Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The NADPH oxidases NOX4 and DUOX2 regulate cell cycle entry via a p53-dependent pathway

Abstract

Reactive oxygen species (ROS) are produced in growth factor-signaling pathways leading to cell proliferation, but the mechanisms leading to ROS generation and the targets of ROS signals are not well understood. Using a focused siRNA screen to identify redox-related proteins required for growth factor-induced cell cycle entry, we show that two ROS-generating proteins, the NADPH oxidases NOX4 and DUOX2, are required for platelet-derived growth factor (PDGF) induced retinoblastoma protein (Rb) phosphorylation in normal human fibroblasts. Unexpectedly, NOX4 and DUOX2 knockdown did not inhibit the early signaling pathways leading to cyclin D1 upregulation. However, hours after growth factor stimulation, NOX4 and DUOX2 knockdown reduced ERK1 phosphorylation and increased levels of the tumor suppressor protein p53 and a cell cycle inhibitor protein p21 (Waf1/Cip1) that is transcriptionally regulated by p53. Co-knockdown of NOX4 or DUOX2 with either p53 or with p21 overcame the inhibition of Rb phosphorylation that occurred with NOX4 or DUOX2 knockdown alone. Our results argue that rather than primarily affecting growth factor receptor signaling, NOX4 and DUOX2 regulate cell cycle entry as part of a p53-dependent checkpoint for proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB et al. (1997). Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272: 217–221.

    Article  CAS  Google Scholar 

  • Bae YS, Sung JY, Kim OS, Kim YJ, Hur KC, Kazlauskas A et al. (2000). Platelet-derived growth factor-induced H(2)O(2) production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem 275: 10527–10531.

    Article  CAS  Google Scholar 

  • Burch PM, Heintz NH . (2005). Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal 7: 741–751.

    Article  CAS  Google Scholar 

  • Burhans WC, Heintz NH . (2009). The cell cycle is a redox cycle: Linking phase-specific targets to cell fate. Free Radic Biol Med 47: 1282–1293.

    Article  CAS  Google Scholar 

  • Chambard JC, Lefloch R, Pouyssegur J, Lenormand P . (2007). ERK implication in cell cycle regulation. Biochimica Et Biophysica Acta 1773: 1299–1310.

    Article  CAS  Google Scholar 

  • Chen K, Kirber MT, Xiao H, Yang Y, Keaney Jr JF . (2008). Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181: 1129–1139.

    Article  CAS  Google Scholar 

  • Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S et al. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97: 900–907.

    Article  CAS  Google Scholar 

  • Hainaut P, Mann K . (2001). Zinc binding and redox control of p53 structure and function. Antioxid Redox Signal 3: 611–623.

    Article  CAS  Google Scholar 

  • Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T et al. (2008). Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45: 1–17.

    Article  CAS  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18: 283–293.

    Article  CAS  Google Scholar 

  • Keyse SM . (2008). Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 27: 253–261.

    Article  CAS  Google Scholar 

  • Lambeth JD . (2004). NOX enzymes and the biology of reactive oxygen. Nat Rev 4: 181–189.

    CAS  Google Scholar 

  • Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y et al. (2001). Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88: 888–894.

    Article  CAS  Google Scholar 

  • Laurent E, McCoy III JW, Macina RA, Liu W, Cheng G, Robine S et al. (2008). Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras. Int J Cancer 123: 100–107.

    Article  CAS  Google Scholar 

  • Lee SR, Kwon KS, Kim SR, Rhee SG . (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273: 15366–15372.

    Article  CAS  Google Scholar 

  • Li M, Zhou JY, Ge Y, Matherly LH, Wu GS . (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. J Biol Chem 278: 41059–41068.

    Article  CAS  Google Scholar 

  • Linke SP, Clarkin KC, Di Leonardo A, Tsou A, Wahl GM . (1996). A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 10: 934–947.

    Article  CAS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell Jr JE et al. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15: 1235–1241.

    Article  CAS  Google Scholar 

  • Liu YX, Wang J, Guo J, Wu J, Lieberman HB, Yin Y . (2008). DUSP1 is controlled by p53 during the cellular response to oxidative stress. Mol Cancer Res 6: 624–633.

    Article  CAS  Google Scholar 

  • Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G et al. (2004). The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24: 1844–1854.

    Article  CAS  Google Scholar 

  • Meng TC, Fukada T, Tonks NK . (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9: 387–399.

    Article  CAS  Google Scholar 

  • Myers JW, Jones JT, Meyer T, Ferrell Jr JE . (2003). Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat Biotechnol 21: 324–328.

    Article  CAS  Google Scholar 

  • Park HS, Jin DK, Shin SM, Jang MK, Longo N, Park JW et al. (2005). Impaired generation of reactive oxygen species in leprechaunism through downregulation of Nox4. Diabetes 54: 3175–3181.

    Article  CAS  Google Scholar 

  • Park HS, Lee SH, Park D, Lee JS, Ryu SH, Lee WJ et al. (2004). Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2. Mol Cell Biol 24: 4384–4394.

    Article  CAS  Google Scholar 

  • Petry A, Djordjevic T, Weitnauer M, Kietzmann T, Hess J, Gorlach A . (2006). NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox Signal 8: 1473–1484.

    Article  CAS  Google Scholar 

  • Ranjan P, Anathy V, Burch PM, Weirather K, Lambeth JD, Heintz NH . (2006). Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid Redox Signal 8: 1447–1459.

    Article  CAS  Google Scholar 

  • Rhee SG, Bae YS, Lee SR, Kwon J . (2000). Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000: PE1.

    Article  CAS  Google Scholar 

  • Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K et al. (2006). Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290: L661–L673.

    Article  CAS  Google Scholar 

  • Sturrock A, Huecksteadt TP, Norman K, Sanders K, Murphy TM, Chitano P et al. (2007). Nox4 mediates TGF-beta1-induced retinoblastoma protein phosphorylation, proliferation, and hypertrophy in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292: L1543–L1555.

    Article  CAS  Google Scholar 

  • Sun XZ, Vinci C, Makmura L, Han S, Tran D, Nguyen J et al. (2003). Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization. Antioxid Redox Signal 5: 655–665.

    Article  CAS  Google Scholar 

  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T . (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science (New York, NY) 270: 296–299.

    Article  CAS  Google Scholar 

  • Szatrowski TP, Nathan CF . (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51: 794–798.

    CAS  Google Scholar 

  • Trachootham D, Alexandre J, Huang P . (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8: 579–591.

    Article  CAS  Google Scholar 

  • Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS . (2007). Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 46: 7765–7780.

    Article  CAS  Google Scholar 

  • Ward JP . (2008). Oxygen sensors in context. Biochimica Et Biophysica Acta 1777: 1–14.

    Article  CAS  Google Scholar 

  • Wilkinson DS, Ogden SK, Stratton SA, Piechan JL, Nguyen TT, Smulian GA et al. (2005). A direct intersection between p53 and transforming growth factor beta pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Mol Cell Biol 25: 1200–1212.

    Article  CAS  Google Scholar 

  • Wilkinson DS, Tsai WW, Schumacher MA, Barton MC . (2008). Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming-growth-factor-beta-mediated transcription repression. Mol Cell Biol 28: 1988–1998.

    Article  CAS  Google Scholar 

  • Winterbourn CC . (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4: 278–286.

    Article  CAS  Google Scholar 

  • Winterbourn CC, Hampton MB . (2008). Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45: 549–561.

    Article  CAS  Google Scholar 

  • Wu GS . (2004). The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3: 156–161.

    Article  CAS  Google Scholar 

  • Yamaura M, Mitsushita J, Furuta S, Kiniwa Y, Ashida A, Goto Y et al. (2009). NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Cancer Res 69: 2647–2654.

    Article  CAS  Google Scholar 

  • Yao G, Lee TJ, Mori S, Nevins JR, You L . (2008). A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 10: 476–482.

    Article  CAS  Google Scholar 

  • Zarkowska T, Mittnacht S . (1997). Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J Biol Chem 272: 12738–12746.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Won Do Heo for his assistance with the cell cycle entry assay, Dr Dan Kaplan, Dr Sean Collins and Dr Karlene Cimprich for their critical reading of the article and members of the Meyer lab and Renee Paulsen for helpful discussions. This work was supported by a Career Award in the Biomedical Sciences from the Burroughs Wellcome Fund (AS), by a Helen Hay Whitney Foundation/Paul Sigler Agouron Institute post-doctoral fellowship (AS) and by an NIH grant R33 CA 120732 (TM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Salmeen or T Meyer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmeen, A., Park, B. & Meyer, T. The NADPH oxidases NOX4 and DUOX2 regulate cell cycle entry via a p53-dependent pathway. Oncogene 29, 4473–4484 (2010). https://doi.org/10.1038/onc.2010.200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.200

Keywords

This article is cited by

Search

Quick links