Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia

Abstract

Proprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with Kd = 170 nM at the neutral pH of plasma, but with a Kd as low as 1 nM at the acidic pH of endosomes. The D374Y gain-of-function mutant, associated with hypercholesterolemia and early-onset cardiovascular disease, binds the receptor 25 times more tightly than wild-type PCSK9 at neutral pH and remains exclusively in a high-affinity complex at the acidic pH. PCSK9 may diminish LDL receptors by a mechanism that requires direct binding but not necessarily receptor proteolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of human PCSK9.
Figure 2: Structure of the prodomain.
Figure 3: Protease substrate-binding sites.
Figure 4: Structure and orientation of the C-terminal domain.
Figure 5: SPR analysis of interactions of LDLR ECD and PCSK9 variants.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Goldstein, J.L., Hobbs, H.H. & Brown, M.S. Familial hypercholesterolemia. in The Metabolic & Molecular Bases of Inherited Disease (eds. Scriver, C.S. et al.) 2863–2913 (McGraw-Hill, New York, 2001).

    Google Scholar 

  2. Goldstein, J.L. & Brown, M.S. The cholesterol quartet. Science 292, 1310–1312 (2001).

    Article  CAS  Google Scholar 

  3. Jeon, H. & Blacklow, S.C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562 (2005).

    Article  CAS  Google Scholar 

  4. Maxwell, K.N. & Breslow, J.L. Proprotein convertase subtilisin kexin 9: the third locus implicated in autosomal dominant hypercholesterolemia. Curr. Opin. Lipidol. 16, 167–172 (2005).

    Article  CAS  Google Scholar 

  5. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    Article  CAS  Google Scholar 

  6. Cohen, J.C., Boerwinkle, E., Mosley, T.H., Jr & Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  Google Scholar 

  7. Lambert, G., Krempf, M. & Costet, P. PCSK9: a promising therapeutic target for dyslipidemias? Trends Endocrinol. Metab. 17, 79–81 (2006).

    Article  CAS  Google Scholar 

  8. Dubuc, G. et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 24, 1454–1459 (2004).

    Article  CAS  Google Scholar 

  9. Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl. Acad. Sci. USA 102, 5374–5379 (2005).

    Article  CAS  Google Scholar 

  10. Brown, M.S. & Goldstein, J.L. Lowering LDL—not only how low, but how long? Science 311, 1721–1723 (2006).

    Article  CAS  Google Scholar 

  11. Seidah, N.G. et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. USA 100, 928–933 (2003).

    Article  CAS  Google Scholar 

  12. Seidah, N.G., Khatib, A.M. & Prat, A. The proprotein convertases and their implication in sterol and/or lipid metabolism. Biol. Chem. 387, 871–877 (2006).

    Article  CAS  Google Scholar 

  13. Henrich, S., Lindberg, I., Bode, W. & Than, M.E. Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J. Mol. Biol. 345, 211–227 (2005).

    Article  CAS  Google Scholar 

  14. Benjannet, S. et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem. 279, 48865–48875 (2004).

    Article  CAS  Google Scholar 

  15. Cameron, J. et al. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum. Mol. Genet. 15, 1551–1558 (2006).

    Article  CAS  Google Scholar 

  16. Henrich, S. et al. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat. Struct. Biol. 10, 520–526 (2003).

    Article  CAS  Google Scholar 

  17. Holyoak, T. et al. 2.4 Å resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor. Biochemistry 42, 6709–6718 (2003).

    Article  CAS  Google Scholar 

  18. Tangrea, M.A., Bryan, P.N., Sari, N. & Orban, J. Solution structure of the pro-hormone convertase 1 pro-domain from Mus musculus. J. Mol. Biol. 320, 801–812 (2002).

    Article  CAS  Google Scholar 

  19. Lagace, T.A. et al. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J. Clin. Invest. 116, 2995–3005 (2006).

    Article  CAS  Google Scholar 

  20. Naureckiene, S. et al. Functional characterization of Narc 1, a novel proteinase related to proteinase K. Arch. Biochem. Biophys. 420, 55–67 (2003).

    Article  CAS  Google Scholar 

  21. Jain, S.C., Shinde, U., Li, Y., Inouye, M. & Berman, H.M. The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 Å resolution. J. Mol. Biol. 284, 137–144 (1998).

    Article  CAS  Google Scholar 

  22. Zhao, Z. et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79, 514–523 (2006).

    Article  CAS  Google Scholar 

  23. Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5, 785–799 (2006).

    Article  CAS  Google Scholar 

  24. Comellas-Bigler, M. et al. 1.2 Å crystal structure of the serine carboxyl proteinase pro-kumamolisin; structure of an intact pro-subtilase. Structure 12, 1313–1323 (2004).

    Article  CAS  Google Scholar 

  25. Rudenko, G. et al. Structure of the LDL receptor extracellular domain at endosomal pH. Science 298, 2353–2358 (2002).

    Article  CAS  Google Scholar 

  26. Benjannet, S., Rhainds, D., Hamelin, J., Nassoury, N. & Seidah, N.G. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J. Biol. Chem. 281, 30561–30572 (2006).

    Article  CAS  Google Scholar 

  27. Horton, J.D., Cohen, J.C. & Hobbs, H.H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci. 32, 71–77 (2007).

    Article  CAS  Google Scholar 

  28. Kotowski, I.K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78, 410–422 (2006).

    Article  CAS  Google Scholar 

  29. Fisher, C., Beglova, N. & Blacklow, S.C. Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors. Mol. Cell 22, 277–283 (2006).

    Article  CAS  Google Scholar 

  30. Grozdanov, P.N., Petkov, P.M., Karagyozov, L.K. & Dabeva, M.D. Expression and localization of PCSK9 in rat hepatic cells. Biochem. Cell Biol. 84, 80–92 (2006).

    Article  CAS  Google Scholar 

  31. Gabel, B.R. & Koschinsky, M.L. Antifibrinolytic effect of recombinant apolipoprotein(a) in vitro is primarily due to attenuation of tPA-mediated Glu-plasminogen activation. Biochemistry 34, 15777–15784 (1995).

    Article  CAS  Google Scholar 

  32. Andreasson, C., Heessen, S. & Ljungdahl, P.O. Regulation of transcription factor latency by receptor-activated proteolysis. Genes Dev. 20, 1563–1568 (2006).

    Article  CAS  Google Scholar 

  33. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

We thank E. Marr, S. Han, D. Brown, A. Panifer, J. Duerr and A. Subashi for technical assistance and I. Wang, B. Chrunyk, F. Rajamohan, P. Hensley, M. Bamberger, C. Hayward, R. Kennedy, J. Thorn, E. Fauman, M.S. Brown and J. Horton for helpful discussions and encouragement.

Author information

Authors and Affiliations

Authors

Contributions

M.C.G., T.A.S., A.H.V., M.J.A., L.R.H., K.F.G., D.X., L.C.W., J.L.H., K.M.M., K.J.S.-E. and J.S.C. provided key reagents. D.E.D. and M.N.M. crystallized the protein. X.Q. solved the structure. D.C. performed SPR studies. X.Q., K.F.G., A.P.S. and S.S. wrote the paper.

Corresponding author

Correspondence to Xiayang Qiu.

Ethics declarations

Competing interests

The authors are employees of Pfizer, which develops and markets medicines to treat cardiovascular disease.

Supplementary information

Supplementary Fig. 1

Structure-based sequence alignments. (PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunningham, D., Danley, D., Geoghegan, K. et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 14, 413–419 (2007). https://doi.org/10.1038/nsmb1235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing