Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peripheral T cell lymphomas: from the bench to the clinic

Abstract

Peripheral T cell lymphomas (PTCLs) are a heterogeneous group of orphan neoplasms. Despite the introduction of anthracycline-based chemotherapy protocols, with or without autologous haematopoietic transplantation and a plethora of new agents, the progression-free survival of patients with PTCLs needs to be improved. The rarity of these neoplasms, the limited knowledge of their driving defects and the lack of experimental models have impaired clinical successes. This scenario is now rapidly changing with the discovery of a spectrum of genomic defects that hijack essential signalling pathways and foster T cell transformation. This knowledge has led to new genomic-based stratifications, which are being used to establish objective diagnostic criteria, more effective risk assessment and target-based interventions. The integration of genomic and functional data has provided the basis for targeted therapies and immunological approaches that underlie individual tumour vulnerabilities. Fortunately, novel therapeutic strategies can now be rapidly tested in preclinical models and effectively translated to the clinic by means of well-designed clinical trials. We believe that by combining new targeted agents with immune regulators and chimeric antigen receptor-expressing natural killer and T cells, the overall survival of patients with PTCLs will dramatically increase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification and ethnic and geographic distribution of most recurrent T cell lymphoproliferative disorders.
Fig. 2: Transcription factors regulate the phenotype and function of T cells.
Fig. 3: The mechanisms of PTCL transformation.
Fig. 4: Dysregulated signalling pathways in PTCL.
Fig. 5: Clonal haematopoiesis and T cell lymphoma of follicular helper cell origin.

Similar content being viewed by others

References

  1. Strachan, T. R., Read, A. P. in Human Molecular Genetics 2 Vol. 2 (Wiley-Liss, 1999).

  2. Pizzi, M., Margolskee, E. & Inghirami, G. Pathogenesis of peripheral T cell lymphoma. Annu. Rev. Pathol. 13, 293–320 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. de Charette, M. & Houot, R. Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immunotherapy. Haematologica 103, 1256–1268 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Swerdlow, S. H. et al. in World Health Organization Classification: Tumours of Hematopoietic and Lymphoid Tissues. (IARC, 2017).

  5. Delabie, J. et al. Enteropathy-associated T-cell lymphoma: clinical and histological findings from the International Peripheral T-Cell Lymphoma Project. Blood 118, 148–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Holst, J. M. et al. Myeloproliferative and lymphoproliferative malignancies occurring in the same patient: a nationwide discovery cohort. Haematologica https://doi.org/10.3324/haematol.2019.225839 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ghazawi, F. M. et al. Comprehensive analysis of cutaneous T-cell lymphoma (CTCL) incidence and mortality in Canada reveals changing trends and geographic clustering for this malignancy. Cancer 123, 3550–3567 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Ward, M. H. et al. Dietary factors and non-Hodgkin’s lymphoma in Nebraska (United States). Cancer Causes Control 5, 422–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Shivappa, N. et al. Dietary inflammatory index and non-Hodgkin lymphoma risk in an Italian case-control study. Cancer Causes Control 28, 791–799 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chander, U., Leeman-Neill, R. J. & Bhagat, G. Pathogenesis of enteropathy-associated T cell lymphoma. Curr. Hematol. Malig. Rep. 13, 308–317 (2018).

    Article  PubMed  Google Scholar 

  11. Similuk, M., Rao, V. K., Churpek, J. & Lenardo, M. Predispositions to lymphoma: a practical review for genetic counselors. J. Genet. Couns. 25, 1157–1170 (2016).

    Article  PubMed  Google Scholar 

  12. Bomken, S. et al. Current understanding and future research priorities in malignancy associated with inborn errors of immunity and DNA repair disorders: the perspective of an interdisciplinary working group. Front. Immunol. 9, 2912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sud, A. et al. Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood 132, 2040–2052 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haas, O. A. & Borkhardt, A. in Non-Hodgkin’s Lymphoma in Childhood and Adolescence (eds Abla O. & Attarbaschi A.) (Springer, 2019).

  15. Gayden, T. et al. Germline HAVCR2 mutations altering TIM-3 characterize subcutaneous panniculitis-like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome. Nat. Genet. 50, 1650–1657 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Cannella, S. et al. Germline mutations of the perforin gene are a frequent occurrence in childhood anaplastic large cell lymphoma. Cancer 109, 2566–2571 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Candotti, F. Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich syndrome. J. Clin. Immunol. 38, 13–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Tanyildiz, H. G. et al. Lymphoma secondary to congenital and acquired immunodeficiency syndromes at a Turkish pediatric oncology center. J. Clin. Immunol. 36, 667–676 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Watson, R. D., Gershwin, M. E., Smithwick, E., Castles, J. J. & Ruebner, B. Cutaneous T cell lymphoma and leukocytoclastic vasculitis in a long-term survivor of Wiskott-Aldrich syndrome. Ann. Allergy 55, 654–657 (1985).

    CAS  PubMed  Google Scholar 

  20. Deleeuw, R. J. et al. Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology 132, 1902–1911 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Manns, A. et al. Human leukocyte antigen class II alleles associated with human T-cell lymphotropic virus type I infection and adult T-cell leukemia/lymphoma in a Black population. J. Natl Cancer Inst. 90, 617–622 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Jackow, C. M. et al. HLA-DR5 and DQB1*03 class II alleles are associated with cutaneous T-cell lymphoma. J. Invest. Dermatol. 107, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. O’Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Staudt, L. M. & Dave, S. The biology of human lymphoid malignancies revealed by gene expression profiling. Adv. Immunol. 87, 163–208 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cuadros, M. et al. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J. Clin. Oncol. 25, 3321–3329 (2007).

    Article  PubMed  Google Scholar 

  27. Piccaluga, P. P. et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 67, 10703–10710 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Iqbal, J. et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 115, 1026–1036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piccaluga, P. P. et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J. Clin. Oncol. 31, 3019–3025 (2013).

    Article  PubMed  Google Scholar 

  30. Iqbal, J. et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 123, 2915–2923 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Piva, R. et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J. Clin. Oncol. 28, 1583–1590 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Agnelli, L. et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 120, 1274–1281 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Hassler, M. R. et al. Insights into the pathogenesis of anaplastic large-cell lymphoma through genome-wide DNA methylation profiling. Cell Rep. 17, 596–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luchtel, R. A. et al. Recurrent MSC (E116K) mutations in ALK-negative anaplastic large cell lymphoma. Blood 133, 2776–2789 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scarfo, I. et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood 127, 221–232 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, T. et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood 123, 3007–3015 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heavican, T. B. et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 133, 1664–1676 (2019). This article highlights the molecular criteria for the stratification of PTCL-NOS and the role of the transcription factors GATA3 and TBX21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, C., Collins, M. & Kuchroo, V. K. Effector T cell differentiation: are master regulators of effector T cells still the masters? Curr. Opin. Immunol. 37, 6–10 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Travert, M. et al. Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets. Blood 119, 5795–5806 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, C. et al. MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood 122, 2083–2092 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spurlock, C. F. III et al. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat. Commun. 6, 6932 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Koh, B. H. et al. Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma. Proc. Natl Acad. Sci. USA 107, 10614–10619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Watatani, Y. et al. Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling. Leukemia 33, 2867–2883 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Schatz, J. H. et al. Targeted mutational profiling of peripheral T-cell lymphoma not otherwise specified highlights new mechanisms in a heterogeneous pathogenesis. Leukemia 29, 237–241 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Lepretre, S. et al. Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet. Cytogenet. 117, 71–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Boi, M. et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood 122, 2683–2693 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Thangavelu, M. et al. Recurring structural chromosome abnormalities in peripheral blood lymphocytes of patients with mycosis fungoides/Sezary syndrome. Blood 89, 3371–3377 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Olsen, E. A. et al. Clinical end points and response criteria in mycosis fungoides and Sezary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J. Clin. Oncol. 29, 2598–2607 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Willemze, R. et al. WHO-EORTC classification for cutaneous lymphomas. Blood 105, 3768–3785 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Zettl, A. et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am. J. Pathol. 164, 1837–1848 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujiwara, S. I. et al. High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays. Leukemia 22, 1891–1898 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Parilla Castellar, E. R. et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 124, 1473–1480 (2014).

    Article  CAS  Google Scholar 

  54. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263, 1281–1284 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Chiarle, R., Voena, C., Ambrogio, C., Piva, R. & Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer 8, 11–23 (2008). This review describes the pathogenetic role of ALK fusions in ALCL.

    Article  CAS  PubMed  Google Scholar 

  56. Crescenzo, R. et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27, 516–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Velusamy, T. et al. A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders. Blood 124, 3768–3771 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Feldman, A. L. et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia 23, 574–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Boddicker, R. L. et al. The oncogenic transcription factor IRF4 is regulated by a novel CD30/NF-kappaB positive feedback loop in peripheral T-cell lymphoma. Blood 125, 3118–3127 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Streubel, B., Vinatzer, U., Willheim, M., Raderer, M. & Chott, A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 20, 313–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Abate, F. et al. Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc. Natl Acad. Sci. USA 114, 764–769 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vallois, D. et al. RNA fusions involving CD28 are rare in peripheral T-cell lymphomas and concentrate mainly in those derived from follicular helper T cells. Haematologica 103, e360–e363 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kogure Y. & Kataoka, K. Genetic alterations in adult T-cell leukemia/lymphoma. Cancer Sci. 108, 1719–1725 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Odejide, O. et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123, 1293–1296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sakata-Yanagimoto, M. et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 171–175 (2014). This study demonstrates the presence of activating RHOA mutations in AITL.

    Article  CAS  PubMed  Google Scholar 

  66. McKinney, M. et al. The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov. 7, 369–379 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kiel, M. J. et al. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood 124, 1460–1472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Choi, J. et al. Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 47, 1011–1019 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang, L. et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat. Genet. 47, 1061–1066 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Hedlund, E. & Deng, Q. Single-cell RNA sequencing: technical advancements and biological applications. Mol. Asp. Med. 59, 36–46 (2018).

    Article  CAS  Google Scholar 

  71. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Palomero, T. et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat. Genet. 46, 166–170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liang, P. I. et al. Angioimmunoblastic T-cell lymphoma in Taiwan shows a frequent gain of ITK gene. Int. J. Clin. Exp. Pathol. 7, 6097–6107 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Feldman, A. L. et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia 22, 1139–1143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wilcox, R. A. et al. Inhibition of Syk protein tyrosine kinase induces apoptosis and blocks proliferation in T-cell non-Hodgkin’s lymphoma cell lines. Leukemia 24, 229–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Pechloff, K. et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J. Exp. Med. 207, 1031–1044 (2010). This study presents the functional characterization of the ITK–SYK chimera and its tumorigenic role in PTCL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Han, J. J. et al. Prognostic and therapeutic significance of phosphorylated STAT3 and protein tyrosine phosphatase-6 in peripheral-T cell lymphoma. Blood Cancer J. 8, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wilcox, R. A. A three-signal model of T-cell lymphoma pathogenesis. Am. J. Hematol. 91, 113–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Melard, P. et al. Molecular alterations and tumor suppressive function of the DUSP22 (dual specificity phosphatase 22) gene in peripheral T-cell lymphoma subtypes. Oncotarget 7, 68734–68748 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Feldman, A. L. et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 117, 915–919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vallois, D. et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 128, 1490–1502 (2016). This study demonstrates the role of the deregulated activation of TCR in the pathogenesis of AITL.

    Article  CAS  PubMed  Google Scholar 

  82. Gmyrek, G. B., Pingel, J., Choi, J. & Green, J. M. Functional analysis of acquired CD28 mutations identified in cutaneous T cell lymphoma. Cell Immunol. 319, 28–34 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vaque, J. P. et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood 123, 2034–2043 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Rohr, J. et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia 30, 1062–1070 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Boddicker, R. L., Razidlo, G. L. & Feldman, A. L. Genetic alterations affecting GTPases and T-cell receptor signaling in peripheral T-cell lymphomas. Small GTPases 10, 33–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Fung, I., Russell, S. M. & Oliaro, J. Interplay of polarity proteins and GTPases in T-lymphocyte function. Clin. Dev. Immunol. 2012, 417485 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Manso, R. et al. The RHOA G17V gene mutation occurs frequently in peripheral T-cell lymphoma and is associated with a characteristic molecular signature. Blood 123, 2893–2894 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Nagata, Y. et al. Variegated RHOA mutations in adult T-cell leukemia/lymphoma. Blood 127, 596–604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zang, S. et al. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J. Clin. Invest. 127, 2998–3012 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ng, S. Y. et al. RhoA G17V is sufficient to induce autoimmunity and promotes T-cell lymphomagenesis in mice. Blood 132, 935–947 (2018). A novel transgenic mouse model defines the tumorigenic role of RhoA mutation in PTCL.

    Article  CAS  PubMed  Google Scholar 

  91. Cortes, J. R. et al. RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis. Cancer Cell 33, 259–273 e257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ambrogio, C. et al. The anaplastic lymphoma kinase controls cell shape and growth of anaplastic large cell lymphoma through Cdc42 activation. Cancer Res. 68, 8899–8907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Menotti, M. et al. Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat. Med. 25, 130–140 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Turner, S. D., Yeung, D., Hadfield, K., Cook, S. J. & Alexander, D. R. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. Cell Signal. 19, 740–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Aaronson, D. S. & Horvath, C. M. A road map for those who don’t know JAK-STAT. Science 296, 1653–1655 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Zamo, A. et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21, 1038–1047 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Gupta, M. et al. In-vivo Activation Ofo STAT3 in angioimmunoblastic T cell lymphoma, PTCL not otherwise specified, and ALK negative anaplastic large cell lymphoma: implications for therapy. Blood 122, 844 (2013).

    Article  Google Scholar 

  98. Kucuk, C. et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat. Commun. 6, 6025 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Chen, Y. W. et al. Receptor-type tyrosine-protein phosphatase kappa directly targets STAT3 activation for tumor suppression in nasal NK/T-cell lymphoma. Blood 125, 1589–1600 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Waldmann, T. A. & Chen, J. Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu. Rev. Immunol. 35, 533–550 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Greenplate, A. et al. Genomic profiling of T-cell neoplasms reveals frequent JAK1 and JAK3 mutations with clonal evasion from targeted therapies. JCO Precis Oncol. https://doi.org/10.1200/PO.17.00019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dufva, O. et al. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat. Commun. 9, 1567 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Koskela, H. L. et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N. Engl. J. Med. 366, 1905–1913 (2012). This study describes the presence of frequent somatic mutations of STAT3 in the neoplastic cells of patients with large granular lymphocytic leukaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nicolae, A. et al. Frequent STAT5B mutations in gammadelta hepatosplenic T-cell lymphomas. Leukemia 28, 2244–2248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nairismagi, M. L. et al. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia 30, 1311–1319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Roberti, A. et al. Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat. Commun. 7, 12602 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Moffitt, A. B. et al. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J. Exp. Med. 214, 1371–1386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen, J. et al. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc. Natl Acad. Sci. USA 114, 3975–3980 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Abraham, R. M., Zhang, Q., Odum, N. & Wasik, M. A. The role of cytokine signaling in the pathogenesis of cutaneous T-cell lymphoma. Cancer Biol. Ther. 12, 1019–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lechner, M. G. et al. Survival signals and targets for therapy in breast implant-associated ALK–anaplastic large cell lymphoma. Clin. Cancer Res. 18, 4549–4559 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Kleppe, M. et al. Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin’s lymphoma and T-cell non-Hodgkin’s lymphoma. Haematologica 96, 1723–1727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Oka, T. et al. Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res. 62, 6390–6394 (2002).

    CAS  PubMed  Google Scholar 

  113. Honorat, J. F., Ragab, A., Lamant, L., Delsol, G. & Ragab-Thomas, J. SHP1 tyrosine phosphatase negatively regulates NPM-ALK tyrosine kinase signaling. Blood 107, 4130–4138 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Cheng, J. et al. Negative regulation of the SH2-homology containing protein-tyrosine phosphatase-1 (SHP-1) P2 promoter by the HTLV-1 Tax oncoprotein. Blood 110, 2110–2120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu, X. & Qu, C. K. Protein tyrosine phosphatase SHP-2 (PTPN11) in hematopoiesis and leukemogenesis. J. Signal. Transduct. 2011, 195239 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Voena, C. et al. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res. 67, 4278–4286 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Inghirami, G. et al. New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle 4, 1131–1133 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Weilemann, A. et al. Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma. Blood 125, 124–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Ng, S. Y. et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat. Commun. 9, 2024 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Schleussner, N. et al. The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia 32, 1994–2007 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ambrogio, C. et al. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells. Cancer Res. 69, 8611–8619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gambi, G. et al. The transcriptional regulator Sin3A contributes to the oncogenic potential of STAT3. Cancer Res. 79, 3076–3087 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Marzec, M. et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl Acad. Sci. USA 105, 20852–20857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen, J., Jiang, C. C., Jin, L. & Zhang, X. D. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann. Oncol. 27, 409–416 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. van der Weyden, C. A., Pileri, S. A., Feldman, A. L., Whisstock, J. & Prince, H. M. Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions. Blood Cancer J. 7, e603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Watanabe, M. et al. JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and Reed-Sternberg cells of Hodgkin lymphoma. Cancer Res. 65, 7628–7634 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Atsaves, V. et al. Constitutive control of AKT1 gene expression by JUNB/CJUN in ALK+ anaplastic large-cell lymphoma: a novel crosstalk mechanism. Leukemia 29, 2162–2172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Slupianek, A. et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 61, 2194–2199 (2001).

    CAS  PubMed  Google Scholar 

  129. da Silva Almeida, A. C. et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat. Genet. 47, 1465–1470 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Cristofoletti, C. et al. Comprehensive analysis of PTEN status in Sezary syndrome. Blood 122, 3511–3520 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Cai, Q., Deng, H., Xie, D., Lin, T. & Lin, T. Phosphorylated AKT protein is overexpressed in human peripheral T-cell lymphomas and predicts decreased patient survival. Clin. Lymphoma Myeloma Leuk. 12, 106–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Hong, J. Y. et al. The clinical significance of activated p-AKT expression in peripheral T-cell lymphoma. Anticancer. Res. 35, 2465–2474 (2015).

    PubMed  Google Scholar 

  133. Rolf, J., Fairfax, K. & Turner, M. Signaling pathways in T follicular helper cells. J. Immunol. 184, 6563–6568 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Lemonnier, F. et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120, 1466–1469 (2012). This article describes TET2 mutations in PTCL: their frequency and impact on patient outcomes.

    Article  CAS  PubMed  Google Scholar 

  135. Cairns, R. A. et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119, 1901–1903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, C. et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 126, 1741–1752 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lemonnier, F. et al. Loss of 5-hydroxymethylcytosine is a frequent event in peripheral T-cell lymphomas. Haematologica 103, e115–e118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nishizawa, S. et al. BCL6 locus is hypermethylated in angioimmunoblastic T-cell lymphoma. Int. J. Hematol. 105, 465–469 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Steensma, D. P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Blood Adv. 2, 3404–3410 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schwartz, F. H. et al. TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma. J. Pathol. 242, 129–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Lemonnier, F. et al. The IDH2 R172K mutation associated with angioimmunoblastic T-cell lymphoma produces 2HG in T cells and impacts lymphoid development. Proc. Natl Acad. Sci. USA 113, 15084–15089 (2016). This study evaluates the functional role of IDH proteins and their tumorigenic properties in AITL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sasaki, M. et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488, 656–659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cairns, R. A. & Mak, T. W. Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov. 3, 730–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Paschka, P. et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 28, 3636–3643 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Scourzic, L. et al. DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice. Leukemia 30, 1388–1398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Calvo-Vidal, M. N. & Cerchietti, L. The metabolism of lymphomas. Curr. Opin. Hematol. 20, 345–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mahadevan, D. et al. Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol. Cancer Ther. 4, 1867–1879 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Bachow, S. H. & O’Connor, O. A. Emerging therapies in relapsed and refractory peripheral T-cell lymphoma. Clin. Adv. Hematol. Oncol. 13, 837–846 (2015).

    PubMed  Google Scholar 

  154. Poirier, F., Joubert-Caron, R., Labas, V. & Caron, M. Proteomic analysis of a lymphoma-derived cell line (DG75) following treatment with a demethylating drug: modification of membrane-associated proteins. Proteomics 3, 1028–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Xiong, J. et al. Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-alpha and therapeutic targeting. Blood Cancer J. 5, 287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. McDonnell, S. R. et al. NPM-ALK signals through glycogen synthase kinase 3beta to promote oncogenesis. Oncogene 31, 3733–3740 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Kittipongdaja, W. et al. Rapamycin suppresses tumor growth and alters the metabolic phenotype in T-cell lymphoma. J. Invest. Dermatol. 135, 2301–2308 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Witzig, T. E. et al. A comprehensive review of lenalidomide therapy for B-cell non-Hodgkin lymphoma. Ann. Oncol. 26, 1667–1677 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Lien, E. C., Lyssiotis, C. A. & Cantley, L. C. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer. Recent Results Cancer Res. 207, 39–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Gough, D. J. et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cayrol, F. et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat. Commun. 8, 14290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. McDonnell, S. R. et al. Integrated phosphoproteomic and metabolomic profiling reveals NPM-ALK-mediated phosphorylation of PKM2 and metabolic reprogramming in anaplastic large cell lymphoma. Blood 122, 958–968 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mondragon, L. et al. GAPDH overexpression in the T cell lineage promotes angioimmunoblastic T cell lymphoma through an NF-kappaB-dependent mechanism. Cancer Cell 36, 268–287 e210 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Jain, S. et al. Targeted inhibition of CD47-SIRPalpha requires Fc-FcγR interactions to maximize activity in T-cell lymphomas. Blood 134, 1430–1440 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Bandala-Sanchez, E. et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat. Immunol. 14, 741–748 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Lin, Z. X. et al. High numbers of tumor-associated macrophages correlate with poor prognosis in patients with mature T- and natural killer cell lymphomas. Med. Oncol. 29, 3522–3528 (2012).

    Article  PubMed  Google Scholar 

  168. Kim, W. Y. et al. Increased quantity of tumor-infiltrating FOXP3-positive regulatory T cells is an independent predictor for improved clinical outcome in extranodal NK/T-cell lymphoma. Ann. Oncol. 20, 1688–1696 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Zhao, W. L. et al. Vascular endothelial growth factor-A is expressed both on lymphoma cells and endothelial cells in angioimmunoblastic T-cell lymphoma and related to lymphoma progression. Lab. Invest. 84, 1512–1519 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Zhang, W. et al. GATA3 expression correlates with poor prognosis and tumor-associated macrophage infiltration in peripheral T cell lymphoma. Oncotarget 7, 65284–65294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Wang, J. & Ke, X. Y. The four types of Tregs in malignant lymphomas. J. Hematol. Oncol. 4, 50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Falschlehner, C., Schaefer, U. & Walczak, H. Following TRAIL’s path in the immune system. Immunology 127, 145–154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Karwacz, K. et al. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol. Med. 3, 581–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wilcox, R. A. et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood 114, 2149–2158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chim, C. S. et al. Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 31, 745–750 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Song, T. L. et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 132, 1146–1158 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Miyoshi, H. et al. PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma. Blood 128, 1374–1381 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Shen, H. et al. Soluble programmed death-ligand 1 are highly expressed in peripheral T-cell lymphoma: a biomarker for prognosis. Hematology 24, 392–398 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Bi, X. W. et al. PD-L1 is upregulated by EBV-driven LMP1 through NF-kappaB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J. Hematol. Oncol. 9, 109 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Kataoka, K. et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Trempat, P. et al. Evidence for early infection of nonneoplastic natural killer cells by Epstein-Barr virus. J. Virol. 76, 11139–11142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Coleman, C. B. et al. Epstein-Barr virus type 2 infects T cells in healthy Kenyan children. J. Infect. Dis. 216, 670–677 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Okuno, Y. et al. Publisher correction: defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat. Microbiol. 4, 544 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Kim, W. Y., Montes-Mojarro, I. A., Fend, F. & Quintanilla-Martinez, L. Epstein-Barr Virus-Associated T. and NK-cell lymphoproliferative diseases. Front. Pediatr. 7, 71 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Fujiwara, S. et al. Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr. Int. 56, 159–166 (2014).

    Article  PubMed  Google Scholar 

  186. Rodriguez, R. et al. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J. Exp. Med. 216, 2800–2818 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Minarovits, J. et al. Clonality, expression and methylation patterns of the Epstein-Barr virus genomes in lethal midline granulomas classified as peripheral angiocentric T cell lymphomas. J. Gen. Virol. 75, 77–84 (1994).

    Article  CAS  PubMed  Google Scholar 

  188. Li, Z. et al. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol. 17, 1240–1247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mei, M. & Zhang, M. Non-coding RNAs in natural killer/T-cell lymphoma. Front. Oncol. 9, 515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Yajima, M., Kanda, T. & Takada, K. Critical role of Epstein-Barr virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J. Virol. 79, 4298–4307 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Higgins, J. P., van de Rijn, M., Jones, C. D., Zehnder, J. L. & Warnke, R. A. Peripheral T-cell lymphoma complicated by a proliferation of large B cells. Am. J. Clin. Pathol. 114, 236–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  192. Ho, J. W., Ho, F. C., Chan, A. C., Liang, R. H. & Srivastava, G. Frequent detection of Epstein-Barr virus-infected B cells in peripheral T-cell lymphomas. J. Pathol. 185, 79–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  193. Weiss, L. M. et al. Detection and localization of Epstein-Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy-like lymphoma. Blood 79, 1789–1795 (1992).

    Article  CAS  PubMed  Google Scholar 

  194. Nguyen, T. B. et al. Identification of cell-type-specific mutations in nodal T-cell lymphomas. Blood Cancer J. 7, e516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dunleavy, K., Wilson, W. H. & Jaffe, E. S. Angioimmunoblastic T cell lymphoma: pathobiological insights and clinical implications. Curr. Opin. Hematol. 14, 348–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Hoffmann, J. C. et al. An analysis of MYC and EBV in diffuse large B-cell lymphomas associated with angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma not otherwise specified. Hum. Pathol. 48, 9–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Attygalle, A. D. et al. Histologic evolution of angioimmunoblastic T-cell lymphoma in consecutive biopsies: clinical correlation and insights into natural history and disease progression. Am. J. Surg. Pathol. 31, 1077–1088 (2007).

    Article  PubMed  Google Scholar 

  198. Willenbrock, K., Brauninger, A. & Hansmann, M. L. Frequent occurrence of B-cell lymphomas in angioimmunoblastic T-cell lymphoma and proliferation of Epstein-Barr virus-infected cells in early cases. Br. J. Haematol. 138, 733–739 (2007).

    Article  PubMed  Google Scholar 

  199. Inghirami, G., Chan, W. C., Pileri, S. & AIRC 5xMille consortium ‘Genetics-driven targeted management of lymphoid malignancies’. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol. Rev. 263, 124–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Watanabe, T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood 129, 1071–1081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Portis, T., Grossman, W. J., Harding, J. C., Hess, J. L. & Ratner, L. Analysis of p53 inactivation in a human T-cell leukemia virus type 1 Tax transgenic mouse model. J. Virol. 75, 2185–2193 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Fujikawa, D. et al. Polycomb-dependent epigenetic landscape in adult T-cell leukemia. Blood 127, 1790–1802 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Vernin, C. et al. HTLV-1 bZIP factor HBZ promotes cell proliferation and genetic instability by activating OncomiRs. Cancer Res. 74, 6082–6093 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Kuhlmann, A. S. et al. HTLV-1 HBZ cooperates with JunD to enhance transcription of the human telomerase reverse transcriptase gene (hTERT). Retrovirology 4, 92 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Wright, D. G. et al. Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1. Oncotarget 7, 1687–1706 (2016).

    Article  PubMed  Google Scholar 

  206. Yasuma, K. et al. HTLV-1 bZIP factor impairs anti-viral immunity by inducing Co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT). PLoS Pathog. 12, e1005372 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Mak, V. et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J. Clin. Oncol. 31, 1970–1976 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. O’Connor, O. A. et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J. Clin. Oncol. 29, 1182–1189 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Coiffier, B. et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J. Clin. Oncol. 30, 631–636 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. O’Connor, O. A. et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J. Clin. Oncol. 33, 2492–2499 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Pro, B. et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190–2196 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Broccoli, A., Argnani, L. & Zinzani, P. L. Peripheral T-cell lymphomas: focusing on novel agents in relapsed and refractory disease. Cancer Treat. Rev. 60, 120–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Lemonnier, F. et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood 132, 2305–2309 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03542266 (2019).

  215. Rozati, S. et al. Romidepsin and azacitidine synergize in their epigenetic modulatory effects to induce apoptosis in CTCL. Clin. Cancer Res. 22, 2020–2031 (2016).

    Article  CAS  PubMed  Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03161223 (2020).

  217. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01998035 (2019).

  218. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01129180 (2013).

  219. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04105010 (2019).

  220. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02974647 (2019).

  221. Moskowitz, A. J. et al. Durable responses observed with JAK inhibition in T-cell lymphomas. Blood 132 (Suppl 1), 2922 (2018).

    Article  Google Scholar 

  222. Horwitz, S. M. et al. The novel SYK/JAK inhibitor cerdulatinib demonstrates good tolerability and clinical response in a phase 2A study in relapsed/refractory peripheral T-cell lymphoma. Medicine 132, 1001 (2018).

    Google Scholar 

  223. Seiler, T., Hutter, G. & Dreyling, M. The emerging role of PI3K inhibitors in the treatment of hematological malignancies: preclinical data and clinical progress to date. Drugs 76, 639–646 (2016).

    Article  PubMed  Google Scholar 

  224. Horwitz, S. M. et al. Activity of the PI3K-delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood 131, 888–898 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Horwitz, S. M. et al. The combination of duvelisib, a PI3K-δ,γ inhibitor, and romidepsin is highly active in relapsed/refractory peripheral T-cell lymphoma with low rates of transaminitis: results of parallel multicentre, phase 1 combination studies with expansion cohorts. ASH Annu. Meet. Abstr. 132, 683 (2018).

    Google Scholar 

  226. von Keudell, G. & Moskowitz, A. J. The role of PI3K inhibition in lymphoid malignancies. Curr. Hematol. Malig. Rep. 14, 405–413 (2019).

    Article  Google Scholar 

  227. Zinzani, P. L. et al. Lenalidomide monotherapy for relapsed/refractory peripheral T-cell lymphoma not otherwise specified. Leuk. Lymphoma 52, 1585–1588 (2011).

    Article  CAS  PubMed  Google Scholar 

  228. Francisco, J. A. et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102, 1458–1465 (2003).

    Article  CAS  PubMed  Google Scholar 

  229. Horwitz, S. M. et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood 123, 3095–3100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Prince, H. M. et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet 390, 555–566 (2017).

    Article  CAS  PubMed  Google Scholar 

  231. Horwitz, S. et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet 393, 229–240 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Ishii, T. et al. Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin. Cancer Res. 16, 1520–1531 (2010).

    Article  CAS  PubMed  Google Scholar 

  233. Ishida, T. et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J. Clin. Oncol. 30, 837–842 (2012).

    Article  CAS  PubMed  Google Scholar 

  234. Ogura, M. et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J. Clin. Oncol. 32, 1157–1163 (2014).

    Article  CAS  PubMed  Google Scholar 

  235. Zinzani, P. L. et al. European phase II study of mogamulizumab, an anti-CCR4 monoclonal antibody, in relapsed/refractory peripheral T-cell lymphoma. Haematologica 101, e407–e410 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Flynn, M. J. et al. ADCT-301, a pyrrolobenzodiazepine (PBD) dimer-containing antibody-drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol. Cancer Ther. 15, 2709–2721 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02432235 (2019).

  238. Reusch, U. et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs 6, 728–739 (2014).

    PubMed  Google Scholar 

  239. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03192202 (2019).

  240. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04074746 (2020).

  241. Constantinidou, A., Alifieris, C. & Trafalis, D. T. Targeting programmed cell death -1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol. Ther. 194, 84–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Tomassetti, S., Chen, R. & Dandapani, S. The role of pembrolizumab in relapsed/refractory primary mediastinal large B-cell lymphoma. Ther. Adv. Hematol. 10, 2040620719841591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Khodadoust, M. S. et al. Pembrolizumab in relapsed and refractory mycosis fungoides and sezary syndrome: a multicenter phase II study. J. Clin. Oncol. 38, 20–28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Kwong, Y. L. et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 129, 2437–2442 (2017).

    Article  CAS  PubMed  Google Scholar 

  245. Barta, S. K. et al. Phase II study of the PD-1 inhibitor pembrolizumab for the treatment of relapsed or refractory mature T-cell lymphoma. Clin. Lymphoma Myeloma Leuk. 19, 356–364 e353 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Champiat, S. et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. 15, 748–762 (2018).

    Article  CAS  PubMed  Google Scholar 

  247. Ratner, L., Waldmann, T. A., Janakiram, M. & Brammer, J. E. Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N. Engl. J. Med. 378, 1947–1948 (2018).

    Article  PubMed  Google Scholar 

  248. Rauch, D. A. et al. Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating tregs after PD-1 blockade. Blood 134, 1406–1414 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Wartewig, T. et al. PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552, 121–125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04008394 (2019).

  251. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04004637 (2020).

  252. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04033302 (2019).

  253. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03690011 (2019).

  254. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03081910 (2019).

  255. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03829540 (2019).

  256. Savoldo, B. et al. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 110, 2620–2630 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Grover, N. S. & Savoldo, B. Challenges of driving CD30-directed CAR-T cells to the clinic. BMC Cancer 19, 203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Wang, C. M. et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin. Cancer Res. 23, 1156–1166 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Ramos, C. A. et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J. Clin. Invest. 127, 3462–3471 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Cooper, M. L. et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia 32, 1970–1983 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Mamonkin, M., Rouce, R. H., Tashiro, H. & Brenner, M. K. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 126, 983–992 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Pinz, K. et al. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells. Leukemia 30, 701–707 (2016).

    Article  CAS  PubMed  Google Scholar 

  263. Perera, L. P. et al. Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am. J. Hematol. 92, 892–901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Scarfo, I. et al. Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas. Blood 132, 1495–1506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Maciocia, P. M. et al. Targeting the T cell receptor beta-chain constant region for immunotherapy of T cell malignancies. Nat. Med. 23, 1416–1423 (2017).

    Article  CAS  PubMed  Google Scholar 

  266. Huang, J. et al. Unique CDR3 epitope targeting by CAR-T cells is a viable approach for treating T-cell malignancies. Leukemia 33, 2315–2319 (2019).

    Article  PubMed  Google Scholar 

  267. Rezvani, K., Rouce, R., Liu, E. & Shpall, E. Engineering natural killer cells for cancer immunotherapy. Mol. Ther. 25, 1769–1781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Pinz, K. G. et al. Targeting T-cell malignancies using anti-CD4 CAR NK-92 cells. Oncotarget 8, 112783–112796 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Spits, H. Development of alphabeta T cells in the human thymus. Nat. Rev. Immunol. 2, 760–772 (2002).

    Article  CAS  PubMed  Google Scholar 

  270. Nikolich-Zugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4, 123–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  271. Dunon, D., Cooper, M. D. & Imhof, B. A. Thymic origin of embryonic intestinal gamma/delta T cells. J. Exp. Med. 177, 257–263 (1993).

    Article  CAS  PubMed  Google Scholar 

  272. Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo. Nat. Immunol. 5, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  273. Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. de Leval, L. et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109, 4952–4963 (2007).

    Article  PubMed  CAS  Google Scholar 

  275. Grogg, K. L. et al. Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood 106, 1501–1502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. de Leval, L. Approach to nodal-based T-cell lymphomas. Pathology 52, 78–99 (2019).

    Article  PubMed  CAS  Google Scholar 

  277. Heid, J. B. et al. FOXP3+CD25- tumor cells with regulatory function in Sezary syndrome. J. Invest. Dermatol. 129, 2875–2885 (2009).

    Article  CAS  PubMed  Google Scholar 

  278. Gjerdrum, L. M. et al. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 21, 2512–2518 (2007).

    Article  CAS  PubMed  Google Scholar 

  279. Malcolm, T. I. et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat. Commun. 7, 10087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Miranda, R. N. et al. Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J. Clin. Oncol. 32, 114–120 (2014).

    Article  PubMed  Google Scholar 

  281. Adams, S. V., Newcomb, P. A. & Shustov, A. R. Racial patterns of peripheral T-cell lymphoma incidence and survival in the United States. J. Clin. Oncol. 34, 963–971 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Bellei, M. et al. Pitfalls and major issues in the histologic diagnosis of peripheral T-cell lymphomas: results of the central review of 573 cases from the T-Cell Project, an international, cooperative study. Hematol. Oncol. 35, 630–636 (2017).

    Article  PubMed  Google Scholar 

  283. Perry, A. M. et al. Non-Hodgkin lymphoma in the Far East: review of 730 cases from the international non-Hodgkin lymphoma classification project. Ann. Hematol. 95, 245–251 (2016).

    Article  PubMed  Google Scholar 

  284. Perry, A. M. et al. Non-Hodgkin lymphoma in southern Africa: review of 487 cases from the international non-Hodgkin lymphoma classification project. Br. J. Haematol. 172, 716–723 (2016).

    Article  PubMed  Google Scholar 

  285. van Leeuwen, M. T. et al. Lymphoid neoplasm incidence by WHO subtype in Australia 1982-2006. Int. J. Cancer 135, 2146–2156 (2014).

    Article  CAS  PubMed  Google Scholar 

  286. Zing, N. P. C., Fischer, T., Zain, J., Federico, M. & Rosen, S. T. Peripheral T-cell lymphomas: incorporating new developments in diagnostics, prognostication, and treatment into clinical practice-PART 2: ENKTL, EATL, indolent T-cell LDP of the GI tract, ATLL, and hepatosplenic T-cell lymphoma. Oncology 32, e83–e89 (2018).

    PubMed  Google Scholar 

  287. O’Shea, J. J. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015). This is a comprehensive review of the JAK–STAT pathway and its role in human disorders.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Evans, C. M. & Jenner, R. G. Transcription factor interplay in T helper cell differentiation. Brief. Funct. Genomics 12, 499–511 (2013). This article discusses the role of transcription factors and the mechanisms controlling T helper cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes. Dev. 27, 836–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Kasprzycka, M., Marzec, M., Liu, X., Zhang, Q. & Wasik, M. A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl Acad. Sci. USA 103, 9964–9969 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Marzec, M. et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene 26, 813–821 (2007).

    Article  CAS  PubMed  Google Scholar 

  292. Bandini, C. et al. IRF4 mediates the oncogenic effects of STAT3 in anaplastic large cell lymphomas. Cancers (Basel) https://doi.org/10.3390/cancers10010021 (2018).

    Article  Google Scholar 

  293. Sommer, V. H. et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 18, 1288–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  294. Zhang, Q. et al. Cutaneous T cell lymphoma expresses immunosuppressive CD80 (B7-1) cell surface protein in a STAT5-dependent manner. J. Immunol. 192, 2913–2919 (2014).

    Article  CAS  PubMed  Google Scholar 

  295. Lee, S. et al. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget 6, 17764–17776 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Chiarle, R. et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat. Med. 14, 676–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  297. Laimer, D. et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat. Med. 18, 1699–1704 (2012).

    Article  CAS  PubMed  Google Scholar 

  298. Wartewig, T. & Ruland, J. PD-1 tumor suppressor signaling in T cell lymphomas. Trends Immunol. 40, 403–414 (2019).

    Article  CAS  PubMed  Google Scholar 

  299. Kiel, M. J. et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat. Commun. 6, 8470 (2015).

    Article  CAS  PubMed  Google Scholar 

  300. Laurent, C. et al. Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood 135, 360–370 (2019).

    Google Scholar 

  301. Manso, R. et al. Mutations in the JAK/STAT pathway genes and activation of the pathway, a relevant finding in nodal peripheral T-cell lymphoma. Br. J. Haematol. 183, 497–501 (2018).

    Article  PubMed  Google Scholar 

  302. Courtney, A. H., Lo, W. L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  303. Hogan, P. G. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium 63, 66–69 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Mognol, G. P., Carneiro, F. R., Robbs, B. K., Faget, D. V. & Viola, J. P. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis. 7, e2199 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Kane, L. P. & Weiss, A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol. Rev. 192, 7–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  306. Kumari, S., Curado, S., Mayya, V. & Dustin, M. L. T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim. Biophys. Acta 1838, 546–556 (2014).

    Article  CAS  PubMed  Google Scholar 

  307. Saito, T. & Yamasaki, S. Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol. Rev. 192, 143–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  308. Li, J. P. et al. The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck. Nat. Commun. 5, 3618 (2014).

    Article  PubMed  CAS  Google Scholar 

  309. Chiarle, R. et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 11, 623–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  310. Bach, M. P. et al. Premature terminal differentiation protects from deregulated lymphocyte activation by ITK-Syk. J. Immunol. 192, 1024–1033 (2014).

    Article  CAS  PubMed  Google Scholar 

  311. Swerdlow, S. H. et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127, 2375–2390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Zhou, Y. et al. Angioimmunoblastic T-cell lymphoma: histological progression associates with EBV and HHV6B viral load. Br. J. Haematol. 138, 44–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  313. Bruneau, J. et al. Regulatory T-cell depletion in angioimmunoblastic T-cell lymphoma. Am. J. Pathol. 177, 570–574 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Rolland, D. C. M. et al. Functional proteogenomics reveals biomarkers and therapeutic targets in lymphomas. Proc. Natl Acad. Sci. USA 114, 6581–6586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Collins, G. P. et al. ADCT-301 (camidanlumab tesirine), a novel pyrrolobenzodiazepine-based CD25-targeting antibody drug conjugate, in a phase 1 study of relapsed/refractory non-Hodgkin lymphoma shows activity in T-cell lymphoma. Blood 132 (Suppl 1), 1658 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data, discussing content, and writing, reviewing and editing the manuscript before submission.

Corresponding authors

Correspondence to Pier Luigi Zinzani, Wing C. Chan or Giorgio Inghirami.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks P. Gaulard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Non-Hodgkin lymphoma - Cancer Stat Facts: https://seer.cancer.gov/statfacts/html/nhl.html

Glossary

Nijmegen breakage syndrome

A condition characterized by short stature, an unusually small head size (microcephaly), distinctive facial features, recurrent respiratory tract infections, an increased risk of cancer, intellectual disability and other health problems. Patients are immunodeficient.

Constitutional mismatch repair deficiency

Constitutional mismatch repair deficiency syndrome is a rare condition that makes a child more likely to develop different types of cancers (that is, gliomas, lymphomas and carcinomas). These disorders are related to changes in the MLH1, MSH2, MSH6 or PMS2 gene and rarely in the EPCAM gene.

Wiskott–Aldrich syndrome

A syndrome characterized by immunodeficiency, eczema and a reduced ability to form blood clots. People with Wiskott–Aldrich syndrome are at greater risk of infections and developing autoimmune disorders and lymphomas.

Cancer–testis antigen

Cancer–testis antigens are a group of tumour antigens that are normally expressed by male germ cells in the testis but not in adult somatic tissues.

Pseudokinase domain

A catalytically inactive kinase domain.

FERM domain

A domain approximately 150 amino acids in length and found in a number of cytoskeletal-associated proteins that are localized to the plasma membrane and cytoskeleton interface.

SH2 domain

A structurally conserved domain in SRC oncoproteins and many other intracellular signal-transducing proteins (for example, adaptor proteins). The domain allows the docking of proteins via phosphorylated tyrosine residues decorated with a variety of proteins (for example, receptor proteins).

Tumour-associated macrophages

These can polarize into M1 (classically activated macrophages) and M2 (alternatively activated macrophages) phenotypes. M1 macrophages have proinflammatory and cytotoxic (antitumoural) functions, while M2 macrophages promote growth, tissue remodelling and angiogenesis, and suppress adaptive immunity.

Choline metabolism

Choline is an essential nutrient, and the liver is a central organ responsible for choline metabolism. Choline is the precursor of various metabolites, and its metabolism and choline-derived metabolites can be extensively alerted during cell transformation and in neoplastic cells.

Lymphokine

A cytokine produced by immune cells. Lymphokines have an array of properties regulating cell activation, growth, migration and survival.

Antigen-driven activation

The process whereby T cells recognize antigens presented by professional antigen-presenting cells (that is, macrophages and dendritic cells) via the T cell receptor complex and then undergo activation in the presence of effective co-stimulatory signals, initiating antigen-specific adaptive immune responses.

CHOP

An acronym for the chemotherapy regimen that includes cyclophosphamide, hydroxydaunorubicin, Oncovin (known generically as vincristine) and prednisone.

On-target/off-tumour effect

A drug-mediated or cell-mediated on-target/off-tumour effect leads to undesirable toxicity caused by the expression of the targeted protein or antigen on normal cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiore, D., Cappelli, L.V., Broccoli, A. et al. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer 20, 323–342 (2020). https://doi.org/10.1038/s41568-020-0247-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-0247-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer