Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Turner syndrome: mechanisms and management

Abstract

Turner syndrome is a rare condition in women that is associated with either complete or partial loss of one X chromosome, often in mosaic karyotypes. Turner syndrome is associated with short stature, delayed puberty, ovarian dysgenesis, hypergonadotropic hypogonadism, infertility, congenital malformations of the heart, endocrine disorders such as type 1 and type 2 diabetes mellitus, osteoporosis and autoimmune disorders. Morbidity and mortality are increased in women with Turner syndrome compared with the general population and the involvement of multiple organs through all stages of life necessitates a multidisciplinary approach to care. Despite an often conspicuous phenotype, the diagnostic delay can be substantial and the average age at diagnosis is around 15 years of age. However, numerous important clinical advances have been achieved, covering all specialty fields involved in the care of girls and women with Turner syndrome. Here, we present an updated Review of Turner syndrome, covering advances in genetic and genomic mechanisms of disease, associated disorders and multidisciplinary approaches to patient management, including growth hormone therapy and hormone replacement therapy.

Key points

  • Turner syndrome is a rare disorder caused by a completely or partially missing X chromosome; diagnosis of this condition is often delayed.

  • Growth is usually compromised and short stature can be treated with growth hormone and oxandrolone, usually leading to substantial increases in final height.

  • Congenital heart abnormalities are frequent and every woman with Turner syndrome should be seen by a cardiologist at least once.

  • Most women with Turner syndrome experience primary or secondary hypergonadotropic hypogonadism, which necessitates treatment with hormone replacement therapy.

  • Compared with the general population, morbidity and mortality are increased in women with Turner syndrome owing to a broad swathe of diseases, demanding vigilance as the individual ages.

  • Optimal care for Turner syndrome necessitates a multidisciplinary team optimally situated within the framework of one hospital.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The phenotype and current genomic understanding of Turner syndrome.
Fig. 2: The beneficial effects of hormone replacement therapy in Turner syndrome.
Fig. 3: Diseases and anomalies of the heart associated with Turner syndrome.
Fig. 4: Multidisciplinary management of patients with Turner syndrome.

Similar content being viewed by others

References

  1. Gravholt, C. H. et al. Clinical practice guidelines for the care of girls and women with Turner syndrome: proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. Eur. J. Endocrinol. 177, G1–G70 (2017).

    CAS  PubMed  Google Scholar 

  2. Lonberg, N. C. & Nielsen, J. Seresevskij-Turner’s syndrome or Turner’s syndrome [letter]. Hum. Genet. 38, 363–364 (1977).

    CAS  PubMed  Google Scholar 

  3. El-Mansoury, M. et al. Chromosomal mosaicism mitigates stigmata and cardiovascular risk factors in Turner syndrome. Clin. Endocrinol. 66, 744–751 (2007).

    CAS  Google Scholar 

  4. Cameron-Pimblett, A., La, R. C., King, T. F. J., Davies, M. C. & Conway, G. S. The Turner Syndrome Life Course Project: karyotype-phenotype analyses across the lifespan. Clin. Endocrinol. 87, 532–538 (2017).

    CAS  Google Scholar 

  5. Rao, E. et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat. Genet. 16, 54–63 (1997).

    CAS  PubMed  Google Scholar 

  6. Fukami, M., Seki, A. & Ogata, T. SHOX haploinsufficiency as a cause of syndromic and nonsyndromic short stature. Mol. Syndromol. 7, 3–11 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Marchini, A., Ogata, T. & Rappold, G. A. A. Track record on SHOX: from basic research to complex models and therapy. Endocr. Rev. 37, 417–448 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Corbitt, H. et al. TIMP3 and TIMP1 are risk genes for bicuspid aortic valve and aortopathy in Turner syndrome. PLOS Genet. 14, e1007692 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Trolle, C. et al. Widespread DNA hypomethylation and differential gene expression in Turner syndrome. Sci. Rep. 6, 34220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rabkin, S. W. The role matrix metalloproteinases in the production of aortic aneurysm. Prog. Mol. Biol. Transl Sci. 147, 239–265 (2017).

    PubMed  Google Scholar 

  11. Sharma, A. et al. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations. Clin. Epigenet. 7, 76 (2015).

    Google Scholar 

  12. Rajpathak, S. N. et al. Human 45,X fibroblast transcriptome reveals distinct differentially expressed genes including long noncoding RNAs potentially associated with the pathophysiology of Turner syndrome. PLOS ONE 9, e100076 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Zhang, R. et al. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes. BMC Genomics 14 (Suppl. 5), 8 (2013).

    Google Scholar 

  14. Watanabe, M., Zinn, A. R., Page, D. C. & Nishimoto, T. Functional equivalence of human X- and Y-encoded isoforms of ribosomal protein S4 consistent with a role in Turner syndrome. Nat. Genet. 4, 268–271 (1993).

    CAS  PubMed  Google Scholar 

  15. Naqvi, S., Bellott, D. W., Lin, K. S. & Page, D. C. Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. Genome Res. 28, 474–483 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pessia, E., Makino, T., Bailly-Bechet, M., McLysaght, A. & Marais, G. A. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc. Natl Acad. Sci. USA 109, 5346–5351 (2012).

    CAS  PubMed  Google Scholar 

  18. Yan, F., Wang, X. & Zeng, Y. 3D genomic regulation of lncRNA and Xist in X chromosome. Semin. Cell Dev. Biol. 90, 174–180 (2018).

    PubMed  Google Scholar 

  19. Miyake, N. et al. KDM6A point mutations cause Kabuki syndrome. Hum. Mutat. 34, 108–110 (2013).

    CAS  PubMed  Google Scholar 

  20. Skakkebaek, A. et al. DNA hypermethylation and differential gene expression associated with Klinefelter syndrome. Sci. Rep. 8, 13740 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Raznahan, A. et al. Sex-chromosome dosage effects on gene expression in humans. Proc. Natl Acad. Sci. USA 115, 7398–7403 (2018).

    CAS  PubMed  Google Scholar 

  22. Prakash, S. K. et al. Autosomal and X chromosome structural variants are associated with congenital heart defects in Turner syndrome: the NHLBI GenTAC registry. Am. J. Med. Genet. A 170, 3157–3164 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lleo, A., Moroni, L., Caliari, L. & Invernizzi, P. Autoimmunity and Turner’s syndrome. Autoimmun. Rev. 11, A538–A543 (2012).

    CAS  PubMed  Google Scholar 

  24. Berglund, A. et al. 21-hydroxylase autoantibodies are more prevalent in Turner syndrome but without an association to the autoimmune polyendocrine syndrome type I. Clin. Exp. Immunol. 195, 364–368 (2018).

    PubMed  Google Scholar 

  25. Urbach, A. & Benvenisty, N. Studying early lethality of 45,XO (Turner’s syndrome) embryos using human embryonic stem cells. PLOS ONE 4, e4175 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Hassold, T. J. Chromosome abnormalities in human reproductive wastage. Trends. Genet. 2, 105–110 (1986).

    Google Scholar 

  27. Stochholm, K., Juul, S., Juel, K., Naeraa, R. W. & Gravholt, C. H. Prevalence, incidence, diagnostic delay, and mortality in Turner syndrome. J. Clin. Endocrinol. Metab. 91, 3897–3902 (2006).

    CAS  PubMed  Google Scholar 

  28. Berglund, A. et al. Changes in the cohort composition of Turner syndrome and severe non-diagnosis of Klinefelter, 47,XXX and 47,XYY syndrome: a nationwide cohort study. Orphanet J. Rare Dis. 14, 16 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Tuke, M. A. et al. Mosaic Turner syndrome shows reduced penetrance in an adult population study. Genet. Med. 21, 877–886 (2018).

    PubMed  Google Scholar 

  30. Viuff, M. H. et al. Only a minority of sex chromosome abnormalities are detected by the Danish national prenatal screening program for Down syndrome. Hum. Reprod. 30, 2419–2426 (2015).

    CAS  PubMed  Google Scholar 

  31. Bianchi, D. W. Turner syndrome: new insights from prenatal genomics and transcriptomics. Am. J. Med. Genet. C 181, 29–33 (2019).

    Google Scholar 

  32. Jeon, K. C., Chen, L. S. & Goodson, P. Decision to abort after a prenatal diagnosis of sex chromosome abnormality: a systematic review of the literature. Genet. Med. 14, 27–38 (2012).

    PubMed  Google Scholar 

  33. Gravholt, C. H., Juul, S., Naeraa, R. W. & Hansen, J. Morbidity in Turner syndrome. J. Clin. Epidemiol. 51, 147–158 (1998).

    CAS  PubMed  Google Scholar 

  34. Mortensen, K. H., Andersen, N. H. & Gravholt, C. H. Cardiovascular phenotype in Turner syndrome —integrating cardiology, genetics, and endocrinology. Endocr. Rev. 33, 677–714 (2012).

    CAS  PubMed  Google Scholar 

  35. Schoemaker, M. J., Swerdlow, A. J., Higgins, C. D., Wright, A. F. & Jacobs, P. A. Mortality in women with Turner syndrome in Great Britain: a national cohort study. J. Clin. Endocrinol. Metab. 93, 4735–4742 (2008).

    CAS  PubMed  Google Scholar 

  36. Stochholm, K. et al. Socio-economic parameters and mortality in Turner syndrome. Eur. J. Endocrinol. 166, 1013–1019 (2012).

    CAS  PubMed  Google Scholar 

  37. Schoemaker, M. J., Swerdlow, A. J., Higgins, C. D., Wright, A. F. & Jacobs, P. A. Cancer incidence in women with Turner syndrome in Britain: a national cohort study. Lancet Oncol. 9, 239–246 (2008).

    PubMed  Google Scholar 

  38. Ji, J., Zoller, B., Sundquist, J. & Sundquist, K. Risk of solid tumors and hematological malignancy in persons with Turner and Klinefelter syndromes: a national cohort study. Int. J. Cancer. 139, 754–758 (2016).

    CAS  PubMed  Google Scholar 

  39. Bosze, P., Toth, A. & Torok, M. Hormone replacement and the risk of breast cancer in Turner’s syndrome. N. Engl. J. Med. 355, 2599–2600 (2006).

    PubMed  Google Scholar 

  40. Swerdlow, A. J. et al. Cancer risks in patients treated with growth hormone in childhood: the SAGhE European Cohort Study. J. Clin. Endocrinol. Metab. 102, 1661–1672 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Calanchini, M. et al. Liver biochemical abnormalities in Turner syndrome: a comprehensive characterization of an adult population. Clin. Endocrinol. 89, 667–676 (2018).

    CAS  Google Scholar 

  42. Hamza, R. T. et al. Renal anomalies in patients with Turner syndrome: is scintigraphy superior to ultrasound? Am. J. Med. Genet. A 170, 355–362 (2016).

    CAS  Google Scholar 

  43. Bois, E. et al. Otologic disorders in Turner syndrome. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 135, 21–24 (2018).

    CAS  PubMed  Google Scholar 

  44. Cools, M., Looijenga, L. H., Wolffenbuttel, K. P. & T’Sjoen, G. Managing the risk of germ cell tumourigenesis in disorders of sex development patients. Endocr. Dev. 27, 185–196 (2014).

    PubMed  Google Scholar 

  45. Rojek, A., Obara-Moszynska, M., Kolesinska, Z., Rabska-Pietrzak, B. & Niedziela, M. Molecular detection and incidence of Y chromosomal material in patients with Turner syndrome. Sex. Dev. 11, 254–261 (2017).

    CAS  PubMed  Google Scholar 

  46. Singh, R. P. & Carr, D. H. The anatomy and histology of XO human embryos and fetuses. Anat. Rec. 155, 369–383 (1966).

    CAS  PubMed  Google Scholar 

  47. Tanaka, T. et al. Frequencies of spontaneous breast development and spontaneous menarche in Turner syndrome in Japan. Clin. Pediatr. Endocrinol. 24, 167–173 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Carpini, S. et al. Spontaneous puberty in girls with early diagnosis of Turner syndrome. Arq. Bras. Endocrinol. Metabol. 56, 653–657 (2012).

    PubMed  Google Scholar 

  49. Pasquino, A. M., Passeri, F., Pucarelli, I., Segni, M. & Municchi, G. Spontaneous pubertal development in Turner’s syndrome. Italian Study Group for Turner’s Syndrome. J. Clin. Endocrinol. Metab. 82, 1810–1813 (1997).

    CAS  PubMed  Google Scholar 

  50. Borgstrom, B. et al. Fertility preservation in girls with Turner syndrome: prognostic signs of the presence of ovarian follicles. J. Clin. Endocrinol. Metab. 94, 74–80 (2009).

    PubMed  Google Scholar 

  51. Birkebaek, N., Cruger, D., Hansen, J., Nielsen, J. & Bruun-Petersen, G. Fertility and pregnancy outcome in Danish women with Turner syndrome. Clin. Genet. 61, 35–39 (2002).

    CAS  PubMed  Google Scholar 

  52. Bernard, V. et al. Spontaneous fertility and pregnancy outcomes amongst 480 women with Turner syndrome. Hum. Reprod. 31, 782–788 (2016).

    PubMed  Google Scholar 

  53. Bryman, I. et al. Pregnancy rate and outcome in Swedish women with Turner syndrome. Fertil. Steril. 95, 2507–2510 (2011).

    PubMed  Google Scholar 

  54. Mortensen, K. H., Rohde, M. D., Uldbjerg, N. & Gravholt, C. H. Repeated spontaneous pregnancies in 45,X Turner syndrome. Obstet. Gynecol. 115, 446–449 (2010).

    PubMed  Google Scholar 

  55. Foudila, T., Söderström-Anttila, V. & Hovatta, O. Turner’s syndrome and pregnancies after oocyte donation. Hum. Reprod. 14, 532–535 (1999).

    CAS  PubMed  Google Scholar 

  56. Practice Committee of the American Society for Reproductive Medicine. Increased maternal cardiovascular mortality associated with pregnancy in women with Turner syndrome. Fertil. Steril. 83, 1074–1075 (2005).

    Google Scholar 

  57. Chevalier, N. et al. Materno-fetal cardiovascular complications in Turner syndrome after oocyte donation: insufficient prepregnancy screening and pregnancy follow-up are associated with poor outcome. J. Clin. Endocrinol. Metab. 96, E260–E267 (2011).

    CAS  PubMed  Google Scholar 

  58. Hagman, A. et al. Morbidity and mortality after childbirth in women with Turner karyotype. Hum. Reprod. 28, 1961–1973 (2013).

    CAS  PubMed  Google Scholar 

  59. Cadoret, F. et al. Pregnancy outcome in Turner syndrome: a French multi-center study after the 2009 guidelines. Eur. J. Obstet. Gynecol. Reprod. Biol. 229, 20–25 (2018).

    PubMed  Google Scholar 

  60. Ros, C., Alobid, I., Balasch, J., Mullol, J. & Castelo-Branco, C. Turner’s syndrome and other forms of congenital hypogonadism impair quality of life and sexual function. Am. J. Obstet. Gynecol. 208, 484–486 (2013).

    PubMed  Google Scholar 

  61. Sheaffer, A. T., Lange, E. & Bondy, C. A. Sexual function in women with Turner syndrome. J. Womens Health 17, 27–33 (2008).

    Google Scholar 

  62. Gravholt, C. H. et al. Body composition is distinctly altered in Turner syndrome: relations to glucose metabolism, circulating adipokines, and endothelial adhesion molecules. Eur. J. Endocrinol. 155, 583–592 (2006).

    CAS  PubMed  Google Scholar 

  63. Gravholt, C. H. & Naeraa, R. W. Reference values for body proportions and body composition in adult women with Turner’s syndrome. Am. J. Med. Genet. 72, 403–408 (1997).

    CAS  PubMed  Google Scholar 

  64. Wooten, N., Bakalov, V. K., Hill, S. & Bondy, C. A. Reduced abdominal adiposity and improved glucose tolerance in growth hormone-treated girls with Turner syndrome. J. Clin. Endocrinol. Metab. 93, 2109–2114 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gravholt, C. H. et al. Short term growth hormone treatment in girls with Turner syndrome decreases fat mass and insulin sensitivity. A randomized double-blind, placebo-controlled cross-over study. Pediatrics 110, 889–896 (2002).

    PubMed  Google Scholar 

  66. Gravholt, C. H. et al. Glucose metabolism, lipid metabolism, and cardiovascular risk factors in adult Turner’s syndrome. The impact of sex hormone replacement. Diabetes Care 21, 1062–1070 (1998).

    CAS  PubMed  Google Scholar 

  67. Taboada, M. et al. Pharmacokinetics and pharmacodynamics of oral and transdermal 17β estradiol in girls with Turner syndrome. J. Clin. Endocrinol. Metab. 96, 3502–3510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Calcaterra, V. et al. Metabolic syndrome in Turner syndrome and relation between body composition and clinical, genetic, and ultrasonographic characteristics. Metab. Syndr. Relat. Disord. 12, 159–164 (2014).

    CAS  PubMed  Google Scholar 

  69. Landin-Wilhelmsen, K., Bryman, I. & Wilhelmsen, L. Cardiac malformations and hypertension, but not metabolic risk factors, are common in Turner syndrome. J. Clin. Endocrinol. Metab. 86, 4166–4170 (2001).

    CAS  PubMed  Google Scholar 

  70. Gravholt, C. H., Klausen, I. C., Weeke, J. & Christiansen, J. S. Lp(a) and lipids in adult Turner’s syndrome: impact of treatment with 17β-estradiol and norethisterone. Atherosclerosis 150, 201–208 (2000).

    CAS  PubMed  Google Scholar 

  71. Ross, J. L. et al. Lipid abnormalities in Turner syndrome. J. Pediatr. 126, 242–245 (1995).

    CAS  PubMed  Google Scholar 

  72. Van, P. L., Bakalov, V. K. & Bondy, C. A. Monosomy for the X-chromosome is associated with an atherogenic lipid profile. J. Clin. Endocrinol. Metab. 91, 2867–2870 (2006).

    CAS  PubMed  Google Scholar 

  73. Brun, S. et al. Five-year randomized study demonstrates blood pressure increases in young women with Turner syndrome regardless of estradiol dose. Hypertension 73, 242–248 (2019).

    CAS  PubMed  Google Scholar 

  74. Freriks, K. et al. Standardized multidisciplinary evaluation yields significant previously undiagnosed morbidity in adult women with Turner syndrome. J. Clin. Endocrinol. Metab. 96, E1517–E1526 (2011).

    CAS  PubMed  Google Scholar 

  75. Hjerrild, B. E. et al. Delayed β-cell response and glucose intolerance in young women with Turner syndrome. BMC Endocr. Disord. 11, 6 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bakalov, V. K. et al. Impaired insulin secretion in the Turner metabolic syndrome. J. Clin. Endocrinol. Metab. 89, 3516–3520 (2004).

    CAS  PubMed  Google Scholar 

  77. Sun, L. et al. Glucose metabolism in Turner syndrome. Front. Endocrinol. 10, 49 (2019).

    Google Scholar 

  78. Bakalov, V. K., Cheng, C., Zhou, J. & Bondy, C. A. X-chromosome gene dosage and the risk of diabetes in Turner syndrome. J. Clin. Endocrinol. Metab. 94, 3289–3296 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bakalov, V. K. & Bondy, C. A. Fracture risk and bone mineral density in Turner syndrome. Rev. Endocr. Metab. Disord. 9, 145–151 (2008).

    PubMed  Google Scholar 

  80. Gravholt, C. H. et al. Increased fracture rates in Turner’s syndrome: a nationwide questionnaire survey. Clin. Endocrinol. 59, 89–96 (2003).

    Google Scholar 

  81. Landin-Wilhelmsen, K., Bryman, I., Windh, M. & Wilhelmsen, L. Osteoporosis and fractures in Turner syndrome–importance of growth promoting and oestrogen therapy. Clin. Endocrinol. 51, 497–502 (1999).

    CAS  Google Scholar 

  82. Bakalov, V. K. et al. Bone mineral density and fractures in Turner syndrome. Am. J. Med. 115, 259–264 (2003).

    PubMed  Google Scholar 

  83. Ross, J. L., Long, L. M., Feuillan, P., Cassorla, F. & Cutler, G. B. J. Normal bone density of the wrist and spine and increased wrist fractures in girls with Turner’s syndrome. J. Clin. Endocrinol. Metab. 73, 355–359 (1991).

    CAS  PubMed  Google Scholar 

  84. Shi, K. et al. Body composition and bone mineral status in patients with Turner syndrome. Sci. Rep. 6, 38026 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Holroyd, C. R. et al. Reduced cortical bone density with normal trabecular bone density in girls with Turner syndrome. Osteoporos. Int. 21, 2093–2099 (2010).

    CAS  PubMed  Google Scholar 

  86. Hansen, S., Brixen, K. & Gravholt, C. H. Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with Turner syndrome: a cross-sectional study using high-resolution-pQCT. J. Bone Miner. Res. 27, 1794–1803 (2012).

    PubMed  Google Scholar 

  87. Carrascosa, A. et al. Spontaneous, but not induced, puberty permits adequate bone mass acquisition in adolescent Turner syndrome patients. J. Bone Miner. Res. 15, 2005–2010 (2000).

    CAS  PubMed  Google Scholar 

  88. Cleemann, L. et al. Long-term hormone replacement therapy preserves bone mineral density in Turner syndrome. Eur. J. Endocrinol. 161, 251–257 (2009).

    CAS  PubMed  Google Scholar 

  89. Nguyen, H. H. et al. Delay in estrogen commencement is associated with lower bone mineral density in Turner syndrome. Climacteric 20, 436–441 (2017).

    CAS  PubMed  Google Scholar 

  90. Hanton, L., Axelrod, L., Bakalov, V. & Bondy, C. A. The importance of estrogen replacement in young women with Turner syndrome. J. Womens Health 12, 971–977 (2003).

    Google Scholar 

  91. Jorgensen, K. T. et al. Autoimmune diseases in women with Turner’s syndrome. Arthritis Rheum. 62, 658–666 (2010).

    PubMed  Google Scholar 

  92. Marild, K., Stordal, K., Hagman, A. & Ludvigsson, J. F. Turner syndrome and celiac disease: a case-control study. Pediatrics 137, e20152232 (2016).

    PubMed  Google Scholar 

  93. Mortensen, K. H. et al. Increased prevalence of autoimmunity in Turner syndrome—influence of age. Clin. Exp. Immunol. 156, 205–210 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mohamed, S. O. O. et al. Prevalence of autoimmune thyroid diseases among the Turner Syndrome patients: meta-analysis of cross sectional studies. BMC Res. Notes 11, 842 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. El Mansoury, M. et al. Hypothyroidism is common in Turner syndrome: results of a five-year follow-up. J. Clin. Endocrinol. Metab. 90, 2131–2135 (2005).

    CAS  PubMed  Google Scholar 

  96. Bakalov, V. K. et al. Autoimmune disorders in women with Turner syndrome and women with karyotypically normal primary ovarian insufficiency. J. Autoimmun. 38, 315–321 (2012).

    PubMed  PubMed Central  Google Scholar 

  97. Elsheikh, M., Wass, J. A. & Conway, G. S. Autoimmune thyroid syndrome in women with Turner’s syndrome — the association with karyotype. Clin. Endocrinol. 55, 223–226 (2001).

    CAS  Google Scholar 

  98. Libert, C., Dejager, L. & Pinheiro, I. The X chromosome in immune functions: when a chromosome makes the difference. Nat. Rev. Immunol. 10, 594–604 (2010).

    CAS  PubMed  Google Scholar 

  99. Larizza, D., Calcaterra, V. & Martinetti, M. Autoimmune stigmata in Turner syndrome: when lacks an X chromosome. J. Autoimmun. 33, 25–30 (2009).

    CAS  PubMed  Google Scholar 

  100. Gawlik, A. M. et al. Immunological profile and predisposition to autoimmunity in girls with Turner syndrome. Front. Endocrinol. 9, 307 (2018).

    Google Scholar 

  101. Invernizzi, P. et al. X chromosome monosomy: a common mechanism for autoimmune diseases. J. Immunol. 175, 575–578 (2005).

    CAS  PubMed  Google Scholar 

  102. El-Mansoury, M. et al. Elevated liver enzymes in Turner syndrome during a 5-year follow-up study. Clin. Endocrinol. 68, 485–490 (2008).

    CAS  Google Scholar 

  103. Gravholt, C. H., Naeraa, R. W., Fisker, S. & Christiansen, J. S. Body composition and physical fitness are major determinants of the growth hormone-insulin-like growth axis aberrations in adult Turner’s syndrome, with important modulations by treatment with 17β-estradiol. J. Clin. Endocrinol. Metab. 82, 2570–2577 (1997).

    CAS  PubMed  Google Scholar 

  104. Roulot, D. et al. Vascular involvement of the liver in Turner’s syndrome. Hepatology 39, 239–247 (2004).

    PubMed  Google Scholar 

  105. Elsheikh, M., Hodgson, H. J., Wass, J. A. & Conway, G. S. Hormone replacement therapy may improve hepatic function in women with Turner’s syndrome. Clin. Endocrinol. 55, 227–231 (2001).

    CAS  Google Scholar 

  106. Gravholt, C. H., Poulsen, H. E., Ott, P., Christiansen, J. S. & Vilstrup, H. Quantitative liver functions in Turner syndrome with and without hormone replacement therapy. Eur. J. Endocrinol. 156, 679–686 (2007).

    CAS  PubMed  Google Scholar 

  107. De Groote, K. et al. Increased aortic stiffness in prepubertal girls with Turner syndrome. J. Cardiol. 69, 201–207 (2017).

    PubMed  Google Scholar 

  108. Klaskova, E. et al. Increased prevalence of bicuspid aortic valve in Turner syndrome links with karyotype: the crucial importance of detailed cardiovascular screening. J. Pediatr. Endocrinol. Metab. 30, 319–325 (2017).

    CAS  PubMed  Google Scholar 

  109. Mortensen, K. H., Gopalan, D., Norgaard, B. L., Andersen, N. H. & Gravholt, C. H. Multimodality cardiac imaging in Turner syndrome. Cardiol. Young 26, 831–841 (2016).

    PubMed  Google Scholar 

  110. Viuff, M. H. et al. Coronary artery anomalies in Turner syndrome. J. Cardiovasc. Comput. Tomogr. 10, 480–484 (2016).

    PubMed  Google Scholar 

  111. Mortensen, K. H. et al. Cardiovascular imaging in Turner syndrome: state-of-the-art practice across the lifespan. Heart 104, 1823–1831 (2018).

    PubMed  Google Scholar 

  112. Ho, V. B. et al. Major vascular anomalies in Turner syndrome: prevalence and magnetic resonance angiographic features. Circulation 110, 1694–1700 (2004).

    PubMed  Google Scholar 

  113. Yetman, A. T. et al. Clinical and echocardiographic prevalence and detection of congenital and acquired cardiac abnormalities in girls and women with the Turner syndrome. Am. J. Cardiol. 122, 327–330 (2018).

    PubMed  Google Scholar 

  114. Haak, M. C., Bartelings, M. M., Gittenberger-De Groot, A. C. & van Vugt, J. M. Cardiac malformations in first-trimester fetuses with increased nuchal translucency: ultrasound diagnosis and postmortem morphology. Ultrasound Obstet. Gynecol. 20, 14–21 (2002).

    CAS  PubMed  Google Scholar 

  115. Lara, D. A., Ethen, M. K., Canfield, M. A., Nembhard, W. N. & Morris, S. A. A population-based analysis of mortality in patients with Turner syndrome and hypoplastic left heart syndrome using the Texas Birth Defects Registry. Congenit. Heart Dis. 12, 105–112 (2017).

    PubMed  Google Scholar 

  116. Chew, J. D. et al. Heart transplantation in children with Turner syndrome: analysis of a linked dataset. Pediatr. Cardiol. 39, 610–616 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Matura, L. A., Ho, V. B., Rosing, D. R. & Bondy, C. A. Aortic dilatation and dissection in Turner syndrome. Circulation 116, 1663–1670 (2007).

    PubMed  Google Scholar 

  118. Mortensen, K. H. et al. Aortic growth rates are not increased in Turner syndrome — a prospective CMR study. Eur. Heart J. Cardiovasc. Imaging https://doi.org/10.1093/ehjci/jez065 (2019).

    Article  PubMed  Google Scholar 

  119. Mortensen, K. H., Erlandsen, M., Andersen, N. H. & Gravholt, C. H. Prediction of aortic dilation in Turner syndrome — enhancing the use of serial cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 15, 47 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. Subramaniam, D. R. et al. Continuous measurement of aortic dimensions in Turner syndrome: a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 19, 20 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Mortensen, K. H. et al. Carotid intima-media thickness is increased in Turner syndrome: multifactorial pathogenesis depending on age, blood pressure, cholesterol and oestrogen treatment. Clin. Endocrinol. 77, 844–851 (2012).

    CAS  Google Scholar 

  122. Schoepp, M. et al. Coronary calcification in adults with Turner syndrome. Genet. Med. 20, 664–668 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Schouten, J. N., Verheij, J. & Seijo, S. Idiopathic non-cirrhotic portal hypertension: a review. Orphanet J. Rare Dis. 10, 67 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Gravholt, C. H. et al. Coagulation and fibrinolytic disturbances are related to carotid intima thickness and arterial blood pressure in Turner syndrome. Clin. Endocrinol. 76, 649–656 (2012).

    CAS  Google Scholar 

  125. Gravholt, C. H. et al. Clinical and epidemiological description of aortic dissection in Turner’s syndrome. Cardiol. Young 16, 430–436 (2006).

    PubMed  Google Scholar 

  126. Carlson, M., Airhart, N., Lopez, L. & Silberbach, M. Moderate aortic enlargement and bicuspid aortic valve are associated with aortic dissection in Turner syndrome: report of the International Turner Syndrome Aortic Dissection Registry. Circulation 126, 2220–2226 (2012).

    PubMed  Google Scholar 

  127. Carlson, M. & Silberbach, M. Dissection of the aorta in Turner syndrome: two cases and review of 85 cases in the literature. J. Med. Genet. 44, 745–749 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. De Groote, K. et al. Abnormal aortic arch morphology in Turner syndrome patients is a risk factor for hypertension. Heart Vessels 30, 618–625 (2014).

    PubMed  Google Scholar 

  129. Turtle, E. J., Sule, A. A., Webb, D. J. & Bath, L. E. Aortic dissection in children and adolescents with Turner syndrome: risk factors and management recommendations. Arch. Dis. Child. 100, 662–666 (2015).

    CAS  PubMed  Google Scholar 

  130. Nathwani, N. C., Unwin, R., Brook, C. G. & Hindmarsh, P. C. Blood pressure and Turner syndrome. Clin. Endocrinol. 52, 363–370 (2000).

    CAS  Google Scholar 

  131. Lopez, L. et al. Turner syndrome is an independent risk factor for aortic dilation in the young. Pediatrics 121, e1622–e1627 (2008).

    PubMed  Google Scholar 

  132. Elsheikh, M., Casadei, B., Conway, G. S. & Wass, J. A. Hypertension is a major risk factor for aortic root dilatation in women with Turner’s syndrome. Clin. Endocrinol. 54, 69–73 (2001).

    CAS  Google Scholar 

  133. Hjerrild, B. E. et al. Thoracic aortopathy in Turner syndrome and the influence of bicuspid aortic valves and blood pressure: a CMR study. J. Cardiovasc. Magn. Res. 12, 12 (2010).

    Google Scholar 

  134. Langrish, J. P. et al. Cardiovascular effects of physiological and standard sex steroid replacement regimens in premature ovarian failure. Hypertension 53, 805–811 (2009).

    CAS  PubMed  Google Scholar 

  135. De Groote, K. et al. Arterial hypertension in Turner syndrome: a review of the literature and a practical approach for diagnosis and treatment. J. Hypertens. 33, 1342–1351 (2015).

    PubMed  Google Scholar 

  136. Zuckerman-Levin, N. et al. Physiological and catecholamine response to sympathetic stimulation in Turner syndrome. Clin. Endocrinol. 64, 410–415 (2006).

    CAS  Google Scholar 

  137. Gravholt, C. H., Hansen, K. W., Erlandsen, M., Ebbehoj, E. & Christiansen, J. S. Nocturnal hypertension and impaired sympathovagal tone in Turner syndrome. J. Hypertens. 24, 353–360 (2006).

    CAS  PubMed  Google Scholar 

  138. Pedersen, T. A. et al. High long-term morbidity in repaired aortic coarctation: weak association with residual arch obstruction. Congenit. Heart Dis. 6, 573–582 (2011).

    PubMed  Google Scholar 

  139. Baguet, J. P. et al. Structural and functional abnormalities of large arteries in the Turner syndrome. Heart 91, 1442–1446 (2005).

    PubMed  PubMed Central  Google Scholar 

  140. Sozen, A. B. et al. Left ventricular thickness is increased in nonhypertensive Turner’s syndrome. Echocardiography 26, 943–949 (2009).

    PubMed  Google Scholar 

  141. Trolle, C. et al. Low myocardial glucose uptake in Turner syndrome is unaffected by growth hormone: a randomized, placebo-controlled FDG-PET study. Clin. Endocrinol. 83, 133–140 (2015).

    CAS  Google Scholar 

  142. Andersen, N. H. et al. Subclinical left ventricle dysfunction in normotensive women with Turner’s syndrome. Heart 92, 1516–1517 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Devos, D. G. et al. Proximal aortic stiffening in Turner patients may be present before dilation can be detected: a segmental functional MRI study. J. Cardiovasc. Magn. Reson. 19, 27 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Ostberg, J. E. et al. Excess visceral and hepatic adipose tissue in Turner syndrome determined by magnetic resonance imaging: estrogen deficiency associated with hepatic adipose content. J. Clin. Endocrinol. Metab. 90, 2631–2635 (2005).

    CAS  PubMed  Google Scholar 

  145. Hong, D. S. & Reiss, A. L. Cognitive and neurological aspects of sex chromosome aneuploidies. Lancet Neurol. 13, 306–318 (2014).

    CAS  PubMed  Google Scholar 

  146. Jez, W. et al. Social and medical determinants of quality of life and life satisfaction in women with Turner syndrome. Adv. Clin. Exp. Med. 27, 229–236 (2018).

    PubMed  Google Scholar 

  147. Thyen, U. et al. Quality of health care in adolescents and adults with disorders/differences of sex development (DSD) in six European countries (dsd-LIFE). BMC Health Serv. Res. 18, 527 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Wolstencroft, J. & Skuse, D. Social skills and relationships in Turner syndrome. Curr. Opin. Psychiatry 32, 85–91 (2018).

    Google Scholar 

  149. Reis, C. T., de Assumpcao, M. S., Guerra-Junior, G. & de Lemos-Marini, S. H. V. Systematic review of quality of life in Turner syndrome. Qual. Life Res. 27, 1985–2006 (2018).

    PubMed  Google Scholar 

  150. Van Pareren, Y. K. et al. Final height in girls with Turner syndrome after long-term growth hormone treatment in three dosages and low dose estrogens. J. Clin. Endocrinol. Metab. 88, 1119–1125 (2003).

    PubMed  Google Scholar 

  151. Li, P., Cheng, F. & Xiu, L. Height outcome of the recombinant human growth hormone treatment in Turner syndrome: a meta-analysis. Endocr. Connect. 7, 573–583 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Quigley, C. A. et al. Mortality in children receiving growth hormone treatment of growth disorders: data from the Genetics and Neuroendocrinology of Short Stature International Study. J. Clin. Endocrinol. Metab. 102, 3195–3205 (2017).

    PubMed  Google Scholar 

  153. Klein, K. O. et al. Estrogen replacement in Turner syndrome: literature review and practical considerations. J. Clin. Endocrinol. Metab. 103, 1790–1803 (2018).

    PubMed  Google Scholar 

  154. Mauras, N. et al. Impact of route of administration on genotoxic oestrogens concentrations using oral versus transdermal oestradiol in girls with Turner syndrome. Clin. Endocrinol. 90, 155–161 (2019).

    CAS  Google Scholar 

  155. Cleemann, L. et al. Uterus and ovaries in girls and young women with Turner syndrome evaluated by ultrasound and magnetic resonance imaging. Clin. Endocrinol. 74, 756–761 (2011).

    Google Scholar 

  156. Gawlik, A. M. et al. Late-onset puberty induction by transdermal estrogen in Turner syndrome girls — a longitudinal study. Front. Endocrinol. 9, 23 (2018).

    Google Scholar 

  157. Koulouri, O., Ostberg, J. & Conway, G. S. Liver dysfunction in Turner’s syndrome: prevalence, natural history and effect of exogenous oestrogen. Clin. Endocrinol. 69, 306–310 (2008).

    CAS  Google Scholar 

  158. Cleemann, L. et al. Dosage of estradiol, bone and body composition in Turner syndrome: a 5-year randomized controlled clinical trial. Eur. J. Endocrinol. 176, 233–242 (2017).

    CAS  PubMed  Google Scholar 

  159. van der Schouw, Y. T., van der, G. Y., Steyerberg, E. W., Eijkemans, J. C. & Banga, J. D. Age at menopause as a risk factor for cardiovascular mortality. Lancet 347, 714–718 (1996).

    PubMed  Google Scholar 

  160. Rocca, W. A., Grossardt, B. R., Miller, V. M., Shuster, L. T. & Brown, R. D. Jr. Premature menopause or early menopause and risk of ischemic stroke. Menopause 19, 272–277 (2012).

    PubMed  PubMed Central  Google Scholar 

  161. Cintron, D. et al. Effect of estrogen replacement therapy on bone and cardiovascular outcomes in women with Turner syndrome: a systematic review and meta-analysis. Endocrine 55, 366–375 (2016).

    PubMed  Google Scholar 

  162. Zuckerman-Levin, N. et al. Androgen replacement therapy in Turner syndrome: a pilot study. J. Clin. Endocrinol. Metab. 94, 4820–4827 (2009).

    CAS  PubMed  Google Scholar 

  163. Devernay, M., Ecosse, E., Coste, J. & Carel, J. C. Determinants of medical care for young women with Turner syndrome. J. Clin. Endocrinol. Metab. 94, 3408–3413 (2009).

    CAS  PubMed  Google Scholar 

  164. Gawlik, A. & Malecka-Tendera, E. Transitions in endocrinology: treatment of Turner’s syndrome during transition. Eur. J. Endocrinol. 170, R57–R74 (2013).

    PubMed  Google Scholar 

  165. Nabhan, Z. M. & Eugster, E. A. Medical care of girls with Turner syndrome: where are we lacking? Endocr. Pract. 17, 747–752 (2011).

    PubMed  Google Scholar 

  166. Ertl, D. A. et al. Health status, quality of life and medical care in adult women with Turner syndrome. Endocr. Connect. 7, 534–543 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Novo Nordisk Foundation, Hede Nielsens Fond, the Lundbeck foundation, the Augustinus Foundation, the Aase and Einar Danielsen Foundation and Aarhus University.

Reviewer information

Nature Reviews Endocrinology thanks S. Christin-Maitre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.H.G., M.H.V., S.B., K.S. and N.H.A. researched data for the article, made substantial contributions to discussions of the content and wrote the article. C.H.G. and N.H.A. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Claus H. Gravholt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Isochromosome

An unbalanced structural abnormality in which the arms of the chromosome are mirror images of each other, consisting of two copies of either the long (q) arm or the short (p) arm. This leads to partial trisomy of the genes present in an isochromosome and partial monosomy of the genes in the lost arm.

Ring chromosomes

Abnormal chromosomes whose ends have fused together to form a ring. Usually, a ring X chromosome contains much less genetic information than a normal X chromosome.

X-inactivation

In women with 46,XX karyotype, the majority of genes on the second X chromosome are usually inactivated to prevent overdosage of gene products, in comparison with men, who only have one X chromosome. Inactivation of an X chromosome is a random process and takes place in every cell.

Haploinsufficiency

Normally, two copies of all genes are present because two chromosomes harbour one copy of each gene. However, if a gene is mutated, haploinsufficiency can arise because only the wild-type gene on the other chromosome is expressed, resulting in a lower level of the gene product and, possibly, disease.

Triple test

A test originally used to detect the presence of a fetus with Down syndrome during pregnancy based on ultrasound measurement of the nuchal fold thickness of the fetus along with assessment of pregnancy-associated plasma protein A and free β-chorionic gonadotropin levels in the maternal circulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gravholt, C.H., Viuff, M.H., Brun, S. et al. Turner syndrome: mechanisms and management. Nat Rev Endocrinol 15, 601–614 (2019). https://doi.org/10.1038/s41574-019-0224-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0224-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing