Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

New developments in osteoimmunology

Abstract

Investigations into interactions between the skeletal and immune systems were developed during research into arthritis, with characterization of T-cell-mediated regulation of osteoclastogenesis. A new interdisciplinary field—osteoimmunology—was created, and has since expanded to encompass disciplines including signal transduction, stem cell niches and fundamental immunology. We have witnessed rapid progress in understanding the mechanisms of bone damage in arthritis and the roles of immune molecules in bone, but comparatively less evidence has been provided for the role of bone-derived factors in the immune system. Nevertheless, regulation of immune cells, including haematopoietic stem cells, by bone cells is now a hot topic in this field. Here, I discuss recent advances in osteoimmunology and emerging avenues of basic and clinical investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of bone destruction in autoimmune arthritis.
Figure 2: HSC maintenance in the bone marrow.

Similar content being viewed by others

References

  1. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292–304 (2007).

    Article  CAS  Google Scholar 

  2. Seeman, E. & Delmas, P. D. Bone quality—the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354, 2250–2261 (2006).

    Article  CAS  Google Scholar 

  3. Lorenzo, J., Horowitz, M. & Choi, Y. Osteoimmunology: interactions of the bone and immune system. Endocr. Rev. 29, 403–440 (2008).

    Article  CAS  Google Scholar 

  4. Nakashima, T. & Takayanagi, H. Osteoimmunology: crosstalk between the immune and bone systems. J. Clin. Immunol. 29, 555–567 (2009).

    Article  Google Scholar 

  5. Nagasawa, T. Microenvironmental niches in the bone marrow required for B-cell development. Nat. Rev. Immunol. 6, 107–116 (2006).

    Article  CAS  Google Scholar 

  6. Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  Google Scholar 

  7. Takayanagi, H. Osteoimmunology and the effects of the immune system on bone. Nat. Rev. Rheumatol. 5, 667–676 (2009).

    Article  CAS  Google Scholar 

  8. Takayanagi, H. et al. T cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    Article  CAS  Google Scholar 

  9. Chiang, E. Y. et al. Targeted depletion of lymphotoxin-α-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat. Med. 15, 766–773 (2009).

    Article  CAS  Google Scholar 

  10. Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    Article  CAS  Google Scholar 

  11. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    Article  CAS  Google Scholar 

  12. Onal, M. et al. RANKL expression by B lymphocytes contributes to ovariectomy-induced bone loss. J. Biol. Chem. 287, 29851–29860 (2012).

    Article  CAS  Google Scholar 

  13. Chan, A. C. & Carter, P. J. Therapeutic antibodies for autoimmunity and inflammation. Nat. Rev. Immunol. 10, 301–316 (2012).

    Article  Google Scholar 

  14. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241 (2011).

    Article  CAS  Google Scholar 

  15. Green, E. A., Choi, Y. & Flavell, R. A. Pancreatic lymph node-derived CD4+CD25+ Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16, 183–191 (2002).

    Article  CAS  Google Scholar 

  16. Totsuka, T. et al. RANK-RANKL signaling pathway is critically involved in the function of CD4+CD25+ regulatory T cells in chronic colitis. J. Immunol. 182, 6079–6087 (2009).

    Article  CAS  Google Scholar 

  17. Loser, K. et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat. Med. 12, 1372–1379 (2006).

    Article  CAS  Google Scholar 

  18. Tan, W. et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470, 548–553 (2011).

    Article  CAS  Google Scholar 

  19. Rossi, S. W. et al. RANK signals from CD4+3 inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 204, 1267–1272 (2007).

    Article  CAS  Google Scholar 

  20. Akiyama, T. et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29, 423–437 (2008).

    Article  CAS  Google Scholar 

  21. Hikosaka, Y. et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008).

    Article  CAS  Google Scholar 

  22. Lacey, D. L. et al. Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 11, 401–419 (2012).

    Article  CAS  Google Scholar 

  23. Mercier, F. E., Ragu, C. & Scadden, D. T. The bone marrow at the crossroads of blood and immunity. Nat. Rev. Immunol. 12, 49–60 (2011).

    Article  Google Scholar 

  24. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  Google Scholar 

  25. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  Google Scholar 

  26. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  Google Scholar 

  27. Kiel, M. J., Radice, G. L. & Morrison, S. J. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 1, 204–217 (2007).

    Article  CAS  Google Scholar 

  28. Lymperi, S. et al. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111, 1173–1181 (2008).

    Article  CAS  Google Scholar 

  29. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  Google Scholar 

  30. Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33, 387–399 (2010).

    Article  CAS  Google Scholar 

  31. Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2012).

    Article  Google Scholar 

  32. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  CAS  Google Scholar 

  33. Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12, 657–664 (2006).

    Article  CAS  Google Scholar 

  34. Miyamoto, K. et al. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J. Exp. Med. 208, 2175–2181 (2011).

    Article  CAS  Google Scholar 

  35. Geffroy-Luseau, A., Jego, G., Bataille, R., Campion, L. & Pellat-Deceunynck, C. Osteoclasts support the survival of human plasma cells in vitro. Int. Immunol. 20, 775–782 (2008).

    Article  CAS  Google Scholar 

  36. Li, H. et al. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 116, 210–217 (2010).

    Article  CAS  Google Scholar 

  37. Borrero, C. G., Mountz, J. M. & Mountz, J. D. Emerging MRI methods in rheumatoid arthritis. Nat. Rev. Rheumatol. 7, 85–95 (2011).

    Article  Google Scholar 

  38. Li, P. et al. Systemic tumor necrosis factor α mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor α-transgenic mice. Arthritis Rheum. 50, 265–276 (2004).

    Article  CAS  Google Scholar 

  39. Proulx, S. T. et al. Elucidating bone marrow edema and myelopoiesis in murine arthritis using contrast-enhanced magnetic resonance imaging. Arthritis Rheum. 58, 2019–2029 (2008).

    Article  Google Scholar 

  40. Cain, C. J. et al. Absence of sclerostin adversely affects B cell survival. J. Bone Miner. Res. 27, 1451–1461 (2012).

    Article  CAS  Google Scholar 

  41. Xian, L. et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 18, 1095–1101 (2012).

    Article  CAS  Google Scholar 

  42. Tang, Y. et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

    Article  CAS  Google Scholar 

  43. Matsuo, K. & Irie, N. Osteoclast-osteoblast communication. Arch. Biochem. Biophys. 473, 201–209 (2008).

    Article  CAS  Google Scholar 

  44. Negishi-Koga, T. et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat. Med. 17, 1473–1480 (2011).

    Article  CAS  Google Scholar 

  45. Hayashi, M. et al. Osteoprotection by semaphorin 3A. Nature 485, 69–74 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank T. Nakashima, A. Terashima, N. Komatsu, M. Guerrini and K. Okamoto for providing helpful discussions and assistance during preparation of this manuscript. This work was supported in part by a grant for ERATO, the Takayanagi Osteonetwork Project from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Table 1

Skeletal phenotypes caused by genetic deficiencies in immunomodulatory molecules in mice (DOC 66 kb)

Supplementary Table 2

Immunological phenotypes relevant to rheumatic diseases caused by genetic deficiencies in bone-regulatory molecules (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takayanagi, H. New developments in osteoimmunology. Nat Rev Rheumatol 8, 684–689 (2012). https://doi.org/10.1038/nrrheum.2012.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing