Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis

Key Points

  • Dramatic changes in lymphatic vessel contraction and in the lymph nodes that drain inflamed joints are associated with disease progression and response to therapy in murine models of rheumatoid arthritis (RA)

  • During mild to moderate experimental arthritis, lymphatic vessels and nodes that drain the joint undergo an initial 'expansion' phase that facilitates efficient lymphatic clearance and lymphatic vessel contractions

  • In preclinical models, the expansion phase is followed by a 'collapsed' phase, in which B cells in the draining lymph node translocate from the follicles to lymphatic sinuses and the lymph node collapses

  • The collapsed phase is characterized by lymphatic vessel structural damage, loss of contraction, and reduction in lymphatic clearance

  • Pilot clinical studies indicate that alterations in lymph node volume and/or lymphatic flow could serve as biomarkers of treatment response with the potential to predict RA flare

  • Several lymphatic system-modulating therapies show promise in preclinical models of inflammatory arthritis and RA

Abstract

Although clinical outcomes for patients with rheumatoid arthritis (RA) have greatly improved with the use of biologic and conventional DMARDs, approximately 40% of patients do not achieve primary clinical outcomes in randomized trials, and only a small proportion achieve lasting remission. Over the past decade, studies in murine models point to the critical role of the lymphatic system in the pathogenesis and therapy of inflammatory-erosive arthritis, presumably by the removal of catabolic factors, cytokines and inflammatory cells from the inflamed synovium. Murine studies demonstrate that lymphatic drainage increases at the onset of inflammatory-erosive arthritis but, as inflammation progresses to a more chronic phase, lymphatic clearance declines and both structural and cellular changes are observed in the draining lymph node. Specifically, chronic damage to the lymphatic vessel from persistent inflammation results in loss of lymphatic vessel contraction followed by lymph node collapse, reduced lymphatic drainage, and ultimately severe synovitis and joint erosion. Notably, clinical pilot studies in patients with RA report lymph node changes following treatment, and thus draining lymphatic vessels and nodes could represent a potential biomarker of arthritis activity and response to therapy. Most importantly, targeting lymphatics represents an innovative strategy for therapeutic intervention for RA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of the synovial lymphatic system.
Figure 2: Overview of lymphatic phenotypes in normal (healthy), expanding and collapsed lymph nodes in mice.

Similar content being viewed by others

References

  1. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Rudan, I. et al. Prevalence of rheumatoid arthritis in low- and middle-income countries: a systematic review and analysis. J. Glob. Health 5, 010409 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weinblatt, M. E. et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Weinblatt, M. E. et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 340, 253–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Firestein, G. S. The disease formerly known as rheumatoid arthritis. Arthritis Res. Ther. 16, 114 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pratt, A. G. & Isaacs, J. D. Seronegative rheumatoid arthritis: pathogenetic and therapeutic aspects. Best Pract. Res. Clin. Rheumatol 28, 651–659 (2014).

    Article  PubMed  Google Scholar 

  7. Zawieja, D. Lymphatic biology and the microcirculation: past, present and future. Microcirculation 12, 141–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Skandalakis, J. E., Skandalakis, L. J. & Skandalakis, P. N. Anatomy of the lymphatics. Surg. Oncol. Clin. N. Am. 16, 1–16 (2007).

    Article  PubMed  Google Scholar 

  9. Aspelund, A., Robciuc, M. R., Karaman, S., Makinen, T. & Alitalo, K. Lymphatic system in cardiovascular medicine. Circ. Res. 118, 515–530 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Chakraborty, S., Davis, M. J. & Muthuchamy, M. Emerging trends in the pathophysiology of lymphatic contractile function. Semin. Cell Dev. Biol. 38, 55–66 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao, L. C., Baluk, P., Srinivasan, R. S., Oliver, G. & McDonald, D. M. Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. Am. J. Pathol. 180, 2561–2575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trzewik, J., Mallipattu, S. K., Artmann, G. M., Delano, F. A. & Schmid-Schonbein, G. W. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Collin, H. B. The ultrastructure of conjunctival lymphatic anchoring filaments. Exp. Eye Res. 8, 102–105 (1969).

    Article  CAS  PubMed  Google Scholar 

  14. Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Breslin, J. W. Mechanical forces and lymphatic transport. Microvasc. Res. 96, 46–54 (2014).

    Article  PubMed  Google Scholar 

  16. Wiig, H. & Swartz, M. A. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol. Rev. 92, 1005–1060 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Olszewski, W. L. & Engeset, A. Intrinsic contractility of leg lymphatics in man. Preliminary communication. Lymphology 12, 81–84 (1979).

    CAS  PubMed  Google Scholar 

  18. Olszewski, W. L. & Engeset, A. Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. Am. J. Physiol. 239, H775–783 (1980).

    CAS  PubMed  Google Scholar 

  19. Armenio, S., Cetta, F., Tanzini, G. & Guercia, C. Spontaneous contractility in the human lymph vessels. Lymphology 14, 173–178 (1981).

    CAS  PubMed  Google Scholar 

  20. Muthuchamy, M., Gashev, A., Boswell, N., Dawson, N. & Zawieja, D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J. 17, 920–922 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Davis, M. J., Davis, A. M., Ku, C. W. & Gashev, A. A. Myogenic constriction and dilation of isolated lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol. 296, H293–H302 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, W. et al. Inhibition of myosin light chain phosphorylation decreases rat mesenteric lymphatic contractile activity. Am. J. Physiol. Heart Circ. Physiol. 297, H726–H734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ito, M., Nakano, T., Erdodi, F. & Hartshorne, D. J. Myosin phosphatase: structure, regulation and function. Mol. Cell Biochem. 259, 197–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, S., Roizes, S. & von der Weid, P. Y. Distinct roles of L- and T-type voltage-dependent Ca2+ channels in regulation of lymphatic vessel contractile activity. J. Physiol. 592, 5409–5427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang, Q. et al. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Res. Ther. 18, 62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Munn, L. L. Mechanobiology of lymphatic contractions. Semin. Cell Dev. Biol. 38, 67–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Koning, J. J. & Mebius, R. E. Interdependence of stromal and immune cells for lymph node function. Trends Immunol. 33, 264–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Ding, Y., Xu, J. & Bromberg, J. S. Regulatory T cell migration during an immune response. Trends Immunol. 33, 174–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Germain, R. N., Robey, E. A. & Cahalan, M. D. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336, 1676–1681 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 17, 1371–1380 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Iwami, D., Brinkman, C. C. & Bromberg, J. S. Vascular endothelial growth factor C/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics. Transplantation 99, 668–677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abadie, V. et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106, 1843–1850 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Cromer, W. et al. Colonic insult impairs lymph flow, increases cellular content of the lymph, alters local lymphatic microenvironment, and leads to sustained inflammation in the rat ileum. Inflamm. Bowel Dis. 21, 1553–1563 (2015).

    Article  PubMed  Google Scholar 

  35. Pflicke, H. & Sixt, M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206, 2925–2935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Randolph, G. J., Angeli, V. & Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Thomas, S. N. et al. Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage. J. Immunol. 189, 2181–2190 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Bouta, E. M. et al. Brief report: Treatment of tumor necrosis factor-transgenic mice with anti-tumor necrosis factor restores lymphatic contractions, repairs lymphatic vessels, and may increase monocyte/macrophage egress. Arthritis Rheumatol. 69, 1187–1193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng, W., Aspelund, A. & Alitalo, K. Lymphangiogenic factors, mechanisms, and applications. J. Clin. Invest. 124, 878–887 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, H., Kataru, R. P. & Koh, G. Y. Inflammation-associated lymphangiogenesis: a double-edged sword? J. Clin. Invest. 124, 936–942 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ji, R. C. Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell. Mol. Life Sci. 69, 897–914 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Ogata, F. et al. Excess lymphangiogenesis cooperatively induced by macrophages and CD4+ T cells drives the pathogenesis of lymphedema. J. Invest. Dermatol. 136, 706–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Johnson, L. A. & Jackson, D. G. Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int. Immunol. 22, 839–849 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Liao, S. et al. Impaired lymphatic contraction associated with immunosuppression. Proc. Natl Acad. Sci. USA 108, 18784–18789 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aldrich, M. B. & Sevick-Muraca, E. M. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine 64, 362–369 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, Y. et al. The pro-inflammatory cytokine TNF-alpha inhibits lymphatic pumping via activation of the NF-κB-iNOS signaling pathway. Microcirculation 24, e12364 (2017).

    Article  CAS  Google Scholar 

  47. von der Weid, P. Y. & Muthuchamy, M. Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. Pathophysiology 17, 263–276 (2010).

    Article  PubMed  Google Scholar 

  48. Liao, S. & von der Weid, P. Y. Inflammation-induced lymphangiogenesis and lymphatic dysfunction. Angiogenesis 17, 325–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Becker, F. et al. Lymphatic dysregulation in intestinal inflammation: new insights into inflammatory bowel disease pathomechanisms. Lymphology 47, 3–27 (2014).

    CAS  PubMed  Google Scholar 

  50. Gashev, A. A., Davis, M. J., Delp, M. D. & Zawieja, D. C. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 11, 477–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Scallan, J. P. et al. Independent and interactive effects of preload and afterload on the pump function of the isolated lymphangion. Am. J. Physiol. Heart Circ. Physiol. 303, H809–H824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koller, A., Mizuno, R. & Kaley, G. Flow reduces the amplitude and increases the frequency of lymphatic vasomotion: role of endothelial prostanoids. Am. J. Physiol. 277, R1683–R1689 (1999).

    CAS  PubMed  Google Scholar 

  53. Davis, M. J., Davis, A. M., Lane, M. M., Ku, C. W. & Gashev, A. A. Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch. J. Physiol. 587, 165–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Davis, M. J. et al. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload. Am. J. Physiol. Heart Circ. Physiol. 303, H795–H808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scallan, J. P., J. H. Wolpers, M. Muthuchamy, D. C. Zawieja, A. A. Gashev, M. J. Davis. Independent and interactive effects of preload and afterload on the pump function of the isolated lymphangion. Am. J. Physiol. Heart Circ. Physiol. 303, H809–H824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lynch, P. M., Delano, F. A. & Schmid-Schonbein, G. W. The primary valves in the initial lymphatics during inflammation. Lymphat. Res. Biol. 5, 3–10 (2007).

    Article  PubMed  Google Scholar 

  57. Kajiya, K. et al. Promotion of lymphatic integrity by angiopoietin-1/Tie2 signaling during inflammation. Am. J. Pathol. 180, 1273–1282 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Savetsky, I. L. et al. Lymphatic function regulates contact hypersensitivity dermatitis in obesity. J. Invest. Dermatol. 135, 2742–2752 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, Q., Wood, R., Schwarz, E. M., Wang, Y. J. & Xing, L. Near-infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute versus chronic phases of arthritis in mice. Arthritis Rheum. 62, 1881–1889 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Meier, T. O. et al. Increased permeability of cutaneous lymphatic capillaries and enhanced blood flow in psoriatic plaques. Dermatology 227, 118–125 (2013).

    Article  PubMed  Google Scholar 

  61. Kuan, E. L. et al. Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node-homing adipose tissue DCs. J. Immunol. 194, 5200–5210 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Ivanov, S. et al. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. J. Clin. Invest. 126, 1581–1591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Scallan, J. P., Hill, M. A. & Davis, M. J. Lymphatic vascular integrity is disrupted in type 2 diabetes due to impaired nitric oxide signalling. Cardiovasc. Res. 107, 89–97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. da Fonseca, D. M. et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163, 354–366 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  65. Kawai, Y., Kaidoh, M., Yokoyama, Y. & Ohhashi, T. Pivotal roles of lymphatic endothelial cell layers in the permeability to hydrophilic substances through collecting lymph vessel walls: effects of inflammatory cytokines. Lymphat. Res. Biol. 12, 124–135 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Kakei, Y., Akashi, M., Shigeta, T., Hasegawa, T. & Komori, T. Alteration of cell-cell junctions in cultured human lymphatic endothelial cells with inflammatory cytokine stimulation. Lymphat. Res. Biol. 12, 136–143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van den Berg, W. B. Animal models of arthritis. What have we learned? J. Rheumatol. Suppl. 72, 7–9 (2005).

    PubMed  Google Scholar 

  68. Kouskoff, V. et al. Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Proulx, S. T. et al. Longitudinal assessment of synovial, lymph node, and bone volumes in inflammatory arthritis in mice by in vivo magnetic resonance imaging and microfocal computed tomography. Arthritis Rheum. 56, 4024–4037 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bouta, E. M. et al. Validation of power Doppler versus contrast-enhanced magnetic resonance imaging quantification of joint inflammation in murine inflammatory arthritis. J. Bone Miner. Res. 30, 690–694 (2015).

    Article  PubMed  Google Scholar 

  72. Bouta, E. M. et al. Power Doppler ultrasound phenotyping of expanding versus collapsed popliteal lymph nodes in murine inflammatory arthritis. PLoS ONE 8, e73766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, J. et al. Efficacy of B cell depletion therapy for murine joint arthritis flare is associated with increased lymphatic flow. Arthritis Rheum. 65, 130–138 (2012).

    Article  CAS  Google Scholar 

  74. Li, J. et al. CD23+/CD21hi B cell translocation and ipsilateral lymph node collapse is associated with asymmetric arthritic flare in TNF-Tg mice. Arthritis Res. Ther. 13, R138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Proulx, S. T. et al. MRI and quantification of draining lymph node function in inflammatory arthritis. Ann. NY Acad. Sci. 1117, 106–123 (2007).

    Article  PubMed  Google Scholar 

  76. Proulx, S. T. et al. Elucidating bone marrow edema and myelopoiesis in murine arthritis using contrast-enhanced magnetic resonance imaging. Arthritis Rheum. 58, 2019–2029 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Guo, R. et al. Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis Rheum. 60, 2666–2676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, Q. et al. Increased lymphangiogenesis in joints of mice with inflammatory arthritis. Arthritis Res. Ther. 9, R118 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, J. et al. Expanded CD23+/CD21hi B cells in inflamed lymph nodes are associated with the onset of inflammatory-erosive arthritis in TNF-transgenic mice and are targets of anti-CD20 therapy. J. Immunol. 184, 6142–6150 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Kuzin, II et al. Increased numbers of CD23+CD21hi Bin-like B cells in human reactive and rheumatoid arthritis lymph nodes. Eur. J. Immunol. 46, 1752–1757 (2016).

  81. Bouta, E. M. et al. In vivo quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice. J. Physiol. 592, 1213–1223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moshkani, S. et al. CD23+CD21highCD1dhigh B cells in inflamed lymph nodes are a locally differentiated population with increased antigen capture and activation potential. J. Immunol. 188, 5944–5953 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Bouta, E. M. et al. Treatment of TNF-Tg mice with anti-TNF restores lymphatic contraction, repairs lymphatic vessels, and may increase monocyte/macrophage egress. Arthritis Rheumatol. 69, 1187–1193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bouta, E. M. et al. The role of the lymphatic system in inflammatory-erosive arthritis. Semin. Cell Dev. Biol. 38, 90–97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Young, A. & Koduri, G. Extra-articular manifestations and complications of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 21, 907–927 (2007).

    Article  PubMed  Google Scholar 

  86. Robertson, M. D., Hart, F. D., White, W. F., Nuki, G. & Boardman, P. L. Rheumatoid lymphadenopathy. Ann. Rheum. Dis. 27, 253–260 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Suami, H., Pan, W. R. & Taylor, G. I. Changes in the lymph structure of the upper limb after axillary dissection: radiographic and anatomical study in a human cadaver. Plast. Reconstr. Surg. 120, 982–991 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Suami, H., Taylor, G. I. & Pan, W. R. The lymphatic territories of the upper limb: anatomical study and clinical implications. Plast. Reconstr. Surg. 119, 1813–1822 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. van de Stadt, L. A. et al. The value of ultrasonography in predicting arthritis in auto-antibody positive arthralgia patients: a prospective cohort study. Arthritis Res. Ther. 12, R98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rahimi, H. et al. Relationship between lymph node volume and pain following certolizumab therapy for rheumatoid arthritis flare: a pilot study. Clin. Med. Insights Arthritis Musculoskelet. Disord. 9, 203–208 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Foltz, V. et al. Power Doppler ultrasound, but not low-field magnetic resonance imaging, predicts relapse and radiographic disease progression in rheumatoid arthritis patients with low levels of disease activity. Arthritis Rheum. 64, 67–76 (2012).

    Article  PubMed  Google Scholar 

  92. Kiely, P. D., Bland, J. M., Joseph, A. E., Mortimer, P. S. & Bourke, B. E. Upper limb lymphatic function in inflammatory arthritis. J. Rheumatol 22, 214–217 (1995).

    CAS  PubMed  Google Scholar 

  93. Rahimi, H. et al. Lymphatic imaging to assess rheumatoid flare: mechanistic insights and biomarker potential. Arthritis Res. Ther. 18, 194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Benaglio, F. et al. The draining lymph node in rheumatoid arthritis: current concepts and research perspectives. Biomed. Res. Int. 2015, 420251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Manzo, A. et al. Power Doppler ultrasonographic assessment of the joint-draining lymph node complex in rheumatoid arthritis: a prospective, proof-of-concept study on treatment with tumor necrosis factor inhibitors. Arthritis Res. Ther. 18, 242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Manzo, A. et al. Subclinical remodelling of draining lymph node structure in early and established rheumatoid arthritis assessed by power Doppler ultrasonography. Rheumatology (Oxford) 50, 1395–1400 (2011).

    Article  Google Scholar 

  97. Bingham, C. O. 3rd et al. Developing a standardized definition for disease “flare” in rheumatoid arthritis (OMERACT 9 Special Interest Group). J. Rheumatol 36, 2335–2341 (2009).

    Article  PubMed  Google Scholar 

  98. Alten, R. et al. Developing a construct to evaluate flares in rheumatoid arthritis: a conceptual report of the OMERACT RA Flare Definition Working Group. J. Rheumatol 38, 1745–1750 (2011).

    Article  PubMed  Google Scholar 

  99. Hewlett, S. et al. 'I'm hurting, I want to kill myself': rheumatoid arthritis flare is more than a high joint count — an international patient perspective on flare where medical help is sought. Rheumatology (Oxford) 51, 69–76 (2012).

    Article  Google Scholar 

  100. Bartlett, S. J. et al. Identifying core domains to assess flare in rheumatoid arthritis: an OMERACT international patient and provider combined Delphi consensus. Ann. Rheum. Dis. 71, 1855–1860 (2012).

    Article  PubMed  Google Scholar 

  101. Bykerk, V. P. et al. Establishing a core domain set to measure rheumatoid arthritis flares: report of the OMERACT 11 RA Flare Workshop. J. Rheumatol 41, 799–809 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bartlett, S. J. et al. Feasibility and domain validation of rheumatoid arthritis (RA) flare core domain set: report of the OMERACT 2014 RA Flare Group Plenary. J. Rheumatol. 42, 2185–2189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bykerk, V. P. et al. Identifying flares in rheumatoid arthritis: reliability and construct validation of the OMERACT RA Flare Core Domain Set. RMD Open 2, e000225 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Naredo, E. et al. Longitudinal power Doppler ultrasonographic assessment of joint inflammatory activity in early rheumatoid arthritis: predictive value in disease activity and radiologic progression. Arthritis Rheum. 57, 116–124 (2007).

    Article  PubMed  Google Scholar 

  105. Szkudlarek, M., Wakefield, R. J., Backhaus, M. & Terslev, L. The discriminatory capacity of ultrasound in rheumatoid arthritis: active versus inactive, early versus advanced, and more. Rheumatology (Oxford) 51 (Suppl. 7), vii6–vii9 (2012).

    Google Scholar 

  106. Patil, P. & Dasgupta, B. Role of diagnostic ultrasound in the assessment of musculoskeletal diseases. Ther. Adv. Musculoskelet Dis. 4, 341–355 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tan, Y. K., Ostergaard, M. & Conaghan, P. G. Imaging tools in rheumatoid arthritis: ultrasound versus magnetic resonance imaging. Rheumatology (Oxford) 51 (Suppl. 7), vii36–vii42 (2012).

    Google Scholar 

  108. Ostergaard, M., Pedersen, S. J. & Dohn, U. M. Imaging in rheumatoid arthritis — status and recent advances for magnetic resonance imaging, ultrasonography, computed tomography and conventional radiography. Best Pract. Res. Clin. Rheumatol. 22, 1019–1044 (2008).

    Article  PubMed  Google Scholar 

  109. Saleem, B. et al. Can flare be predicted in DMARD treated RA patients in remission, and is it important? A cohort study. Ann. Rheum. Dis. 71, 1316–1321 (2012).

    Article  PubMed  Google Scholar 

  110. Bellis, E. et al. Ultrasound-detected tenosynovitis independently associates with patient-reported flare in patients with rheumatoid arthritis in clinical remission: results from the observational study STARTER of the Italian Society for Rheumatology. Rheumatology (Oxford) 55, 1826–1836 (2016).

    Article  Google Scholar 

  111. Berthelot, J. M. et al. A tool to identify recent or present rheumatoid arthritis flare from both patient and physician perspectives: the 'FLARE' instrument. Ann. Rheum. Dis. 71, 1110–1116 (2012).

    Article  PubMed  Google Scholar 

  112. Fautrel, B. et al. Validation of FLARE-RA, a self-administered tool to detect recent or current rheumatoid arthritis flare. Arthritis Rheumatol. 69, 309–319 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Konig, H., Sieper, J. & Wolf, K. J. Rheumatoid arthritis: evaluation of hypervascular and fibrous pannus with dynamic MR imaging enhanced with Gd-DTPA. Radiology 176, 473–477 (1990).

    Article  CAS  PubMed  Google Scholar 

  114. Gaffney, K., Cookson, J., Blake, D., Coumbe, A. & Blades, S. Quantification of rheumatoid synovitis by magnetic-resonance-imaging. Arthritis Rheum. 38, 1610–1617 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Tamai, K., Yamato, M., Yamaguchi, T. & Ohno, W. Dynamic magnetic-resonance-imaging for the evaluation of synovitis in patients with rheumatoid-arthritis. Arthritis Rheum. 37, 1151–1157 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Bjorkengren, A. G., Geborek, P., Rydholm, U., Holtas, S. & Petterson, H. MR imaging of the knee in acute rheumatoid arthritis: synovial uptake of gadolinium-DOTA. Am. J. Roentgenol. 155, 329–332 (1990).

    Article  CAS  Google Scholar 

  117. Nusman, C. M. et al. Dynamic contrast-enhanced magnetic resonance imaging can play a role in predicting flare in juvenile idiopathic arthritis. Eur. J. Radiol. 88, 77–81 (2017).

    Article  PubMed  Google Scholar 

  118. Bremander, A. B. I., Petersson, I. F. & Roos, E. Validation of the rheumatoid arthritis outcome score (RAOS) — for the lower extremity. Ann. Rheum. Dis. 62, 364–364 (2003).

    Google Scholar 

  119. Rasmussen, J. C., Tan, I. C., Marshall, M. V., Fife, C. E. & Sevick-Muraca, E. M. Lymphatic imaging in humans with near-infrared fluorescence. Curr. Opin. Biotechnol. 20, 74–82 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rasmussen, J. C. et al. Near-infrared fluorescence imaging techniques for non-invasive lymphatic architectural and functional analysis. J. Nucl. Med. 52, 671–671 (2011).

    Google Scholar 

  121. Tan, I. C. et al. Assessment of lymphatic contractile function after manual lymphatic drainage using near-infrared fluorescence imaging. Arch. Phys. Med. Rehab. 92, 756–764 (2011).

    Article  Google Scholar 

  122. Rasmussen, J. C. et al. Human lymphatic architecture and dynamic transport imaged using near-infrared fluorescence. Transl. Oncol. 3, 362–372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02680067 (2017).

  124. Kameda, H. et al. Etanercept (ETN) with methotrexate (MTX) is better than ETN monotherapy in patients with active rheumatoid arthritis despite MTX therapy: a randomized trial. Mod. Rheumatol. 20, 531–538 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Benucci, M. et al. Efficacy and safety of leflunomide or methotrexate plus subcutaneous tumour necrosis factor-alpha blocking agents in rheumatoid arthritis. Int. J. Immunopathol. Pharmacol. 24, 269–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Nam, J. L. et al. A randomised controlled trial of etanercept and methotrexate to induce remission in early inflammatory arthritis: the EMPIRE trial. Ann. Rheum. Dis. 73, 1027–1036 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Rosengren, S. et al. Elevated autoantibody content in rheumatoid arthritis synovia with lymphoid aggregates and the effect of rituximab. Arthritis Res. Ther. 10, R105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Smeets, T. J., Kraan, M. C., van Loon, M. E. & Tak, P. P. Tumor necrosis factor α blockade reduces the synovial cell infiltrate early after initiation of treatment, but apparently not by induction of apoptosis in synovial tissue. Arthritis Rheum. 48, 2155–2162 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Wijbrandts, C. A. et al. Analysis of apoptosis in peripheral blood and synovial tissue very early after initiation of infliximab treatment in rheumatoid arthritis patients. Arthritis Rheum. 58, 3330–3339 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Herenius, M. M. et al. Monocyte migration to the synovium in rheumatoid arthritis patients treated with adalimumab. Ann. Rheum. Dis. 70, 1160–1162 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Angeli, V. et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, Q. et al. Vascular endothelial growth factor C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage in mice. Arthritis Rheum. 63, 2318–2328 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, Y. et al. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity 40, 501–514 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Evans, C. H. et al. Gene therapy for rheumatoid arthritis. Expert Opin. Biol. Ther. 1, 971–978 (2001).

    Article  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02994771 (2017).

  138. Liang, Q. Q., Shi, Q., Wood, R. W., Xing, L. P. & Wang, Y. J. Peri-articular lymphatic system and “Bi” theory of Chinese medicine in the pathogenesis and treatment of arthritis. Chin. J. Integr. Med. 21, 648–655 (2015).

    Article  PubMed  Google Scholar 

  139. Chen, Y. et al. Du-Huo-Ji-Sheng-Tang attenuates inflammation of TNF-Tg mice related to promoting lymphatic drainage function. Evid. Based Complement. Alternat. Med. 2016, 7067691 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Li, J. et al. Total saponins of panaxnotoginseng promotes lymphangiogenesis by activation VEGF-C expression of lymphatic endothelial cells. J. Ethnopharmacol. 193, 293–302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Seymour, M. et al. Ultrasonographic measures of synovitis in an early phase clinical trial: a double-blind, randomised, placebo and comparator controlled phase IIa trial of GW274150 (a selective inducible nitric oxide synthase inhibitor) in rheumatoid arthritis. Clin. Exp. Rheumatol 30, 254–261 (2012).

    PubMed  Google Scholar 

  142. Vitecek, J., Lojek, A., Valacchi, G. & Kubala, L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators Inflamm. 2012, 318087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Connor, J. R. et al. Suppression of adjuvant-induced arthritis by selective inhibition of inducible nitric oxide synthase. Eur. J. Pharmacol. 273, 15–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med. 4, 147ra111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Aspelund, A. et al. The Schlemm's canal is a VEGF-C/VEGFR-3–responsive lymphatic-like vessel. J. Clin. Invest. 124, 3975–3986 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wiig, H. et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 123, 2803–2815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Klotz, L. et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522, 62–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hoshida, T. et al. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res. 66, 8065–8075 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest. 115, 247–257 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Visuri, M. T. et al. VEGF-C and VEGF-C156S in the pro-lymphangiogenic growth factor therapy of lymphedema: a large animal study. Angiogenesis 18, 313–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Tervala, T. V. et al. Growth factor therapy and lymph node graft for lymphedema. J. Surg. Res. 196, 200–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Saaristo, A. et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J. Exp. Med. 196, 719–730 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tammela, T. et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat. Med. 13, 1458–1466 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Tian, W. et al. Leukotriene B4 antagonism ameliorates experimental lymphedema. Sci. Transl. Med. 9, eaal3920 (2017).

    Article  PubMed  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02700529 (2017).

  156. Cursiefen, C. et al. Lymphatic vessels in vascularized human corneas: immunohistochemical investigation using LYVE-1 and podoplanin. Invest. Ophthalmol. Vis. Sci. 43, 2127–2135 (2002).

    PubMed  Google Scholar 

  157. Dietrich, T. et al. Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J. Immunol. 184, 535–539 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Chen, W. S. et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat. Commun. 7, 11302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Steven, P., Bock, F., Huttmann, G. & Cursiefen, C. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels. PLoS ONE 6, e26253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Blum, K. S. et al. Chronic high-fat diet impairs collecting lymphatic vessel function in mice. PLoS ONE 9, e94713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rasmussen, J. C. et al. An abnormal lymphatic phenotype is associated with subcutaneous adipose tissue deposits in Dercum's disease. Obesity 22, 2186–2192 (2014).

    Article  PubMed  Google Scholar 

  162. Rasmussen, J. C. et al. Lymphatic transport in patients with chronic venous insufficiency and venous leg ulcers following sequential pneumatic compression. Journal of vascular surgery. Ven. Lymphat. Disord. 4, 9–17 (2016).

    Article  Google Scholar 

  163. Aldrich, M. B. et al. Lymphatic abnormalities in the normal contralateral arms of subjects with breast cancer-related lymphedema as assessed by near-infrared fluorescent imaging. Biomed. Opt. Express 3, 1256–1265 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Mathias, R. & von der Weid, P. Y. Involvement of the NO-cGMP-K(ATP) channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS-induced ileitis. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G623–G634 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Tavian, D. et al. FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function. Oncotarget 7, 54228–54239 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Butler, C., Osterberg, C., Horvai, A. & Breyer, B. Milroy's disease and scrotal lymphoedema: pathological insight. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2016-215396 (2016).

  167. Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 37, 1072–1081 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Karkkainen, M. J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl Acad. Sci. USA 98, 12677–12682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Suami, H. Lymphosome concept: Anatomical study of the lymphatic system. J. Surg. Oncol. 115, 13–17 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

E.M.B. and R.D.B. are supported by a training grant from the NIH (T32 AR053459). H.R. is supported by an NIH grant (K08 AR067885). L.X. is supported by NIH grants (AR069789 and AR063650), a University of Rochester CTSA award (UL1 TR000042), a grant from the National Natural Science Foundation of China (grant 81220108027), and a grant from the Lymphatic Malformation Institute. R.W.W. is supported by an NIH grant (AR061307). C.T.R. is supported by NIH grants (R01 AR056702 and R01 AR069000). E.M.S. is supported by NIH grants (P30 AR069655 and R01 AR056702).

Author information

Authors and Affiliations

Authors

Contributions

E.M.B., R.D.B., H.R., L.X., R.W.W., C.O.B. and E.M.S. researched data for the article, made substantial contributions to discussion of its content, wrote the article and reviewed and/or edited the manuscript before submission. C.T.R. made a substantial contribution to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. E.M.B. and R.D.B. contributed equally to this work.

Corresponding author

Correspondence to Edward M. Schwarz.

Ethics declarations

Competing interests

C.T.R. declares that he has received consulting fees and research support from UCB Pharmaceuticals. E.M.B., R.W.W., L.X. and E.M.S. declare that they have applied for patents related to the content of the manuscript. R.D.B. and H.R. declare no competing interests.

Supplementary information

Supplementary video S1

NIR-ICG imaging of lymphatic functioning of a TNFtg mouse in the 'expansion' phase. At 3 months of age, TNF transgenic (TNFtg) mice have inflammatory arthiritis in their ankle joints, and expanding popliteal lymph nodes as determined by power Doppler ultrasonography. This video demonstrates lymphatic drainage in the lower limb of a 3-month-old TNFtg mouse by near-infrared indocyanine green (NIR-ICG) imaging. This 20-minute video was taken 60 minutes after ICG injection, and is shown at 20× real time. Note the consistent contractions (1 per minute) throughout the imaging period. (AVI 2410 kb)

Supplementary video S2

NIR-ICG imaging of lymphatic dysfunctioning in a TNFtg mouse during the 'collapsed' phase. Indocyanine green (ICG) was injected into the footpad of an 8-month-old TNF transgenic (TNFtg) mouse with a collapsed popliteal lymph node, which was phenotyped using power Doppler ultrasonography. Near-infrared (NIR) imaging was performed to demonstrate lymphatic dysfunction in the lower limb, which was affected by advanced inflammatory arthritis. This 20-minute video was taken 60 minutes after ICG injection, and is shown at 20× real time. Note the complete absence of lymphatic vessel contractions, and lack of popliteal lymph node signal enhancement, throughout the imaging period. (AVI 1475 kb)

Supplementary video S3

Injection of ICG into the web spaces of a healthy volunteer, and indentification of lymphatic vessels adjacent to veins in the hands. Indocyanine green (ICG) was injected into the web spaces of a heathly human volunteer. This video (shown at 4× real time) shows the injection procedure and the ICG entering the lymphatic system directly adjacent to the major veins of the dorsal hand. Note the dramatic uptake of ICG in lymphatic vessels efferent to the first and second web spaces, relative to ICG uptake in the third and fourth web spaces, potentially owing to differences in interstial pressure from the injection volume and/or proximatity to the intial lymphatic bed. The video also shows that manipulation of the web space during removal of excess iodine at the injection site increases interstial pressure, pushing ICG into the lymphatics as well (fourth web space). (AVI 14679 kb)

Supplementary video S4

Quantification of cephalic lymphatic vessel contrations at the wrist. Indocyanine green (ICG) was injected into the web spaces of a healthy human volunteer. Approximately 15 minutes later, near-infrared imaging was performed to quantify lymphatic vessel contractions. This 10-minute video (shown at 20× real time) shows lymphatic drainage in the vessels of the dorsal hand. To quantify cephalic lymphatic vessel contractions, a region of interest (ROI) is defined (green box), and the signal intensity within the ROI is quantified in real time (graph of mean signal intensity over time). Note how the dye moves as a bolus to collection points (presumed valves), and then moves proximally after a contraction. (MP4 13587 kb)

Supplementary video S5

Quantification of the cephalic lymphatic vessel at the antecubital fossa. Approximately 40 minutes after after injection of indocyanine green (ICG) into the web spaces of a healthy human volunteer, near-infrared imaging was performed to quantify lymphatic contractions in the forearm. This 10-minute video (shown at 20× real time) shows lymphatic activity in the vessels of the antecubital fossa. Region of interest (ROI; indicated by the green box) quantification of contraction frequency of the cephalic lymphatic vessel was also performed. Note how the dye moves as a bolus as it crosses the antecubital fossa. (MP4 13740 kb)

Supplementary video S6

Sildenafil (a short-acting PDE5 inhibitor) increases ICG uptake into collateral lymphatic vessels in a wild-type mouse. Indocyanine green (ICG) was injected into the footpad of a healthy wild-type mouse, and near-infrared (NIR) imaging was performed to assess lymphatic drainage after intraperitoneal administration of sildenafil (12 mg/kg), a short-acting inhibitor of phosphodiesterase 5 (PDE5). The video (shown at 20× real time) was taken 40 minutes after ICG injection, and 20 minutes after the sildenafil injection. Note the ICG filled collateral lymphatic vessels following sildenafil injection, indicating lymphatic rerouting. (MOV 15521 kb)

Supplementary video S7

NIR-ICG imaging of lymphatic functioning in a healthy mouse. Indocyanine green (ICG) was injected into the footpad of a wild-type mouse, and was imaged by near-infrared imaging to enable visualization of the lymphatic vessels. This 10-minute video (shown at 20× real time) was taken 40 minutes after ICG injection. Note that the ICG travels from the injection site in the footpad (bottom) to the popoliteal lymph node (top) in two lymphatic vessels that contract with a normal frequency (once per minute). (MOV 1504 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouta, E., Bell, R., Rahimi, H. et al. Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nat Rev Rheumatol 14, 94–106 (2018). https://doi.org/10.1038/nrrheum.2017.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.205

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research