasound-guided fine-needle aspiration: the PIPE study. Endoscopy 46, 382–387 (2014).

    Article  PubMed  Google Scholar 

  93. Leung, K. K. et al. Pancreatic cystic neoplasm: the role of cyst morphology, cyst fluid analysis, and expectant management. Ann. Surg. Oncol. 16, 2818–2824 (2009).

    Article  PubMed  Google Scholar 

  94. Bick, B. L. et al. The string sign for diagnosis of mucinous pancreatic cysts. Endoscopy 47, 626–631 (2015).

    Article  PubMed  Google Scholar 

  95. Oh, S. H. et al. The combination of cyst fluid carcinoembryonic antigen, cytology and viscosity increases the diagnostic accuracy of mucinous pancreatic cysts. Gut Liver 11, 283–289 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Khamaysi, I. et al. Differentiation of pancreatic cyst types by analysis of rheological behavior of pancreatic cyst fluid. Sci. Rep. 7, 45589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pitman, M. B. et al. High-grade atypical epithelial cells in pancreatic mucinous cysts are a more accurate predictor of malignancy than “positive” cytology. Cancer Cytopathol. 118, 434–440 (2010).

    Article  PubMed  Google Scholar 

  98. Genevay, M. et al. Cytology adds value to imaging studies for risk assessment of malignancy in pancreatic mucinous cysts. Ann. Surg. 254, 977–983 (2011).

    Article  PubMed  Google Scholar 

  99. Hoda, R. S., Lu, R., Arpin, R. N. 3rd, Rosenbaum, M. W. & Pitman, M. B. Risk of malignancy in pancreatic cysts with cytology of high-grade epithelial atypia. Cancer Cytopathol. 126, 773–781 (2018).

    Article  PubMed  Google Scholar 

  100. Mittal, C. et al. Technical feasibility, diagnostic yield, and safety of microforceps biopsies during EUS evaluation of pancreatic cystic lesions (with video). Gastrointest. Endosc. 87, 1263–1269 (2018).

    Article  PubMed  Google Scholar 

  101. Attili, F. et al. Endoscopic ultrasound-guided histological diagnosis of a mucinous non-neoplastic pancreatic cyst using a specially designed through-the-needle microforceps. Endoscopy 48 Suppl 1, E188–E189 (2016).

    PubMed  Google Scholar 

  102. Pham, K. D., Engjom, T., Gjelberg Kollesete, H. & Helgeland, L. Diagnosis of a mucinous pancreatic cyst and resection of an intracystic nodule using a novel through-the-needle micro forceps. Endoscopy 48 Suppl 1, E125–E126 (2016).

    PubMed  Google Scholar 

  103. Basar, O. et al. Feasibility and safety of microforceps biopsy in the diagnosis of pancreatic cysts. Gastrointest. Endosc. 88, 79–86 (2018).

    Article  PubMed  Google Scholar 

  104. Carethers, J. B. C. in Textbook of Gastroenterology Vol. 1 (eds Yamada T. et al) (Lippincott, Williams and Wilkins, 1999).

  105. Brugge, W. R. et al. Diagnosis of pancreatic cystic neoplasms: a report of the cooperative pancreatic cyst study. Gastroenterology 126, 1330–1336 (2004).

    Article  PubMed  Google Scholar 

  106. van Huijgevoort, N. C. M. et al. Su1347 — the diagnostic accuracy of carcinoembryonic antigen in differentiating mucinous and non-mucinous pancreatic cystic neoplasms — a systematic review and individual patient data meta-analysis. Gastroenterology 154 (Suppl. 1), S-528 (2018).

    Google Scholar 

  107. Al-Rashdan, A. et al. Fluid analysis prior to surgical resection of suspected mucinous pancreatic cysts. A single centre experience. J. Gastrointest. Oncol. 2, 208–214 (2011).

    PubMed  PubMed Central  Google Scholar 

  108. van der Waaij, L. A., van Dullemen, H. M. & Porte, R. J. Cyst fluid analysis in the differential diagnosis of pancreatic cystic lesions: a pooled analysis. Gastrointest. Endosc. 62, 383–389 (2005).

    Article  PubMed  Google Scholar 

  109. Park, W. G. et al. Metabolomics derived novel cyst fluid biomarkers for pancreatic cysts: glucose and kynurenine. Gastrointest. Endosc. 78, 295–302.e2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zikos, T. et al. Cyst fluid glucose is rapidly feasible and accurate in diagnosing mucinous pancreatic cysts. Am. J. Gastroenterol. 110, 909–914 (2015).

    Article  PubMed  Google Scholar 

  111. Carr, R. A. et al. Pancreatic cyst fluid glucose: rapid, inexpensive, and accurate diagnosis of mucinous pancreatic cysts. Surgery 163, 600–605 (2018).

    Article  Google Scholar 

  112. Wu, J. et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc. Natl Acad. Sci. U.S.A. 108, 21188–21193 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Singhi, A. D. et al. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut 67, 2131–2141 (2018). This prospective study evaluates preoperative pancreatic cyst fluid DNA testing and shows that preoperative next-generation sequencing of pancreatic cyst fluid for KRAS or GNAS mutations is highly sensitive for IPMN and specific for MCN.

  114. Nikiforova, M. N. et al. Integration of KRAS testing in the diagnosis of pancreatic cystic lesions: a clinical experience of 618 pancreatic cysts. Mod. Pathol. 26, 1478–1487 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Singhi, A. D. et al. Preoperative GNAS and KRAS testing in the diagnosis of pancreatic mucinous cysts. Clin. Cancer Res. 20, 4381–4389 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Wu, J. et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci. Transl Med. 3, 92ra66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu, J. et al. Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Gut 66, 1677–1687 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Jones, M. et al. Impact of next-generation sequencing on the clinical diagnosis of pancreatic cysts. Gastrointest. Endosc. 83, 140–148 (2016).

    Article  PubMed  Google Scholar 

  119. Pea, A. et al. Targeted DNA sequencing reveals patterns of local progression in the pancreatic remnant following resection of intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann. Surg. 266, 133–141 (2017).

    Article  PubMed  Google Scholar 

  120. Kanda, M. et al. Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. Clin. Gastroenterol. Hepatol. 11, 719–730.e5 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Schonleben, F. et al. PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin. Cancer Res. 12, 3851–3855 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Garcia-Carracedo, D. et al. Loss of PTEN expression is associated with poor prognosis in patients with intraductal papillary mucinous neoplasms of the pancreas. Clin. Cancer Res. 19, 6830–6841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Garcia-Carracedo, D. et al. PIK3CA mutations in mucinous cystic neoplasms of the pancreas. Pancreas 43, 245–249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Del Chiaro, M. et al. Main duct dilatation is the best predictor of high-grade dysplasia or invasion in intraductal papillary mucinous neoplasms of the pancreas. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003174 (2019).

  125. Hackert, T. et al. Main-duct intraductal papillary mucinous neoplasm: high cancer risk in duct diameter of 5 to 9 mm. Ann. Surg. 262, 875–880; discussion 880–881 (2015).

    Article  PubMed  Google Scholar 

  126. Del Chiaro, M. & Schulick, R. D. Main-duct intraductal papillary mucinous neoplasm. High cancer risk in duct diameter of 5 to 9 mm. Ann. Surg. 266, e86 (2017).

    Article  PubMed  Google Scholar 

  127. Canto, M. I. & Hruban, R. H. Managing pancreatic cysts: less is more? Gastroenterology 148, 688–691 (2015).

    Article  PubMed  Google Scholar 

  128. Fernandez-Del Castillo, C. & Tanaka, M. Management of pancreatic cysts: the evidence is not here yet. Gastroenterology 148, 685–687 (2015).

    Article  PubMed  Google Scholar 

  129. Crippa, S. et al. Active surveillance beyond 5 years is required for presumed branch-duct intraductal papillary mucinous neoplasms undergoing non-operative management. Am. J. Gastroenterol. 112, 1153–1161 (2017).

    Article  PubMed  Google Scholar 

  130. Lawrence, S. A. et al. Should patients with cystic lesions of the pancreas undergo long-term radiographic surveillance? Results of 3024 patients evaluated at a single institution. Ann. Surg. 266, 536–544 (2017).

    Article  PubMed  Google Scholar 

  131. Brook, O. R. et al. Delayed growth in incidental pancreatic cysts: are the current American College of Radiology recommendations for follow-up appropriate? Radiology 278, 752–761 (2016).

    Article  PubMed  Google Scholar 

  132. Netherlands Trial Register. TrialRegister.nl https://www.trialregister.nl/trial/4365 (2019).

  133. Han, Y. et al. Progression of pancreatic branch duct intraductal papillary mucinous neoplasm associates with cyst size. Gastroenterology 154, 576–584 (2018).

    Article  PubMed  Google Scholar 

  134. Jais, B. et al. Serous cystic neoplasm of the pancreas: a multinational study of 2622 patients under the auspices of the International Association of Pancreatology and European Pancreatic Club (European Study Group on Cystic Tumours of the Pancreas). Gut 65, 305–312 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Falconi, M. et al. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology 103, 153–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Partelli, S. et al. Systematic review of active surveillance versus surgical management of asymptomatic small non-functioning pancreatic neuroendocrine neoplasms. Br. J. Surg. 104, 34–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Netherlands Trial Register. TrialRegister.nl https://www.trialregister.nl/trial/6510 (2019).

  138. Palanivelu, C. et al. Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br. J. Surg. 104, 1443–1450 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Poves, I. et al. Comparison of perioperative outcomes between laparoscopic and open approach for pancreatoduodenectomy: the PADULAP randomized controlled trial. Ann. Surg. 268, 731–739 (2018).

    Article  PubMed  Google Scholar 

  140. van Hilst, J. et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol. Hepatol. 4, 199–207 (2019).

    Article  PubMed  Google Scholar 

  141. de Rooij, T. et al. Minimally invasive versus open distal pancreatectomy (LEOPARD): a multicenter patient-blinded randomized controlled trial. Ann. Surg. 269, 2–9 (2019).

    Article  PubMed  Google Scholar 

  142. Allen, P. J. et al. A selective approach to the resection of cystic lesions of the pancreas: results from 539 consecutive patients. Ann. Surg. 244, 572–582 (2006).

    PubMed  PubMed Central  Google Scholar 

  143. Clancy, T. E. Surgery for pancreatic cancer. Hematol. Oncol. Clin. North Am. 29, 701–716 (2015).

    Article  PubMed  Google Scholar 

  144. McPhee, J. T. et al. Perioperative mortality for pancreatectomy: a national perspective. Ann. Surg. 246, 246–253 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Amini, N., Spolverato, G., Kim, Y. & Pawlik, T. M. Trends in hospital volume and failure to rescue for pancreatic surgery. J. Gastrointest. Surg. 19, 1581–1592 (2015).

    Article  PubMed  Google Scholar 

  146. Goudard, Y. et al. Reappraisal of central pancreatectomy a 12-year single-center experience. JAMA Surg. 149, 356–363 (2014).

    Article  PubMed  Google Scholar 

  147. Iacono, C. et al. Systematic review of central pancreatectomy and meta-analysis of central versus distal pancreatectomy. Br. J. Surg. 100, 873–885 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Xu, S. B., Zhu, Y. P., Zhou, W., Xie, K. & Mou, Y. P. Patients get more long-term benefit from central pancreatectomy than distal resection: a meta-analysis. Eur. J. Surg. Oncol. 39, 567–574 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Xiao, W. et al. The role of central pancreatectomy in pancreatic surgery: a systematic review and meta-analysis. HPB 20, 896–904 (2018).

    Article  Google Scholar 

  150. Nilsson, L. N. et al. Nature and management of pancreatic mucinous cystic neoplasm (MCN): a systematic review of the literature. Pancreatology 16, 1028–1036 (2016).

    Article  PubMed  Google Scholar 

  151. Lekkerkerker, S. J. et al. Comparing 3 guidelines on the management of surgically removed pancreatic cysts with regard to pathological outcome. Gastrointest. Endosc. 85, 1025–1031 (2017).

    Article  PubMed  Google Scholar 

  152. Singhi, A. D. et al. American Gastroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data. Gastrointest. Endosc. 83, 1107–1117.e2 (2016).

    Article  PubMed  Google Scholar 

  153. Scholten, L. et al. Surgical management of intraductal papillary mucinous neoplasm with main duct involvement: an international expert survey and case-vignette study. Surgery. 164, 17–23 (2018).

    Article  Google Scholar 

  154. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 37 (Suppl. 1), S81–S90 (2014).

    Article  Google Scholar 

  155. Hart, P. A. et al. Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol. Hepatol. 1, 226–237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Scholten, L. et al. New-onset diabetes after pancreatoduodenectomy: a systematic review and meta-analysis. Surgery. 164, 6–16 (2018).

    Article  Google Scholar 

  157. El-Khatib, F. H. et al. Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial. Lancet 389, 369–380 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Blauw, H., van Bon, A. C., Koops, R. & DeVries, J. H., PCDIAB consortium. Performance and safety of an integrated bihormonal artificial pancreas for fully automated glucose control at home. Diabetes Obes. Metab. 18, 671–677 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Castle, J. R. et al. Novel use of glucagon in a closed-loop system for prevention of hypoglycemia in type 1 diabetes. Diabetes Care 33, 1282–1287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. El-Khatib, F. H., Jiang, J. & Damiano, E. R. Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic Swine. J. Diabetes Sci. Technol. 1, 181–192 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Haidar, A. et al. Glucose-responsive insulin and glucagon delivery (dual-hormone artificial pancreas) in adults with type 1 diabetes: a randomized crossover controlled trial. CMAJ 185, 297–305 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Castle, J. R., Engle, J. M., El Youssef, J., Massoud, R. G. & Ward, W. K. Factors influencing the effectiveness of glucagon for preventing hypoglycemia. J. Diabetes Sci. Technol. 4, 1305–1310 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Weinzimer, S. A. et al. Effect of pramlintide on prandial glycemic excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diabetes Care 35, 1994–1999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Russell, S. J. et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 371, 313–325 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fazlalizadeh, R. et al. Total pancreatectomy and islet autotransplantation: a decade nationwide analysis. World J. Transpl. 6, 233–238 (2016).

    Article  Google Scholar 

  166. Lohr, J. M., Oliver, M. R. & Frulloni, L. Synopsis of recent guidelines on pancreatic exocrine insufficiency. United European Gastroenterol. J. 1, 79–83 (2013).

    Article  Google Scholar 

  167. Gianotti, L. et al. Nutritional support and therapy in pancreatic surgery: a position paper of the International Study Group on Pancreatic Surgery (ISGPS). Surgery. 164, 1035–1048 (2018).

    Article  Google Scholar 

  168. Imrie, C. W., Connett, G., Hall, R. I. & Charnley, R. M. Review article: enzyme supplementation in cystic fibrosis, chronic pancreatitis, pancreatic and periampullary cancer. Aliment. Pharmacol. Ther. 32 Suppl 1, 1–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Tamura, K. et al. Treatment strategy for main duct intraductal papillary mucinous neoplasms of the pancreas based on the assessment of recurrence in the remnant pancreas after resection: a retrospective review. Ann. Surg. 259, 360–368 (2014).

    Article  PubMed  Google Scholar 

  170. Yamaguchi, J. et al. Positive surgical margins in surgically treated unifocal and multifocal IPMN. Int. J. Surg. 28, 51–55 (2016).

    Article  PubMed  Google Scholar 

  171. Fujii, T. et al. Prognostic impact of pancreatic margin status in the intraductal papillary mucinous neoplasms of the pancreas. Surgery 148, 285–290 (2010).

    Article  Google Scholar 

  172. Park, J. et al. Risk factors associated with the postoperative recurrence of intraductal papillary mucinous neoplasms of the pancreas. Pancreas 40, 46–51 (2011).

    Article  PubMed  Google Scholar 

  173. Nara, S. et al. Clinical significance of frozen section analysis during resection of intraductal papillary mucinous neoplasm: should a positive pancreatic margin for adenoma or borderline lesion be resected additionally? J. Am. Coll. Surg. 209, 614–621 (2009).

    Article  PubMed  Google Scholar 

  174. Landa, J., Allen, P., D’Angelica, M. & Schwartz, L. H. Recurrence patterns of intraductal papillary mucinous neoplasms of the pancreas on enhanced computed tomography. J. Comput. Assist. Tomogr. 33, 838–843 (2009).

    Article  PubMed  Google Scholar 

  175. Leng, K. M., Wang, Z. D., Zhao, J. B., Cui, Y. F. & Zhong, X. Y. Impact of pancreatic margin status and lymph node metastases on recurrence after resection for invasive and noninvasive intraductal papillary mucinous neoplasms of the pancreas: a meta-analysis. Dig. Surg. 29, 213–225 (2012).

    Article  PubMed  Google Scholar 

  176. Moriya, T. & Traverso, W. Fate of the pancreatic remnant after resection for an intraductal papillary mucinous neoplasm: a longitudinal level II cohort study. Arch. Surg. 147, 528–534 (2012).

    PubMed  Google Scholar 

  177. Kang, M. J. et al. Long-term prospective cohort study of patients undergoing pancreatectomy for intraductal papillary mucinous neoplasm of the pancreas: implications for postoperative surveillance. Ann. Surg. 260, 356–363 (2014).

    Article  PubMed  Google Scholar 

  178. Yokoyama, Y. et al. Clinicopathologic features of re-resected cases of intraductal papillary mucinous neoplasms (IPMNs). Surgery 142, 136–142 (2007).

    Article  Google Scholar 

  179. Cuillerier, E. et al. Outcome after surgical resection of intraductal papillary and mucinous tumors of the pancreas. Am. J. Gastroenterol. 95, 441–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. He, J. et al. Is it necessary to follow patients after resection of a benign pancreatic intraductal papillary mucinous neoplasm? J. Am. Coll. Surg. 216, 657–667 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Rezaee, N. et al. Intraductal papillary mucinous neoplasm (IPMN) with high-grade dysplasia is a risk factor for the subsequent development of pancreatic ductal adenocarcinoma. HPB 18, 236–246 (2016).

    Article  Google Scholar 

  182. Uehara, H. et al. Development of ductal carcinoma of the pancreas during follow-up of branch duct intraductal papillary mucinous neoplasm of the pancreas. Gut 57, 1561–1565 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Yamaguchi, K. et al. Pancreatic ductal adenocarcinoma derived from IPMN and pancreatic ductal adenocarcinoma concomitant with IPMN. Pancreas 40, 571–580 (2011).

    Article  PubMed  Google Scholar 

  184. Al Efishat, M. et al. Progression patterns in the remnant pancreas after resection of non-invasive or micro-invasive intraductal papillary mucinous neoplasms (IPMN). Ann. Surg. Oncol. 25, 1752–1759 (2018).

    Article  PubMed  Google Scholar 

  185. Blackham, A. U. et al. Patterns of recurrence and long-term outcomes in patients who underwent pancreatectomy for intraductal papillary mucinous neoplasms with high grade dysplasia: implications for surveillance and future management guidelines. HPB 19, 603–610 (2017).

    Article  Google Scholar 

  186. Yan, L. et al. A large multicenter study of recurrence after surgical resection of branch-duct intraductal papillary mucinous neoplasm of the pancreas. Minerva Gastroenterol. Dietol. 63, 50–54 (2017).

    PubMed  Google Scholar 

  187. Winter, J. M. et al. Recurrence and survival after resection of small intraductal papillary mucinous neoplasm-associated carcinomas (</=20-mm invasive component): a multi-institutional analysis. Ann. Surg. 263, 793–801 (2016).

    Article  PubMed  Google Scholar 

  188. Marchegiani, G. et al. Patterns of recurrence after resection of IPMN: who, when, and how? Ann. Surg. 262, 1108–1114 (2015).

    Article  PubMed  Google Scholar 

  189. Yogi, T. et al. Risk factors for postoperative recurrence of intraductal papillary mucinous neoplasms of the pancreas based on a long-term follow-up study: proposals for follow-up strategies. J. Hepatobiliary Pancreat. Sci. 22, 757–765 (2015).

    Article  PubMed  Google Scholar 

  190. Xourafas, D., Tavakkoli, A., Clancy, T. E. & Ashley, S. W. Noninvasive intraductal papillary mucinous neoplasms and mucinous cystic neoplasms: recurrence rates and postoperative imaging follow-up. Surgery 157, 473–483 (2015).

    Article  Google Scholar 

  191. Yuan, C. et al. Data analysis of 36 cases with intraductal papillary mucinous neoplasm of the pancreas for their clinicopathological features, diagnosis, and treatment. Chin. Med. J. 127, 4087–4091 (2014).

    Google Scholar 

  192. Frankel, T. L. et al. Dysplasia at the surgical margin is associated with recurrence after resection of non-invasive intraductal papillary mucinous neoplasms. HPB 15, 814–821 (2013).

    Article  Google Scholar 

  193. Winner, M. et al. Predictors of recurrence in intraductal papillary mucinous neoplasm: experience with 183 pancreatic resections. J. Gastrointest. Surg. 17, 1618–1626 (2013).

    Article  PubMed  Google Scholar 

  194. Passot, G. et al. Recurrences after surgical resection of intraductal papillary mucinous neoplasm of the pancreas: a single-center study of recurrence predictive factors. Pancreas 41, 137–141 (2012).

    Article  PubMed  Google Scholar 

  195. Miller, J. R. et al. Outcome of the pancreatic remnant following segmental pancreatectomy for non-invasive intraductal papillary mucinous neoplasm. HPB 13, 759–766 (2011).

    Article  Google Scholar 

  196. White, R. et al. Fate of the remnant pancreas after resection of noninvasive intraductal papillary mucinous neoplasm. J. Am. Coll. Surg. 204, 987–993; discussion 993–995 (2007).

    Article  PubMed  Google Scholar 

  197. Raut, C. P. et al. Intraductal papillary mucinous neoplasms of the pancreas: effect of invasion and pancreatic margin status on recurrence and survival. Ann. Surg. Oncol. 13, 582–594 (2006).

    Article  PubMed  Google Scholar 

  198. Ducreux, M. et al. Cancer of the pancreas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 26 Suppl 5, v56–v68 (2015).

    Article  PubMed  Google Scholar 

  199. Kaiser, J. et al. Enucleation: a treatment alternative for branch duct intraductal papillary mucinous neoplasms. Surgery 161, 602–610 (2017).

    Article  Google Scholar 

  200. Oh, H. C. et al. Endoscopic ultrasonography-guided ethanol lavage with paclitaxel injection treats patients with pancreatic cysts. Gastroenterology 140, 172–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Gan, S. I., Thompson, C. C., Lauwers, G. Y., Bounds, B. C. & Brugge, W. R. Ethanol lavage of pancreatic cystic lesions: initial pilot study. Gastrointest. Endosc. 61, 746–752 (2005).

    Article  PubMed  Google Scholar 

  202. DeWitt, J., McGreevy, K., Schmidt, C. M. & Brugge, W. R. EUS-guided ethanol versus saline solution lavage for pancreatic cysts: a randomized, double-blind study. Gastrointest. Endosc. 70, 710–723 (2009).

    Article  PubMed  Google Scholar 

  203. Moyer, M. T. et al. The safety and efficacy of an alcohol-free pancreatic cyst ablation protocol. Gastroenterology 153, 1295–1303 (2017).

    Article  PubMed  Google Scholar 

  204. Choi, J. H. et al. Long-term outcomes after endoscopic ultrasound-guided ablation of pancreatic cysts. Endoscopy 49, 866–873 (2017).

    Article  PubMed  Google Scholar 

  205. Oh, H. C. & Seo, D. W. Endoscopic ultrasonography-guided pancreatic cyst ablation (with video). J. Hepatobiliary Pancreat. Sci. 22, 16–19 (2015).

    Article  PubMed  Google Scholar 

  206. Ho, K. Y. & Brugge, W. R., EUS 2008 Working Group. EUS 2008 Working Group document: evaluation of EUS-guided pancreatic-cyst ablation. Gastrointest. Endosc. 69 (Suppl. 2), S22–S27 (2009).

    Article  PubMed  Google Scholar 

  207. Gomez, V. et al. EUS-guided ethanol lavage does not reliably ablate pancreatic cystic neoplasms (with video). Gastrointest. Endosc. 83, 914–920 (2016).

    Article  PubMed  Google Scholar 

  208. DeWitt, J., DiMaio, C. J. & Brugge, W. R. Long-term follow-up of pancreatic cysts that resolve radiologically after EUS-guided ethanol ablation. Gastrointest. Endosc. 72, 862–866 (2010).

    Article  PubMed  Google Scholar 

  209. Castellano-Megias, V. M., Andres, C. I., Lopez-Alonso, G. & Colina-Ruizdelgado, F. Pathological features and diagnosis of intraductal papillary mucinous neoplasm of the pancreas. World J. Gastrointest. Oncol. 6, 311–324 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and provided a substantial contribution to discussion of the content. N.C.M.v.H. wrote the article. M.d.C., C.L.W., J.E.v.H. and M.G.B. contributed to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Marc G. Besselink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

We searched PubMed using the terms “pancreatic cystic neoplasm” combined with “classification”, “diagnosis”, “endoscopic ultrasound”, “cyst fluid analysis”, “guidelines”, “treatment”, “surgery”, “recurrence” and “surveillance”. We selected full-text articles in English published in the previous 10 years, but exceptions were made for older, highly cited papers. We aimed to describe the results of prospective studies, since randomized controlled trials are lacking in this field, but other studies are also referenced. In addition, references list of the finally included articles were checked manually for studies that had not been identified by the primary search. Some recommendations are based on the recently revised guidelines of the International Association of Pancreatology3 and the European Study Group on Cystic Tumours of the Pancreas4.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Huijgevoort, N.C.M., del Chiaro, M., Wolfgang, C.L. et al. Diagnosis and management of pancreatic cystic neoplasms: current evidence and guidelines. Nat Rev Gastroenterol Hepatol 16, 676–689 (2019). https://doi.org/10.1038/s41575-019-0195-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0195-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing