Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin

Key Points

  • Monogenic autoinflammatory diseases can be classified on the basis of their dominating clinical feature (for example, periodic fever) or their pathogenesis (for example, as IL-1 or NFκB activation disorders)

  • Among the monogenic autoinflammatory diseases, clinical diagnostic criteria have already been suggested for familial Mediterranean fever (FMF), and we suggest a flowchart to guide requests for mutation analysis of the associated gene

  • FMF is an autosomal recessive disease; however, a single mutation, or a clear disease-causing mutation together with a variant with low penetrance, can be associated with the clinical phenotype

  • Clinical classification criteria and flowcharts to guide physicians in decision-making and asking for specific genetic testing are also needed for other autoinflammatory diseases

  • Anti-IL-1 treatment has shown promising results in many of the autoinflammatory diseases

Abstract

Autoinflammatory diseases are associated with abnormal activation of the innate immune system, leading to clinical inflammation and high levels of acute-phase reactants. The first group to be identified was the periodic fever diseases, of which familial Mediterranean fever (FMF) is the most common. In FMF, genetic results are not always straightforward; thus, flowcharts to guide the physician in requesting mutation analyses and interpreting the findings are presented in this Review. The other periodic fever diseases, which include cryopyrin-associated periodic syndromes (CAPS), TNF receptor-associated periodic syndrome (TRAPS) and mevalonate kinase deficiency/hyperimmunoglobulin D syndrome (MKD/HIDS), have distinguishing features that should be sought for carefully during diagnosis. Among this group of diseases, increasing evidence exists for the efficacy of anti-IL-1 treatment, suggesting a major role of IL-1 in their pathogenesis. In the past decade, we have started to learn about the other rare autoinflammatory diseases in which fever is less pronounced. Among them are diseases manifesting with pyogenic lesions of the skin and bone; diseases associated with granulomatous lesions; diseases associated with psoriasis; and diseases associated with defects in the immunoproteasome. A better understanding of the pathogenesis of these autoinflammatory diseases has enabled us to provide targeted biologic treatment at least for some of these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic showing a simplified view of the pathogenesis of the main monogenic autoinflammatory syndromes.
Figure 2: A flowchart to guide requests for MEFV mutation analysis.
Figure 3: Algorithm to guide diagnosis and treatment decisions after MEFV genotype analysis.
Figure 4: Differential diagnosis in a child referred with fever.
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Balow, J. E. Jr et al. A high-resolution genetic map of the familial Mediterranean fever candidate region allows identification of haplotype-sharing among ethnic groups. Genomics 44, 280–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat. Genet. 17, 25–31 (1997).

  3. Masters, S. L., Simon, A., Aksentijevich, I. & Kastner, D. L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park, H., Bourla, A. B., Kastner, D. L., Colbert, R. A. & Siegel, R. M. Lighting the fires within: the cell biology of autoinflammatory diseases. Nat. Rev. Immunol. 12, 570–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Toplak, N. et al. An international registry on autoinflammatory disease: the Eurofever experience. Ann. Rheum. Dis. 71, 1177–1182 (2012).

    Article  PubMed  Google Scholar 

  6. Ozen, S. Mutations/polymorphisms in a monogenetic autoinflammatory disease may be susceptibility markers for certain rheumatic diseases: lessons from the bedside for the benchside. Clin. Exp. Rheumatol. 27 (Suppl. 53), S29–S31 (2009).

    CAS  PubMed  Google Scholar 

  7. Chae, J. J. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein interacts indirectly with caspase-1 to modulate IL-1β production. Proc. Natl Acad. Sci. USA. 103, 9982–9987 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seshardi, S., Duncan, M. D., Hart, J. M., Gavrilin, M. A. & Wevers, M. D. Pyrin levels in human monocytes and monocyte derived macrophages regulate IL-1β processing and release. J. Immunol. 179, 1274–1281 (2007).

    Article  Google Scholar 

  9. Papin, S. et al. The SPRY domain of Pyrin mutated in familial Mediterranean fever patients interacts with inflammasome components and inhibits pro IL-1β production. Cell Death Differ. 14, 1457–1466 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Chae, J. J. et al. Gain-of function Pyrin mutations induce NLRP3 protein independent interleukin-1β activation and severe autoinflammation in mice. Immunity 34, 755–768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tunca, M. et al. Familial Mediterranean fever in Turkey: results of a nationwide multicenter study. Medicine 84, 1–11 (2005).

    Article  Google Scholar 

  12. Kogan, A. et al. Common MEFV mutations among Jewish ethnic groups in Israel: high frequency of carrier sand phenotype III states and absence of a perceptible biological advantage for the carrier state. Am. J. Med. Genet. 102, 272–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Ozen, S. et al. Mutations in the gene for FMF: do they predispose to inflammation? J. Rheumatol. 30, 2014–2018 (2003).

    CAS  PubMed  Google Scholar 

  14. Ayaz, N. A. et al. MEFV mutations in systemic juvenile idiopathic arthritis. Rheumatology (Oxford) 48, 23–25 (2009).

    Article  CAS  Google Scholar 

  15. Berkun, Y. et al. The familial Mediterranean fever gene as a modifier of periodic fever, aphtous stomatitis, pharyngitis and adenopathy syndrome. Semin. Arthritis Rheum. 40, 467–472 (2011).

    Article  PubMed  Google Scholar 

  16. Yilmaz, E. et al. Mutation frequency of familial Mediterranean fever and evidence of a high carrier rate in the Turkish population. Eur. J. Human Genet. 9, 553–555 (2001).

    Article  CAS  Google Scholar 

  17. Daniels, M., Shohat, T., Brenner-Ullman, A. & Shohat, M. FMF: high gene frequency among the non-Ashkenazic and Ashkenazic Jewish populations in Israel. Am. J. Med. Genet. 55, 311–314 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Ozen, S. et al. Prevalence of juvenile chronic arthritis and FMF in Turkey: a field study. J. Rheumatol. 25, 2445–2449 (1998).

    CAS  PubMed  Google Scholar 

  19. Gkretsi, V., Deltas, C., Yapijakis, C. & Lamnissou, K. Screening for familial Mediterranean fever M694V and V726A mutations in the Greek population. Genet. Test. Mol. Biomarkers 13, 291–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Ozen, S. et al. Results from a multicentre international registry of Familial Mediterranean Fever: impact of environment on the expression of a monogenic disease in children. Ann. Rheum. Dis. 10.1136/annrheumdis-2012-202708.

  21. Migita, K. et al. Familial Mediterranean fever in Japan. Medicine 91, 337–343 (2012).

    Article  PubMed  Google Scholar 

  22. Xuelian, H. et al. E148Q polymorphism is associated with HSP in Chinese children. Pediatr. Nephrol. 25, 2077–2082 (2010).

    Article  Google Scholar 

  23. Booth, D. R., Lachman, H. J., Gillmore, J. D., Booth, S. E. & Hawkins, P. N. Prevalance and significance of the familial Mediterranean gene mutation encoding pyrin Q148. Q. J. Med. 94, 527–531 (2001).

    Article  CAS  Google Scholar 

  24. Samuels, J. & Ozen, S. FMF and the other autoinflammatory syndromes: evaluation of the patient with recurrent fever. Curr. Opin. Rheumatol. 18, 108–117 (2006).

    Article  PubMed  Google Scholar 

  25. Livneh, A. et al. Criteria for the diagnosis of familial Mediterranean fever. Arthritis Rheum. 40, 1879–1885 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Yalçinkaya, F. et al. A new set of criteria for the diagnosis of familial Mediterranean fever in childhood. Rheumatology (Oxford) 48, 395–398 (2009).

    Article  Google Scholar 

  27. Kondi, A. et al. Validation of the new paediatric criteria for the diagnosis of familial Mediterranean fever: data from a mixed population of 100 children from the French reference center for autoinflammatory disorders. Rheumatology (Oxford) 49, 2200–2203 (2010).

    Article  Google Scholar 

  28. Saatçi, U. et al. Familial Mediterranean fever in children: report of a large series and discussion of the risk and prognostic factors of amyloidosis. Eur. J. Pediatr. 156, 619–623 (1997).

    Article  PubMed  Google Scholar 

  29. Shinar, Y. et al. Guidelines for the genetic diagnosis of hereditary recurrent fevers. Ann. Rheum. Dis. 71, 1599–1605 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Ozen, S., Besbas, N., Bakkaloglu, A. & Yilmaz, E. Pyrin Q148 mutation and familial Mediterranean fever. Q. J. Med. 95, 332–333 (2002).

    Article  CAS  Google Scholar 

  31. Topaloglu, R. et al. E148Q is a disease-causing MEFV mutation: a phenotypic evaluation in patients with familial Mediterranean fever. Ann. Rheum. Dis. 64, 750–752 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Gershoni-Baruch, R., Broza, Y. & Brik, R. Prevalence and significance of mutations in the familial Mediterranean fever gene in Henoch–Schönlein purpura. J. Pediatr. 143, 658–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Aksentijevich, I. & Kastner, D. L. Genetics of monogenic autoinflammatory diseases: past successes, future challenges. Nat. Rev. Rheumatol. 7, 469–478 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Ozen, S. Changing concepts in familial Mediterranean fever: is it possible to have an autosomal-recessive disease with only one mutation? Arthritis Rheum. 60, 1575–1577 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Marek-Yagel, D. et al. Clinical disease among patients heterozygous for familial Mediterranean fever. Arthritis Rheum. 60, 1862–1866 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Singh-Grewal, D., Chaitow, J., Aksentijevich, I. & Christodoulou, J. Coexistent MEFV and CIAS1 mutations manifesting as FMF plus deafness. Ann. Rheum. Dis. 66, 1541 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zemer, D. et al. Colchicine in the prevention and treatment of the amyloidosis of familial Mediterranean fever. N. Engl. J. Med. 314, 1001–1005 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Kallinich, T. et al. Colchicine use in children and adolescents with familial Mediterranean fever: literature review and consensus treatment. Pediatrics 119, e474–e483 (2007).

    Article  PubMed  Google Scholar 

  39. Ozturk, M. A. et al. Therapeutic approach to familial Mediterranean fever: a review update. Clin. Exp. Rheumatol. 29 (Suppl. 67), S77–S86 (2011).

    PubMed  Google Scholar 

  40. Ben-Zvi, I. & Livneh, A. Chronic inflammation in FMF; markers, risk factors, outcomes and therapy. Nat. Rev. Rheumatol. 7, 105–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Piram, M. et al. A preliminary score for the assessment of disease activity in hereditary recurrent fevers. Ann. Rheum. Dis. 70, 309–314 (2011).

    Article  PubMed  Google Scholar 

  42. Ozen, S., Bilginer, Y., Aktay Ayaz, N. & Calguneri, M. Anti-interleukin 1 treatment for patients with familial Meditarrenean fever resistant to colchicine. J. Rheumatol. 38, 516–518 (2011).

    Article  PubMed  Google Scholar 

  43. Kallinich, T., Wittkowski, H., Keitzer, R., Roth, J. & Foell, D. Neutrophil-derived S100A12 as novel biomarker of inflammation in familial Mediterranean fever. Ann. Rheum. Dis. 69, 677–682 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Ben-Chetrit, E. & Aamar, S. About colchicine compliance, resistance and virulence. Clin. Exp. Rheumatol. 27 (Suppl. 53), S1–S3 (2009).

    CAS  PubMed  Google Scholar 

  45. Hashkes, P. J. et al. Rilonacept for colchicine-resistant or -intolerant familial Mediterranean fever: a randomized trial. Ann. Intern. Med. 157, 533–541 (2012).

    Article  PubMed  Google Scholar 

  46. Meinzer, U. et al. Interleukin-1 targeting drugs in familial Mediterranean fever: a case series and a review of the literature. Semin. Arthritis Rheum. 41, 265–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Hacihamdioglu, D. O. & Ozen, S. Canakinumab induces remission in a patient with resistant familial Mediterranean fever. Rheumatology (Oxford) 51, 1041 (2012).

    Article  CAS  Google Scholar 

  48. Ozen, S., Frenkel, J., Ruperto, N. & Gattorno, M. The Eurofever Project: towards better care for autoinflammatory diseases. Eur. J. Pediatr. 170, 445–452 (2011).

    Article  PubMed  Google Scholar 

  49. Hoffman, H. M. et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat. Genet. 29, 301–305 (2009).

    Article  CAS  Google Scholar 

  50. Feldmann, J. et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am. J. Hum. Genet. 71, 198–203 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aksentijevich, I. et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin- associated autoinflammatory diseases. Arthritis Rheum. 46, 3340–3348 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saito, M. et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low level mosaicism in mutation-negative cryopyrin- associated periodic syndrome patients. Blood 111, 2132–2141 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Stych, B. & Dobrovolny, D. Familial cold autoinflammatory syndrome (FCAS): characterization of symptomatology and impact on patients' lives. Curr. Med. Res. Opin. 24, 1577–1582 (2008).

    Article  PubMed  Google Scholar 

  54. Glaser, R. L. & Goldbach-Mansky, R. The spectrum of monogenic autoinflammatory syndromes: understanding disease mechanisms and use of targeted therapies. Curr. Allergy Asthma Rep. 8, 288–298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deshner, J. B. et al. Two year results from an open-label, multicentre, phase III study evaluating the safety and efficacy of canakinumab in patients with cryopyrin associated periodic syndrome across different severity phenotypes. Ann. Rheum. Dis. 70, 2095–2102 (2011).

    Article  CAS  Google Scholar 

  56. Ter Haar, N. et al. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Ann. Rheum. Dis. 72, 678–685 (2013).

    Article  PubMed  Google Scholar 

  57. Williamson, L. M. et al. Familial Hibernian fever. Q. J. Med. 51, 469–480 (1982).

    CAS  PubMed  Google Scholar 

  58. McDermott, M. F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Touitou, I. et al. Infevers. An evolving mutation database for autoinflammatory syndromes. Hum. Mutat. 24, 194–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. International Society of Systemic Auto-inflammatory Diseases. Infevers: The Registry of Hereditary Auto-inflammatory Disorders Mutations. Infevers [online].

  61. Ravet, N. et al. Clinical significance of P46L and R92Q substitutions in the tumor necrosis superfamily 1A gene. Ann. Rheum. Dis. 65, 1158–1162 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stojanov, S. et al. Clinical and functional characterization of a novel TNFRSF1A c.605T>A/V173D cleavage site mutation associated with tumour necrosis factor receptor associated periodic fever syndrome (TRAPS), cardiovascular complications and excellent response to etanercept treatment. Ann. Rheum. Dis. 67, 1292–1298 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bachetti, T. et al. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann. Rheum. Dis. 72, 1044–1052 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Dickie, L. J. et al. Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumor necrosis factor receptor associated periodic syndrome. Ann. Rheum. Dis. 71, 2035–2043 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Cantarini, L. et al. Tumor necrosis factor receptor-associated periodic syndrome (TRAPS): State of the art and future perspectives. Autoimmunity Rev. 12, 38–43 (2012).

    Article  CAS  Google Scholar 

  67. Petterson, T., Kantonen, J., Matikainen, S. & Repo, H. Setting up TRAPS. Ann. Med. 4, 109–118 (2012).

    Article  CAS  Google Scholar 

  68. Hull, K. M. et al. The TNF-receptor associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder. Medicine 81, 349–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Drewe, E., Powell, R. J. & McDermott, E. M. Comment on: failure of anti-TNF therapy in TNF receptor 1-associated periodic syndrome (TRAPS). Rheumatology 46, 1865–1866 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Bulua, A. C. et al. Efficacy of etanercept in the tumor necrosis factor receptor associated periodic syndrome: a prospective, open-label, dose escalation study. Arthritis Rheum. 64, 908–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Jesus, A. A. et al. TNF-receptor associated periodic syndrome (TRAPS): description of a novel TNFRSF1A mutation and response to etanercept. Eur. J. Pediatr. 167, 1421–1425 (2008).

    Article  PubMed  Google Scholar 

  72. Gattorno, M. et al. Persistent efficacy of anakinra in patients with tumor necrosis factor receptor associated periodic syndrome. Arthritis Rheum. 58, 1516–1520 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Lachmann, H. J. et al. Canakinumab in patients with TRAPS. Abstract 1103, ISSAID 2013.

  74. van der Meer, J. W. et al. Hyperimmunoglobulinemia D and periodic fever: a new syndrome. Lancet 1, 1087–1090 (1984).

    Article  CAS  PubMed  Google Scholar 

  75. Drenth, J. P. et al. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat. Genet. 22, 178–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. van der Burgh, R., Ter Haar, N. M., Boes, M. L. & Frenkel, J. Mevolanate kinase deficiency, a metabolic autoinflammatory disease. Clin. Immunol. 147, 197–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Mandey, S. H., Kuijk, L. M., Frenkel, J. & Waterham, H. R. A role for geranylgeranylation in interleukin 1β secretion. Arthritis Rheum. 54, 3690–3695 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Federici, S., Caorsi, R. & Gattorno, M. The autoinflammatory diseases. Swiss Med. Wkly 142, w13602 (2012).

    PubMed  Google Scholar 

  79. Frenkel, J. et al. Clinical and molecular variability in childhood periodic fever with hyperimmunoglobulinemia D. Rheumatology (Oxford) 40, 579–584 (2001).

    Article  CAS  Google Scholar 

  80. Bader-Meunier, B. et al. Mevolanate kinase deficiency: a survey of 50 patients. Pediatrics 128, e152–e159 (2011).

    Article  PubMed  Google Scholar 

  81. Lachmann, H. J. et al. AA amyloidosis complicating hyperimmunoglobulinemia D with periodic fever syndrome: a report of two cases. Arthritis Rheum. 54, 2010–2014 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Stoffels, M. & Simon, A. Hyper-IgD syndrome or mevalonate kinase deficiency. Curr. Opin. Rheumatol. 23, 419–423 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Ammouri, M. et al. Diagnostic value of serum immunoglobulinemia D level in patients with a clinical suspicion of hyper IgD syndrome. Rheumatology (Oxford) 46, 1597–1600 (2007).

    Article  CAS  Google Scholar 

  84. Takada, K. et al. Favorable preliminary experience with etanercept in two patients with the hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum. 48, 2645–2651 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Rigante, D. et al. Treatment with anakinra in the hyperimmunoglobulinemia D/periodic fever syndrome. Rheumatol. Int. 27, 97–100 (2006).

    Google Scholar 

  86. Jeru, I. et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc. Natl Acad. Sci. USA 105, 1614–1619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Touitou, I. & Kone-Paut, I. Autoinflammatory diseases. Best Pract. Res. Clin. Rheumatol. 22, 811–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Aksentijevich, I. et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360, 2426–2437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shoham, N. G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA 100, 13501–13506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Demidowich, A. P. et al. Brief report; genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum and acne). Arthritis Rheum. 64, 2022–2027 (2012).

    Article  PubMed  Google Scholar 

  91. Ferguson, P. J. et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J. Med. Genet. 42, 551–557 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Herlin, T. et al. Efficacy of IL-1 treatment in Majeed syndrome. Ann. Rheum. Dis. 72, 410–413 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Sfriso, P. et al. Blau syndrome, clinical and genetic aspects. Autoimmun. Rev. 12, 44–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Rose, C. D. et al. Pediatric granulomatous arthritis: an international registry. Arthritis Rheum. 54, 3337–3344 (2006).

    Article  PubMed  Google Scholar 

  95. Arostegui, J. I. et al. NOD2 gene-associated pediatric granulamatous arthritis: clinical diversity, novel and recurrent mutations, and evidence of clinical improvement with interleukin-1 blockade in a Spanish cohort. Arthritis Rheum. 56, 3805–3813 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Milman, M. et al. Favourable effect of TNFα inhibitor on Blau syndrome in monozygotic twins with a de novo CARD15 mutation. APMIS 114, 912–919 (2006).

    Article  PubMed  Google Scholar 

  97. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Seifert, U. et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142, 613–624 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Arima, K. et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo–Nishimura syndrome. Proc. Natl Acad. Sci. USA 108, 14914–14919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garg, A. et al. An autosomal recessive syndrome of joint contractures, muscular atrophy, microcytic anemia, and panniculitis-associated lipodystrophy. J. Clin. Endocrinol. Metab. 95, E58–E63 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Liu, Y. et al. Mutations in proteosome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 64, 895–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vantyghem, M. C. et al. How to diagnose a lipodystrophy syndrome. Ann. Endocrinol. (Paris) 73, 170–189 (2012).

    Article  CAS  Google Scholar 

  103. Ombrella, M. J. et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deficiency. N. Engl. J. Med. 366, 330–338 (2012).

    Article  CAS  Google Scholar 

  104. Caorsi, R. et al. Periodic fever, apthous stomatitis, pharyngitis and adenitis syndrome. Curr. Opin. Rheumatol. 22, 579–584 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Aksentijevich for her comments.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to writing the article. In addition, S. Ozen decided on the content of the article and reviewed the manuscript before submission, and Y. Bilginer researched data for the article.

Corresponding author

Correspondence to Seza Ozen.

Ethics declarations

Competing interests

S. Ozen declares that she has received a consultancy fee from Novartis and speaker honouraria from Biovitrium. Y. Bilginer declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozen, S., Bilginer, Y. A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol 10, 135–147 (2014). https://doi.org/10.1038/nrrheum.2013.174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing