Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assigning matrix metalloproteinase roles in ischaemic cardiac remodelling

Abstract

Matrix metalloproteinases (MMPs) and their endogenous inhibitors have been studied in the myocardium for the past 2 decades. An incomplete knowledge base and experimental design issues with inhibitors have hampered attempts at translation, but clinical interest remains high because of strong associations between MMPs and outcomes after myocardial infarction (MI) as well as mechanistic studies showing MMP involvement at multiple stages of the MI wound-healing process. This Review focuses on how our understanding of MMPs has evolved from a one-dimensional early focus on measuring MMP activity, monitoring MMP:inhibitor ratios, and evaluating one MMP–substrate pair to the current use of systems biology approaches to integrate the whole MMP repertoire of roles in the left ventricular response to MI. MMP9 is used as an example MMP to explain these concepts and to provide a template for examining MMPs as mechanistic mediators of cardiac remodelling.

Key points

  • Matrix metalloproteinases (MMPs) are not one-size-fits-all enzymes; MMPs overlap in substrate profiles, but each has a distinct role in cardiac remodelling after myocardial infarction.

  • MMP9 is the most-studied MMP in cardiac remodelling after myocardial infarction.

  • MMP roles are dictated by the substrates they process, and the best way to assess in vivo MMP activity is to show substrate cleavage.

  • The mechanisms by which MMPs interact with each other in the myocardium have not been examined beyond which MMPs compensate for the loss of one MMP and which MMPs serve as upstream activators for other MMPs.

  • This Review provides a template for examining MMPs as mechanistic mediators of cardiac remodelling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modifiers of MMP9 expression and activity12,28,50,63,64,65,66.
Fig. 2: Template for establishing MMP9 causality.
Fig. 3: Template for identifying and evaluating extracellular matrix fragments generated by MMP9.
Fig. 4: MMP9 roles in cardiac remodelling after myocardial infarction26,67,68,69,70,71,72,73,74.

Similar content being viewed by others

References

  1. Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dixon, J. A. & Spinale, F. G. Myocardial remodeling: cellular and extracellular events and targets. Annu. Rev. Physiol. 73, 47–68 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Spinale, F. G. et al. Crossing into the next frontier of cardiac extracellular matrix research. Circ. Res. 119, 1040–1045 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Clarke, S. A., Richardson, W. J. & Holmes, J. W. Modifying the mechanics of healing infarcts: Is better the enemy of good? J. Mol. Cell. Cardiol. 93, 115–124 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. DeLeon-Pennell, K. Y., Meschiari, C. A., Jung, M. & Lindsey, M. L. Matrix metalloproteinases in myocardial infarction and heart failure. Prog. Mol. Biol. Transl Sci. 147, 75–100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Spinale, F. G. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87, 1285–1342 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Voorhees, A. P. et al. Building a better infarct: Modulation of collagen cross-linking to increase infarct stiffness and reduce left ventricular dilation post-myocardial infarction. J. Mol. Cell. Cardiol. 85, 229–239 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Spinale, F. G. & Villarreal, F. Targeting matrix metalloproteinases in heart disease: lessons from endogenous inhibitors. Biochem. Pharmacol. 90, 7–15 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Spinale, F. G. & Zile, M. R. Integrating the myocardial matrix into heart failure recognition and management. Circ. Res. 113, 725–738 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Iyer, R. P., Jung, M. & Lindsey, M. L. MMP-9 signaling in the left ventricle following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 311, H190–198 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yabluchanskiy, A., Ma, Y., Iyer, R. P., Hall, M. E. & Lindsey, M. L. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology 28, 391–403 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lovett, D. H., Chu, C., Wang, G., Ratcliffe, M. B. & Baker, A. J. A. N-terminal truncated intracellular isoform of matrix metalloproteinase-2 impairs contractility of mouse myocardium. Front. Physiol. 5, 363 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lovett, D. H. et al. N-Terminal truncated intracellular matrix metalloproteinase-2 induces cardiomyocyte hypertrophy, inflammation and systolic heart failure. PLoS ONE 8, e68154 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Iyer, R. P., Patterson, N. L., Fields, G. B. & Lindsey, M. L. The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am. J. Physiol. Heart Circ. Physiol. 303, H919–H930 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kleiner, D. E. & Stetler-Stevenson, W. G. Quantitative zymography: detection of picogram quantities of gelatinases. Anal. Biochem. 218, 325–329 (1994).

    Article  PubMed  CAS  Google Scholar 

  17. Vandooren, J., Van den Steen, P. E. & Opdenakker, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit. Rev. Biochem. Mol. Biol. 48, 222–272 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Lindsey, M. et al. Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation 103, 2181–2187 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. Zamilpa, R. et al. Proteomic analysis identifies in vivo candidate matrix metalloproteinase-9 substrates in the left ventricle post-myocardial infarction. Proteomics 10, 2214–2223 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chiao, Y. A. et al. In vivo matrix metalloproteinase-7 substrates identified in the left ventricle post-myocardial infarction using proteomics. J. Proteome Res. 9, 2649–2657 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lindsey, M. L. et al. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J. Am. Coll. Cardiol. 66, 1364–1374 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Iyer, R. P., de Castro Bras, L. E., Jin, Y. F. & Lindsey, M. L. Translating Koch’s postulates to identify matrix metalloproteinase roles in postmyocardial infarction remodeling: cardiac metalloproteinase actions (CarMA) postulates. Circ. Res. 114, 860–871 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yabluchanskiy, A. et al. Myocardial infarction superimposed on aging: MMP-9 deletion promotes M2 macrophage polarization. J. Gerontol. A Biol. Sci. Med. Sci. 71, 475–483 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. Iyer, R. P. et al. Early matrix metalloproteinase-9 inhibition post-myocardial infarction worsens cardiac dysfunction by delaying inflammation resolution. J. Mol. Cell. Cardiol. 100, 109–117 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Meschiari, C. A. et al. Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 314, H224–H235 (2017).

    Article  PubMed  CAS  Google Scholar 

  26. DeLeon-Pennell, K. Y. et al. CD36 is a matrix metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac remodeling. Circ. Cardiovasc. Genet. 9, 14–25 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Dai, X., Kaul, P., Smith, S. C. Jr & Stouffer, G. A. Predictors, treatment, and outcomes of STEMI occurring in hospitalized patients. Nat. Rev. Cardiol. 13, 148–154 (2016).

    Article  PubMed  Google Scholar 

  28. Blankenberg, S. et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107, 1579–1585 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. Ma, Y. et al. Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture after myocardial infarction in mice by inhibiting M2 macrophage activation. Circ. Res. 112, 675–688 (2013).

    Article  PubMed  CAS  Google Scholar 

  30. de Castro Bras, L. E. et al. Citrate synthase is a novel in vivo matrix metalloproteinase-9 substrate that regulates mitochondrial function in the postmyocardial infarction left ventricle. Antioxid. Redox Signal. 21, 1974–1985 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lindsey, M. L., Zouein, F. A., Tian, Y., Padmanabhan Iyer, R. & de Castro Bras, L. E. Osteopontin is proteolytically processed by matrix metalloproteinase 9. Can. J. Physiol. Pharmacol. 93, 879–886 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Takawale, A., Sakamuri, S. S. & Kassiri, Z. Extracellular matrix communication and turnover in cardiac physiology and pathology. Compr. Physiol. 5, 687–719 (2015).

    Article  PubMed  Google Scholar 

  33. Ma, Y. et al. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc. Res. 106, 421–431 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Iyer, R. P. et al. Early matrix metalloproteinase-12 inhibition worsens post-myocardial infarction cardiac dysfunction by delaying inflammation resolution. Int. J. Cardiol. 185, 198–208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dehn, S. & Thorp, E. B. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J. 32, 254–264 (2018).

    Article  PubMed  CAS  Google Scholar 

  36. Ricard-Blum, S. & Vallet, S. D. Fragments generated upon extracellular matrix remodeling: biological regulators and potential drugs. Matrix Biol. https://doi.org/10.1016/j.matbio.2017.11.005 (2017).

    Article  PubMed  Google Scholar 

  37. Bouchet, S. & Bauvois, B. Neutrophil gelatinase-associated lipocalin (NGAL), pro-matrix metalloproteinase-9 (pro-MMP-9) and their complex pro-MMP-9/NGAL in leukaemias. Cancers 6, 796–812 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gharib, S. A., Manicone, A. M. & Parks, W. C. Matrix metalloproteinases in emphysema. Matrix Biol. https://doi.org/10.1016/j.matbio.2018.01.018 (2018).

    Article  PubMed  Google Scholar 

  39. Zamilpa, R. et al. Transgenic overexpression of matrix metalloproteinase-9 in macrophages attenuates the inflammatory response and improves left ventricular function post-myocardial infarction. J. Mol. Cell. Cardiol. 53, 599–608 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Cerisano, G. et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur. Heart J. 35, 184–191 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. Cerisano, G. et al. Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial. Int. J. Cardiol. 197, 147–153 (2015).

    Article  PubMed  Google Scholar 

  42. Lindsey, M. L., Hall, M. E., Harmancey, R. & Ma, Y. Adapting extracellular matrix proteomics for clinical studies on cardiac remodeling post-myocardial infarction. Clin. Proteom. 13, 19 (2016).

    Article  CAS  Google Scholar 

  43. Lindsey, M. L. et al. Transformative impact of proteomics on cardiovascular health and disease: a scientific statement from the American Heart Association. Circulation 132, 852–872 (2015).

    Article  PubMed  CAS  Google Scholar 

  44. Brooks, H. L. & Lindsey, M. L. Guidelines for authors and reviewers on antibody use in physiology studies. Am. J. Physiol. Heart Circ. Physiol. 314, H724–H732 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Lindsey, M. L. et al. Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Physiol. Heart Circ. Physiol. 314, H812–H838 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lindsey, M. L., Kassiri, Z., Virag, J. A. I., de Castro Bras, L. E. & Scherrer-Crosbie, M. Guidelines for measuring cardiac physiology in mice. Am. J. Physiol. Heart Circ. Physiol. 314, H733–H752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Buache, E. et al. Functional relationship between matrix metalloproteinase-11 and matrix metalloproteinase-14. Cancer Med. 3, 1197–1210 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Koenig, G. C. et al. MT1-MMP-dependent remodeling of cardiac extracellular matrix structure and function following myocardial infarction. Am. J. Pathol. 180, 1863–1878 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tobar, N. et al. Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells. Carcinogenesis 35, 1770–1779 (2014).

    Article  PubMed  CAS  Google Scholar 

  50. Boon, L., Ugarte-Berzal, E., Vandooren, J. & Opdenakker, G. Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities. Biochem. J. 473, 1471–1482 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hulsmans, M. et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 215, 423–440 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Honold, L. & Nahrendorf, M. Resident and monocyte-derived macrophages in cardiovascular disease. Circ. Res. 122, 113–127 (2018).

    Article  PubMed  CAS  Google Scholar 

  53. Hulsmans, M., Sam, F. & Nahrendorf, M. Monocyte and macrophage contributions to cardiac remodeling. J. Mol. Cell. Cardiol. 93, 149–155 (2016).

    Article  PubMed  CAS  Google Scholar 

  54. Horckmans, M. et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38, 187–197 (2017).

    PubMed  Google Scholar 

  55. Boon, R. A. & Dimmeler, S. MicroRNAs in myocardial infarction. Nat. Rev. Cardiol. 12, 135–142 (2015).

    Article  PubMed  CAS  Google Scholar 

  56. Daniels, L. B. & Maisel, A. S. Cardiovascular biomarkers and sex: the case for women. Nat. Rev. Cardiol. 12, 588–596 (2015).

    Article  PubMed  CAS  Google Scholar 

  57. Viereck, J. & Thum, T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ. Res. 120, 381–399 (2017).

    Article  PubMed  CAS  Google Scholar 

  58. Schloss, M. J. et al. The time-of-day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment. EMBO Mol. Med. 8, 937–948 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Anea, C. B. et al. Matrix metalloproteinase 2 and 9 dysfunction underlie vascular stiffness in circadian clock mutant mice. Arterioscler. Thromb. Vasc. Biol. 30, 2535–2543 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lou, J., Wang, Y., Zhang, Z. & Qiu, W. Activation of MMPs in macrophages by Mycobacterium tuberculosis via the miR-223-BMAL1 signaling pathway. J. Cell. Biochem. 118, 4804–4812 (2017).

    Article  PubMed  CAS  Google Scholar 

  61. Kloner, R. A. et al. New and revisited approaches to preserving the reperfused myocardium. Nat. Rev. Cardiol. 14, 679–693 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Meschiari, C. A., Ero, O. K., Pan, H., Finkel, T. & Lindsey, M. L. The impact of aging on cardiac extracellular matrix. Geroscience 39, 7–18 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Van den Steen, P. E. et al. The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J. Biol. Chem. 281, 18626–18637 (2006).

    Article  PubMed  CAS  Google Scholar 

  64. O’Sullivan, S., Medina, C., Ledwidge, M., Radomski, M. W. & Gilmer, J. F. Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance — NO and MMP-9 interactions. Biochim. Biophys. Acta 1843, 603–617 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. El-Aziz, T. A. A. & Mohamed, R. H. Matrix metalloproteinase -9 polymorphism and outcome after acute myocardial infarction. Int. J. Cardiol. 227, 524–528 (2017).

    Article  PubMed  Google Scholar 

  66. Duellman, T., Burnett, J. & Yang, J. Functional roles of N-linked glycosylation of human matrix metalloproteinase 9. Traffic 16, 1108–1126 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rouet-Benzineb, P., Gontero, B., Dreyfus, P. & Lafuma, C. Angiotensin II induces nuclear factor-κB activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J. Mol. Cell. Cardiol. 32, 1767–1778 (2000).

    Article  PubMed  CAS  Google Scholar 

  68. Poggio, P. et al. Osteopontin controls endothelial cell migration in vitro and in excised human valvular tissue from patients with calcific aortic stenosis and controls. J. Cell. Physiol. 226, 2139–2149 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kothari, P. et al. IL-6-mediated induction of matrix metalloproteinase-9 is modulated by JAK-dependent IL-10 expression in macrophages. J. Immunol. 192, 349–357 (2014).

    Article  PubMed  CAS  Google Scholar 

  70. Hartney, J. M., Gustafson, C. E., Bowler, R. P., Pelanda, R. & Torres, R. M. Thromboxane receptor signaling is required for fibronectin-induced matrix metalloproteinase 9 production by human and murine macrophages and is attenuated by the Arhgef1 molecule. J. Biol. Chem. 286, 44521–44531 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Dai, J. et al. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28, 3412–3422 (2009).

    Article  PubMed  CAS  Google Scholar 

  72. Chakrabarti, S., Zee, J. M. & Patel, K. D. Regulation of matrix metalloproteinase-9 (MMP-9) in TNF-stimulated neutrophils: novel pathways for tertiary granule release. J. Leukoc. Biol. 79, 214–222 (2006).

    Article  PubMed  CAS  Google Scholar 

  73. Chakrabarti, S. & Patel, K. D. Regulation of matrix metalloproteinase-9 release from IL-8-stimulated human neutrophils. J. Leukoc. Biol. 78, 279–288 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. Castrillo, A., Joseph, S. B., Marathe, C., Mangelsdorf, D. J. & Tontonoz, P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J. Biol. Chem. 278, 10443–10449 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Matsumura, S. et al. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J. Clin. Invest. 115, 599–609 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lindsey, M. L. et al. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation 113, 2919–2928 (2006).

    Article  PubMed  CAS  Google Scholar 

  77. Squire, I. B., Evans, J., Ng, L. L., Loftus, I. M. & Thompson, M. M. Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J. Card. Fail. 10, 328–333 (2004).

    Article  PubMed  CAS  Google Scholar 

  78. Wagner, D. R. et al. Matrix metalloproteinase-9 is a marker of heart failure after acute myocardial infarction. J. Card. Fail. 12, 66–72 (2006).

    Article  PubMed  CAS  Google Scholar 

  79. DeLeon-Pennell, K. Y. et al. P. gingivalis lipopolysaccharide intensifies inflammation post-myocardial infarction through matrix metalloproteinase-9. J. Mol. Cell. Cardiol. 76, 218–226 (2014).

    Article  PubMed  CAS  Google Scholar 

  80. Ducharme, A. et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J. Clin. Invest. 106, 55–62 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. van den Borne, S. W. et al. Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction. Cardiovasc. Pathol. 18, 37–43 (2009).

    Article  PubMed  CAS  Google Scholar 

  82. Romanic, A. M., Burns-Kurtis, C. L., Gout, B., Berrebi-Bertrand, I. & Ohlstein, E. H. Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci. 68, 799–814 (2001).

    Article  PubMed  CAS  Google Scholar 

  83. Cleutjens, J. P., Kandala, J. C., Guarda, E., Guntaka, R. V. & Weber, K. T. Regulation of collagen degradation in the rat myocardium after infarction. J. Mol. Cell. Cardiol. 27, 1281–1292 (1995).

    Article  PubMed  CAS  Google Scholar 

  84. Etoh, T. et al. Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am. J. Physiol. Heart Circ. Physiol. 281, H987–H994 (2001).

    Article  PubMed  CAS  Google Scholar 

  85. Blom, A. S. et al. Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation 112, 1274–1283 (2005).

    Article  PubMed  Google Scholar 

  86. Takai, S. et al. Inhibition of matrix metalloproteinase-9 activity by lisinopril after myocardial infarction in hamsters. Eur. J. Pharmacol. 568, 231–233 (2007).

    Article  PubMed  CAS  Google Scholar 

  87. Ramirez, T. A. et al. Aliskiren and valsartan mediate left ventricular remodeling post-myocardial infarction in mice through MMP-9 effects. J. Mol. Cell. Cardiol. 72, 326–335 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lindsey, M. L. et al. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 290, H232–H239 (2006).

    Article  PubMed  CAS  Google Scholar 

  89. Lindsey, M. L. et al. Selective matrix metalloproteinase inhibition reduces left ventricular remodeling but does not inhibit angiogenesis after myocardial infarction. Circulation 105, 753–758 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges O. J. Rivera Gonzalez and A. J. Mouton (University of Mississippi Medical Center, Jackson, MS, USA) for help with fact checking and careful proofreading of the manuscript. She acknowledges funding from the NIH under Award Numbers GM104357, GM114833, GM115428, HL051971, HL075360, and HL129823, and from the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development under Award Number 5I01BX000505. The content is solely the responsibility of the author and does not necessarily represent the official views of the NIH or the Veterans Administration.

Reviewer information

Nature Reviews Cardiology thanks A. D. Bradshaw and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merry L. Lindsey.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

MEROPS peptidase database: https://www.ebi.ac.uk/merops/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindsey, M.L. Assigning matrix metalloproteinase roles in ischaemic cardiac remodelling. Nat Rev Cardiol 15, 471–479 (2018). https://doi.org/10.1038/s41569-018-0022-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0022-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing