Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimizing the outcomes of pancreatic cancer surgery

Abstract

Pancreatic cancer is likely to become the second most frequent cause of cancer-associated mortality within the next decade. Surgical resection with adjuvant systemic chemotherapy currently provides the only chance of long-term survival. However, only 10–20% of patients with pancreatic cancer are diagnosed with localized, surgically resectable disease. The majority of patients present with metastatic disease and are not candidates for surgery, while surgery remains underused even in those with resectable disease owing to historical concerns regarding safety and efficacy. However, advances made over the past decade in the safety and efficacy of surgery have resulted in perioperative mortality of around 3% and 5-year survival approaching 30% after resection and adjuvant chemotherapy. Furthermore, owing to advances in both surgical techniques and systemic chemotherapy, the indications for resection have been extended to include locally advanced tumours. Many aspects of pancreatic cancer surgery, such as the management of postoperative morbidities, sequencing of resection and systemic therapy, and use of neoadjuvant therapy followed by resection for tumours previously considered unresectable, are rapidly evolving. In this Review, we summarize the current status of and new developments in pancreatic cancer surgery, while highlighting the most important research questions for attempts to further optimize outcomes.

Key points

  • Surgical resection in combination with systemic chemotherapy offers the only hope for long-term survival or cure in patients with nonmetastatic pancreatic cancer.

  • Surgical resection and adjuvant multi-agent chemotherapy (gemcitabine plus capecitabine or modified FOLFIRINOX) is the standard of care in patients with resectable pancreatic cancer.

  • Both the safety and efficacy of pancreatic cancer surgery have improved considerably in the past decade, enabling perioperative mortality of around 3% and 5-year survival approaching 30–40% after resection and chemotherapy.

  • Important criteria for assessing the quality of pancreatic cancer surgery include perioperative morbidity and mortality, oncologically determined pancreatic resection, the proportion of patients in fact receiving and completing adjuvant therapy and — above all — long-term survival.

  • Relationships between hospital pancreatectomy volume and outcome quality have an important role in determining the success of pancreatic cancer surgery.

  • Owing to advances in both surgery and systemic chemotherapy, the indications for surgical resections have been extended from stage I and II to locally advanced, previously unresectable pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Important quality criteria for pancreatic cancer surgery and their inter-relationships.
Fig. 2: Anatomical resectability of pancreatic cancer.
Fig. 3: Resectable pancreatic cancer.
Fig. 4: Borderline resectable pancreatic cancer.
Fig. 5: Resection after neoadjuvant therapy for historically unresectable pancreatic cancer.
Fig. 6: Increasing survival in trials of resection and adjuvant therapy for pancreatic cancer.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    PubMed  Google Scholar 

  2. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    CAS  PubMed  Google Scholar 

  3. Hartwig, W., Werner, J., Jäger, D., Debus, J. & Büchler, M. W. Improvement of surgical results for pancreatic cancer. Lancet Oncol. 14, e476–e485 (2013).

    PubMed  Google Scholar 

  4. Kleeff, J. et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2, 16022 (2016).

    PubMed  Google Scholar 

  5. Gillen, S., Schuster, T., Meyer Zum Buschenfelde, C., Friess, H. & Kleeff, J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLOS Med. 7, e1000267 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Hackert, T. et al. Locally advanced pancreatic cancer: neoadjuvant therapy with folfirinox results in resectability in 60% of the patients. Ann. Surg. 264, 457–463 (2016).

    PubMed  Google Scholar 

  7. Bilimoria, K. Y. et al. National failure to operate on early stage pancreatic cancer. Ann. Surg. 246, 173–180 (2007).

    PubMed  PubMed Central  Google Scholar 

  8. Shah, A. et al. Trends in racial disparities in pancreatic cancer surgery. J. Gastrointestinal Surg. 17, 1897–1906 (2013).

    Google Scholar 

  9. Huang, L. et al. Resection of pancreatic cancer in Europe and USA: an international large-scale study highlighting large variations. Gut https://doi.org/10.1136/gutjnl-2017-314828 (2017).

  10. Gooiker, G. A. et al. Impact of centralization of pancreatic cancer surgery on resection rates and survival. Br. J. Surg. 101, 1000–1005 (2014).

    CAS  PubMed  Google Scholar 

  11. Gooiker, G. A. et al. Quality improvement of pancreatic surgery by centralization in the western part of the Netherlands. Ann. Surg. Oncol. 18, 1821–1829 (2011).

    PubMed  PubMed Central  Google Scholar 

  12. Krautz, C., Nimptsch, U., Weber, G. F., Mansky, T. & Grutzmann, R. Effect of hospital volume on in-hospital morbidity and mortality following pancreatic surgery in Germany. Ann. Surg. 267, 411–417 (2018).

    PubMed  Google Scholar 

  13. Lidsky, M. E. et al. Going the extra mile: improved survival for pancreatic cancer patients traveling to high-volume centers. Ann. Surg. 266, 333–338 (2017).

    PubMed  Google Scholar 

  14. Ansari, D., Aronsson, L., Fredriksson, J., Andersson, B. & Andersson, R. Safety of pancreatic resection in the elderly: a retrospective analysis of 556 patients. Ann. Gastroenterol. 29, 221–225 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Kim, S. Y. et al. Age 80 years and over is not associated with increased morbidity and mortality following pancreaticoduodenectomy. ANZ J. Surg. https://doi.org/10.1111/ans.14039 (2017).

  16. Shamali, A. et al. Elderly patients have similar short term outcomes and five-year survival compared to younger patients after pancreaticoduodenectomy. Int. J. Surg. 45, 138–143 (2017).

    PubMed  Google Scholar 

  17. Neoptolemos, J. P. et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet 389, 1011–1024 (2017).

    CAS  PubMed  Google Scholar 

  18. Uesaka, K. et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet 388, 248–257 (2016).

    CAS  PubMed  Google Scholar 

  19. Asbun, H. J. et al. When to perform a pancreatoduodenectomy in the absence of positive histology? A consensus statement by the International Study Group of Pancreatic Surgery. Surgery 155, 887–892 (2014).

    PubMed  Google Scholar 

  20. Tuveson, D. A. & Neoptolemos, J. P. Understanding metastasis in pancreatic cancer: a call for new clinical approaches. Cell 148, 21–23 (2012).

    CAS  PubMed  Google Scholar 

  21. Allen, V. B., Gurusamy, K. S., Takwoingi, Y., Kalia, A. & Davidson, B. R. Diagnostic accuracy of laparoscopy following computed tomography (CT) scanning for assessing the resectability with curative intent in pancreatic and periampullary cancer. Cochrane Database Syst Rev. 7, CD009323 (2016).

    PubMed  Google Scholar 

  22. Halloran, C. M. et al. Carbohydrate antigen 19.9 accurately selects patients for laparoscopic assessment to determine resectability of pancreatic malignancy. Br. J. Surg. 95, 453–459 (2008).

    CAS  PubMed  Google Scholar 

  23. Hartwig, W. et al. CA19-9 in potentially resectable pancreatic cancer: perspective to adjust surgical and perioperative therapy. Ann. Surg. Oncol. 20, 2188–2196 (2013).

    PubMed  Google Scholar 

  24. National Institute for Health and Care Excellence. Pancreatic cancer in adults: diagnosis and management (NICE, 2018).

  25. Motosugi, U. et al. Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT. Radiology 260, 446–453 (2011).

    PubMed  Google Scholar 

  26. Tsurusaki, M., Sofue, K. & Murakami, T. Current evidence for the diagnostic value of gadoxetic acid-enhanced magnetic resonance imaging for liver metastasis. Hepatol. Res. 46, 853–861 (2016).

    CAS  PubMed  Google Scholar 

  27. Ghaneh, P. et al. PET-PANC: multicentre prospective diagnostic accuracy and health economic analysis study of the impact of combined modality 18fluorine-2-fluoro-2-deoxy-d-glucose positron emission tomography with computed tomography scanning in the diagnosis and management of pancreatic cancer. Health Technol. Assess. 22, 1–114 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Expert Panel on Gastrointestinal, I. et al. ACR appropriateness criteria((R)) staging of pancreatic ductal adenocarcinoma. J. Am. Coll. Radiol 14, S560–S569 (2017).

    Google Scholar 

  29. van der Gaag, N. A. et al. Preoperative biliary drainage for cancer of the head of the pancreas. N. Engl. J. Med. 362, 129–137 (2010).

    PubMed  Google Scholar 

  30. Neoptolemos, J. P. et al. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat. Rev..Gastroenterol. Hepatol. 15, 333–348 (2018).

    PubMed  Google Scholar 

  31. Bassi, C. et al. Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery 138, 8–13 (2005).

    PubMed  Google Scholar 

  32. Bassi, C. et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 years after. Surgery 161, 584–591 (2017).

    PubMed  Google Scholar 

  33. Wente, M. N. et al. Postpancreatectomy hemorrhage (PPH): an International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 142, 20–25 (2007).

    PubMed  Google Scholar 

  34. Wente, M. N. et al. Delayed gastric emptying (DGE) after pancreatic surgery: a suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 142, 761–768 (2007).

    PubMed  Google Scholar 

  35. Strobel, O. et al. Incidence, risk factors and clinical implications of chyle leak after pancreatic surgery. Br. J. Surg. 104, 108–117 (2017).

    CAS  PubMed  Google Scholar 

  36. Besselink, M. G. et al. Definition and classification of chyle leak after pancreatic operation: a consensus statement by the International Study Group on Pancreatic Surgery. Surgery 161, 365–372 (2017).

    PubMed  Google Scholar 

  37. Topal, B. et al. Pancreaticojejunostomy versus pancreaticogastrostomy reconstruction after pancreaticoduodenectomy for pancreatic or periampullary tumours: a multicentre randomised trial. Lancet. Oncol. 14, 655–662 (2013).

    PubMed  Google Scholar 

  38. Keck, T. et al. Pancreatogastrostomy Versus Pancreatojejunostomy for RECOnstruction After PANCreatoduodenectomy (RECOPANC, DRKS 00000767): perioperative and long-term results of a multicenter randomized controlled trial. Ann. Surg. 263, 440–449 (2016).

    PubMed  Google Scholar 

  39. Cheng, Y. et al. Pancreaticojejunostomy versus pancreaticogastrostomy reconstruction for the prevention of postoperative pancreatic fistula following pancreaticoduodenectomy. Cochrane Database Syst Rev. 9, CD012257 (2017).

    PubMed  Google Scholar 

  40. Shrikhande, S. V. et al. Pancreatic anastomosis after pancreatoduodenectomy: a position statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 161, 1221–1234 (2017).

    PubMed  Google Scholar 

  41. Dong, Z., Xu, J., Wang, Z. & Petrov, M. S. Stents for the prevention of pancreatic fistula following pancreaticoduodenectomy. Cochrane Database Syst Rev. 6, CD008914 (2016).

    Google Scholar 

  42. Diener, M. K. et al. Efficacy of stapler versus hand-sewn closure after distal pancreatectomy (DISPACT): a randomised, controlled multicentre trial. Lancet 377, 1514–1522 (2011).

    PubMed  Google Scholar 

  43. Montorsi, M. et al. Efficacy of an absorbable fibrin sealant patch (TachoSil) after distal pancreatectomy: a multicenter, randomized, controlled trial. Ann. Surg. 256, 853–859; discussion 859–860 (2012).

    PubMed  Google Scholar 

  44. Weniger, M. et al. Autologous but not fibrin sealant patches for stump coverage reduce clinically relevant pancreatic fistula in distal pancreatectomy: a systematic review and meta-analysis. World J. Surg. 40, 2771–2781 (2016).

    PubMed  Google Scholar 

  45. Hassenpflug, M. et al. Teres ligament patch reduces relevant morbidity after distal pancreatectomy (the DISCOVER randomized controlled trial). Ann. Surg. 264, 723–730 (2016).

    PubMed  Google Scholar 

  46. Hackert, T. et al. Sphincter of Oddi botulinum toxin injection to prevent pancreatic fistula after distal pancreatectomy. Surgery 161, 1444–1450 (2017).

    PubMed  Google Scholar 

  47. Gurusamy, K. S., Koti, R., Fusai, G. & Davidson, B. R. Somatostatin analogues for pancreatic surgery. Cochrane Database Syst Rev. 4, CD008370 (2013).

    Google Scholar 

  48. Allen, P. J. et al. Pasireotide for postoperative pancreatic fistula. N. Engl. J. Med. 370, 2014–2022 (2014).

    PubMed  Google Scholar 

  49. Elliott, I. A. et al. Pasireotide does not prevent postoperative pancreatic fistula: a prospective study. HPB 20, 418–422 (2018).

    PubMed  Google Scholar 

  50. Jeekel, J. No abdominal drainage after Whipple’s procedure. Br. J. Surg. 79, 182 (1992).

    CAS  PubMed  Google Scholar 

  51. Conlon, K. C. et al. Prospective randomized clinical trial of the value of intraperitoneal drainage after pancreatic resection. Ann. Surg. 234, 487–493 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Van Buren, G. 2nd et al. A randomized prospective multicenter trial of pancreaticoduodenectomy with and without routine intraperitoneal drainage. Ann. Surg. 259, 605–612 (2014).

    PubMed  Google Scholar 

  53. Van Buren, G. 2nd et al. A prospective randomized multicenter trial of distal pancreatectomy with and without routine intraperitoneal drainage. Ann. Surg. 266, 421–431 (2017).

    PubMed  Google Scholar 

  54. Witzigmann, H. et al. No need for routine drainage after pancreatic head resection: the dual-center, randomized, controlled PANDRA trial (ISRCTN04937707). Ann. Surg. 264, 528–537 (2016).

    PubMed  Google Scholar 

  55. Huttner, F. J. et al. Meta-analysis of prophylactic abdominal drainage in pancreatic surgery. Br. J. Surg. 104, 660–668 (2017).

    CAS  PubMed  Google Scholar 

  56. McMillan, M. T. et al. Risk-adjusted outcomes of clinically relevant pancreatic fistula following pancreatoduodenectomy: a model for performance evaluation. Ann. Surg. 264, 344–352 (2016).

    PubMed  Google Scholar 

  57. Mungroop, T. H. et al. Alternative fistula risk score for pancreatoduodenectomy (a-FRS): design and international external validation. Ann. Surg. https://doi.org/10.1097/SLA.0000000000002620 (2017).

  58. Welsch, T. et al. Persisting elevation of C-reactive protein after pancreatic resections can indicate developing inflammatory complications. Surgery 143, 20–28 (2008).

    PubMed  Google Scholar 

  59. Ven Fong, Z. et al. Early drain removal — the middle ground between the drain versus no drain debate in patients undergoing pancreaticoduodenectomy: a prospective validation study. Ann. Surg. 262, 378–383 (2015).

    PubMed  Google Scholar 

  60. Khalsa, B. S. et al. Evolution in the treatment of delayed postpancreatectomy hemorrhage: surgery to interventional radiology. Pancreas 44, 953–958 (2015).

    PubMed  Google Scholar 

  61. Wolk, S. et al. Management of clinically relevant postpancreatectomy hemorrhage (PPH) over two decades — a comparative study of 1 450 consecutive patients undergoing pancreatic resection. Pancreatology 17, 943–950 (2017).

    PubMed  Google Scholar 

  62. Joseph, B. et al. Relationship between hospital volume, system clinical resources, and mortality in pancreatic resection. J. Am. College Surgeons 208, 520–527 (2009).

    Google Scholar 

  63. Birkmeyer, J. D. et al. Hospital volume and surgical mortality in the United States. N. Engl. J. Med. 346, 1128–1137 (2002).

    PubMed  Google Scholar 

  64. Finks, J. F., Osborne, N. H. & Birkmeyer, J. D. Trends in hospital volume and operative mortality for high-risk surgery. N. Engl. J. Med. 364, 2128–2137 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ghaferi, A. A., Birkmeyer, J. D. & Dimick, J. B. Variation in hospital mortality associated with inpatient surgery. N. Engl. J. Med. 361, 1368–1375 (2009).

    CAS  PubMed  Google Scholar 

  66. van Hilst, J. et al. Minimally invasive versus open distal pancreatectomy for ductal adenocarcinoma (DIPLOMA): a pan-european propensity score matched study. Ann. Surg. https://doi.org/10.1097/SLA.0000000000002561 (2017).

  67. Raoof, M. et al. Propensity score-matched comparison of oncological outcomes between laparoscopic and open distal pancreatic resection. Br. J. Surg. https://doi.org/10.1002/bjs.10747 (2018).

  68. Nassour, I. et al. Minimally invasive versus open pancreaticoduodenectomy: a propensity-matched study from a national cohort of patients. Ann. Surg. 268, 151–157 (2017).

    Google Scholar 

  69. Coolsen, M. M. et al. Systematic review and meta-analysis of enhanced recovery after pancreatic surgery with particular emphasis on pancreaticoduodenectomies. World J. Surg. 37, 1909–1918 (2013).

    CAS  PubMed  Google Scholar 

  70. Lassen, K. et al. Pancreaticoduodenectomy: ERAS recommendations. Clin. Nutr. 32, 870–871 (2013).

    CAS  PubMed  Google Scholar 

  71. Lee, G. C. et al. High performing whipple patients: factors associated with short length of stay after open pancreaticoduodenectomy. J. Gastrointestinal Surg. 18, 1760–1769 (2014).

    Google Scholar 

  72. de Rooij, T. et al. Minimally invasive versus open distal pancreatectomy (LEOPARD): study protocol for a randomized controlled trial. Trials 18, 166 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. de Rooij, T. et al. Minimally invasive versus open pancreatoduodenectomy (LEOPARD-2): study protocol for a randomized controlled trial. Trials 19, 1 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Bassi, C. et al. Influence of surgical resection and post-operative complications on survival following adjuvant treatment for pancreatic cancer in the ESPAC-1 randomized controlled trial. Digestive Surg. 22, 353–363 (2005).

    CAS  Google Scholar 

  75. Merkow, R. P. et al. Postoperative complications reduce adjuvant chemotherapy use in resectable pancreatic cancer. Ann. Surg. 260, 372–377 (2014).

    PubMed  Google Scholar 

  76. Valle, J. W. et al. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: ongoing lessons from the ESPAC-3 study. J. Clin. Oncol. 32, 504–512 (2014).

    PubMed  Google Scholar 

  77. Tol, J. A. et al. Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: a consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). Surgery 156, 591–600 (2014).

    PubMed  Google Scholar 

  78. Dasari, B. V. et al. Extended versus standard lymphadenectomy for pancreatic head cancer: meta-analysis of randomized controlled trials. J. Gastrointestinal Surg. 19, 1725–1732 (2015).

    Google Scholar 

  79. Warschkow, R. et al. The more the better — lower rate of stage migration and better survival in patients with retrieval of 20 or more regional lymph nodes in pancreatic cancer: a population-based propensity score matched and trend SEER analysis. Pancreas 46, 648–657 (2017).

    PubMed  Google Scholar 

  80. Strobel, O. et al. Pancreatic adenocarcinoma: number of positive nodes allows to distinguish several N categories. Ann. Surg. 261, 961–969 (2015).

    PubMed  Google Scholar 

  81. Tarantino, I. et al. Staging of pancreatic cancer based on the number of positive lymph nodes. Br. J. Surg. 104, 608–618 (2017).

    CAS  PubMed  Google Scholar 

  82. Chun, Y. S., Pawlik, T. M. & Vauthey, J. N. 8th edn of the AJCC Cancer Staging Manual: Pancreas and Hepatobiliary Cancers. Ann. Surg. Oncol. 25, 845–847 (2018).

    PubMed  Google Scholar 

  83. Verbeke, C. S. et al. Redefining the R1 resection in pancreatic cancer. Br. J. Surg. 93, 1232–1237 (2006).

    CAS  PubMed  Google Scholar 

  84. Esposito, I. et al. Most pancreatic cancer resections are R1 resections. Ann. Surg. Oncol. 15, 1651–1660 (2008).

    PubMed  Google Scholar 

  85. Campbell, F. et al. Classification of R1 resections for pancreatic cancer: the prognostic relevance of tumour involvement within 1 mm of a resection margin. Histopathology 55, 277–283 (2009).

    PubMed  Google Scholar 

  86. Chandrasegaram, M. D. et al. Meta-analysis of radical resection rates and margin assessment in pancreatic cancer. Br. J. Surg. 102, 1459–1472 (2015).

    CAS  PubMed  Google Scholar 

  87. Strobel, O. et al. Pancreatic cancer surgery: the new R-status counts. Ann. Surg. 265, 565–573 (2017).

    PubMed  Google Scholar 

  88. Hank, T. et al. Validation of at least 1 mm as cut-off for resection margins for pancreatic adenocarcinoma of the body and tail. Br. J. Surg. https://doi.org/10.1002/bjs.10842 (2018).

  89. Ghaneh, P. et al. The impact of positive resection margins on survival and recurrence following resection and adjuvant chemotherapy for pancreatic ductal adenocarcinoma. Ann. Surg. https://doi.org/10.1097/SLA.0000000000002557 (2017).

  90. Barreto, S. G. & Windsor, J. A. Justifying vein resection with pancreatoduodenectomy. Lancet Oncol. 17, e118–e124 (2016).

    PubMed  Google Scholar 

  91. Isaji, S. et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 18, 2–11 (2018).

    PubMed  Google Scholar 

  92. Khorana, A. A. et al. Potentially curable pancreatic cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 35, 2324–2328 (2017).

    CAS  PubMed  Google Scholar 

  93. Seufferlein, T. et al. [S3-guideline exocrine pancreatic cancer]. Zeitschrift Gastroenterol. 51, 1395–1440 (2013).

    CAS  Google Scholar 

  94. Tempero, M. A. et al. Pancreatic Adenocarcinoma, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Canc. Netw. 15, 1028–1061 (2017).

    PubMed  Google Scholar 

  95. Jang, J. Y. et al. Oncological benefits of neoadjuvant chemoradiation with gemcitabine versus upfront surgery in patients with borderline resectable pancreatic cancer: a prospective, randomized, open-label, multicenter phase 2/3 trial. Ann. Surg. https://doi.org/10.1097/SLA.0000000000002705 (2018).

  96. Michelakos, T. et al. Predictors of resectability and survival in patients with borderline and locally advanced pancreatic cancer who underwent neoadjuvant treatment with FOLFIRINOX. Ann. Surg. https://doi.org/10.1097/SLA.0000000000002600 (2017).

  97. Sanjay, P., Takaori, K., Govil, S., Shrikhande, S. V. & Windsor, J. A. ‘Artery-first’ approaches to pancreatoduodenectomy. Br. J. Surg. 99, 1027–1035 (2012).

    CAS  PubMed  Google Scholar 

  98. Ironside, N. et al. Meta-analysis of an artery-first approach versus standard pancreatoduodenectomy on perioperative outcomes and survival. Br. J. Surg. 105, 628–636 (2018).

    CAS  PubMed  Google Scholar 

  99. Hackert, T., Werner, J., Weitz, J., Schmidt, J. & Buchler, M. W. Uncinate process first—a novel approach for pancreatic head resection. Langenbecks Arch. Surg. 395, 1161–1164 (2010).

    PubMed  Google Scholar 

  100. Hartwig, W. et al. Extended pancreatectomy in pancreatic ductal adenocarcinoma: definition and consensus of the International Study Group for Pancreatic Surgery (ISGPS). Surgery 156, 1–14 (2014).

    PubMed  Google Scholar 

  101. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    CAS  PubMed  Google Scholar 

  102. Hartwig, W. et al. Outcomes after extended pancreatectomy in patients with borderline resectable and locally advanced pancreatic cancer. Br. J. Surg. 103, 1683–1694 (2016).

    CAS  PubMed  Google Scholar 

  103. Murakami, Y. et al. Portal or superior mesenteric vein resection in pancreatoduodenectomy for pancreatic head carcinoma. Br. J. Surg. 102, 837–846 (2015).

    CAS  PubMed  Google Scholar 

  104. Kalser, M. H. & Ellenberg, S. S. Pancreatic cancer. Adjuvant combined radiation and chemotherapy following curative resection. Arch. Surg. 120, 899–903 (1985).

    CAS  PubMed  Google Scholar 

  105. Klinkenbijl, J. H. et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann. Surg. 230, 776–782; discussion 782–774 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Neoptolemos, J. P. et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet 358, 1576–1585 (2001).

    CAS  PubMed  Google Scholar 

  107. Neoptolemos, J. P. et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 350, 1200–1210 (2004).

    CAS  PubMed  Google Scholar 

  108. Oettle, H. et al. Adjuvant chemotherapy with gemcitabine versus observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297, 267–277 (2007).

    CAS  PubMed  Google Scholar 

  109. Regine, W. F. et al. Fluorouracil versus gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. JAMA 299, 1019–1026 (2008).

    CAS  PubMed  Google Scholar 

  110. Regine, W. F. et al. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U. S. Intergroup/RTOG 9704 phase III trial. Ann. Surg. Oncol. 18, 1319–1326 (2011).

    PubMed  PubMed Central  Google Scholar 

  111. Neoptolemos, J. P. et al. Adjuvant 5-fluorouracil and folinic acid versus observation for pancreatic cancer: composite data from the ESPAC-1 and -3(v1) trials. Br. J. Cancer 100, 246–250 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Neoptolemos, J. P. et al. Adjuvant chemotherapy with fluorouracil plus folinic acid versus gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 304, 1073–1081 (2010).

    CAS  PubMed  Google Scholar 

  113. Schmidt, J. et al. Open-label, multicenter, randomized phase III trial of adjuvant chemoradiation plus interferon Alfa-2b versus fluorouracil and folinic acid for patients with resected pancreatic adenocarcinoma. J. Clin. Oncol. 30, 4077–4083 (2012).

    CAS  PubMed  Google Scholar 

  114. Sinn, M. et al. CONKO-005: adjuvant chemotherapy with gemcitabine plus erlotinib versus gemcitabine alone in patients after R0 resection of pancreatic cancer: a multicenter randomized phase iii trial. J. Clin. Oncol. 35, 3330–3337 (2017).

    CAS  PubMed  Google Scholar 

  115. Conroy, T. et al. Unicancer GI PRODIGE 24/CCTG PA.6 trial: a multicenter international randomized phase III trial of adjuvant mFOLFIRINOX versus gemcitabine (gem) in patients with resected pancreatic ductal adenocarcinomas [abstract]. J. Clin. Oncol. 36, LBA4001 (2018).

    Google Scholar 

  116. Mokdad, A. A. et al. Neoadjuvant therapy followed by resection versus upfront resection for resectable pancreatic cancer: a propensity score matched analysis. J. Clin. Oncol. 35, 515–522 (2017).

    PubMed  Google Scholar 

  117. de Geus, S. W. et al. Neoadjuvant therapy versus upfront surgery for resected pancreatic adenocarcinoma: a nationwide propensity score matched analysis. Surgery 161, 592–601 (2017).

    PubMed  Google Scholar 

  118. Strobel, O. & Buchler, M. W. Pancreatic cancer: clinical practice guidelines — what is the evidence? Nat. Rev. Clin. Oncol. 13, 593–594 (2016).

    PubMed  Google Scholar 

  119. Versteijne, E. et al. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br. J. Surg. 105, 946–958 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Van Tienhoven, G. e. a. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer (PREOPANC-1): a randomized, controlled, multicenter phase III trial [abstract]. J. Clin. Oncol. 36, LBA4002 (2018).

    Google Scholar 

  121. Mollberg, N. et al. Arterial resection during pancreatectomy for pancreatic cancer: a systematic review and meta-analysis. Ann. Surg. 254, 882–893 (2011).

    PubMed  Google Scholar 

  122. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    Google Scholar 

  123. Suker, M. et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet. Oncol. 17, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Strobel, O. et al. Resection after neoadjuvant therapy for locally advanced, “unresectable” pancreatic cancer. Surgery 152, S33–S42 (2012).

    PubMed  Google Scholar 

  125. Hackert, T. et al. The TRIANGLE operation — radical surgery after neoadjuvant treatment for advanced pancreatic cancer: a single arm observational study. HPB 19, 1001–1007 (2017).

    PubMed  Google Scholar 

  126. Strobel, O. et al. Re-resection for isolated local recurrence of pancreatic cancer is feasible, safe, and associated with encouraging survival. Ann. Surg. Oncol. 20, 964–972 (2013).

    PubMed  Google Scholar 

  127. Hou, S. et al. Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discov. 23, 574–584 (2018).

    CAS  Google Scholar 

  128. Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. NewLink Genetics Corporation. NewLink Genetics Announces Results from Phase 3 IMPRESS Trial of Algenpantucel-L for Patients with Resected Pancreatic Cancer. GlobeNewswire https://globenewswire.com/news-release/2016/05/09/837878/0/en/NewLink-Genetics-Announces-Results-from-Phase-3-IMPRESS-Trial-of-Algenpantucel-L-for-Patients-with-Resected-Pancreatic-Cancer.html (2016).

Download references

Author information

Authors and Affiliations

Authors

Contributions

O.S., J.N. and M.W.B. researched data for this article. All authors made a substantial contribution to discussions of content, writing the manuscript and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Markus W. Büchler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strobel, O., Neoptolemos, J., Jäger, D. et al. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 16, 11–26 (2019). https://doi.org/10.1038/s41571-018-0112-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0112-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer