Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conservative biomechanical strategies for knee osteoarthritis

Abstract

Knee osteoarthritis (OA) is one of the most prevalent forms of this disease, with the medial compartment most commonly affected. The direction of external forces and limb orientation during walking results in an adduction moment that acts around the knee, and this parameter is regarded as a surrogate measure of medial knee compression. The knee adduction moment is intimately linked with the development and progression of knee OA and is, therefore, a target for conservative biomechanical intervention strategies, which are the focus of this Review. We examine the evidence for walking barefoot and the use of lateral wedge insoles and thin-soled, flexible shoes to reduce the knee adduction moment in patients with OA. We review strategies that directly affect the gait, such as walking with the foot externally rotated ('toe-out gait'), using a cane, lateral trunk sway and gait retraining. Valgus knee braces and muscle strengthening are also discussed for their effect upon reducing the knee adduction moment.

Key Points

  • Knee osteoarthritis (OA) is closely associated with the development of a high external knee adduction moment, which reflects compression of the medial compartment of the knee

  • The nature of biomechanical loading at the knee joint can be altered by a number of conservative intervention strategies, which are potentially capable of slowing the progression of the disease

  • Using lateral wedge insoles or thin-soled, flexible shoes can reduce the knee adduction moment and thus contribute to retarding the progression of OA

  • Strategies that directly modify gait characteristics, such as a toe-out gait, lateral trunk lean and the use of a walking stick, can reduce the knee adduction moment

  • Intervention strategies that act either directly or indirectly upon the knee joint, such as valgus knee braces and muscle strengthening, can effectively decrease the knee adduction moment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The external knee adduction moment during walking.
Figure 2: Schematic representation of the knee adduction moment profile during walking showing the characteristic double peak associated with the stance phase.
Figure 3: Schematic diagram illustrating the 'toe-out' gait.
Figure 4: Schematic diagram illustrating how valgus bracing counteracts the external adduction moment acting about the knee during walking.

Similar content being viewed by others

References

  1. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 41, 778–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Felson, D. T. Epidemiology of hip and knee osteoarthritis. Epidemiol. Rev. 10, 1–28 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Oliveria, S. A., Felson, D. T., Reed, J. I., Cirillo, P. A. & Walker, A. M. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 38, 1134–1141 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Bitton, R. The economic burden of osteoarthritis. Am. J. Manag. Care 15 (8 Suppl.), S230–S235 (2009).

    PubMed  Google Scholar 

  5. Fautrel, B. et al. Impact of osteoarthritis: results of a nationwide survey of 10,000 patients consulting for OA. Joint Bone Spine 72, 235–240 (2005).

    Article  PubMed  Google Scholar 

  6. Ahlbäck, S. Osteoarthrosis of the knee. A radiographic investigation. Acta Radiol. Diagn. (Stockh.), 277 (Suppl.), 7–72 (1968).

    Google Scholar 

  7. Felson, D. T. & Radin, E. L. What causes knee osteoarthrosis: are different compartments susceptible to different risk factors? J. Rheumatol. 21, 181–183 (1994).

    CAS  PubMed  Google Scholar 

  8. Block, J. A. & Shakoor, N. Lower limb osteoarthritis: biomechanical alterations and implications for therapy. Curr. Opin. Rheumatol. 22, 544–550 (2010).

    Article  PubMed  Google Scholar 

  9. Englund, M. The role of biomechanics in the initiation and progression of OA of the knee. Best Pract. Res. Clin. Rheumatol. 24, 39–46 (2010).

    Article  PubMed  Google Scholar 

  10. Shakoor, N. & Moisio, K. A biomechanical approach to musculoskeletal disease. Best Pract. Res. Clin. Rheumatol. 18, 173–186 (2004).

    Article  PubMed  Google Scholar 

  11. Hurwitz, D. E., Sumner, D. R., Andriacchi, T. P. & Sugar, D. A. Dynamic knee loads during gait predict proximal tibial bone distribution. J. Biomech. 31, 423–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Self, B. P., Greenwald, R. M. & Pflaster, D. S. A biomechanical analysis of a medial unloading brace for osteoarthritis in the knee. Arthritis Care Res. 13, 191–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Hamel, K. A., Okita, N., Bus, S. A. & Cavanagh, P. R. A comparison of foot/ground interaction during stair negotiation and level walking in young and older women. Ergonomics 48, 1047–1056 (2005).

    Article  PubMed  Google Scholar 

  14. Reeves, N. D., Spanjaard, M., Mohagheghi, A. A., Baltzopoulos, V. & Maganaris, C. N. Older adults employ alternative strategies to operate within their maximum capabilities when ascending stairs. J. Electromyogr. Kinesiol. 19, e57–e68 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Reeves, N. D., Spanjaard, M., Mohagheghi, A. A., Baltzopoulos, V. & Maganaris, C. N. The demands of stair descent relative to maximum capacities in elderly and young adults. J. Electromyogr. Kinesiol. 18, 218–227 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Riener, R., Rabuffetti, M. & Frigo, C. Stair ascent and descent at different inclinations. Gait Posture 15, 32–44 (2002).

    Article  PubMed  Google Scholar 

  17. Komistek, R. D. et al. An in vivo analysis of the effectiveness of the osteoarthritic knee brace during heel-strike of gait. J. Arthroplasty 14, 738–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Miyazaki, T. et al. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 61, 617–622 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pollo, F. E., Otis, J. C., Backus, S. I., Warren, R. F. & Wickiewicz, T. L. Reduction of medial compartment loads with valgus bracing of the osteoarthritic knee. Am. J. Sports Med. 30, 414–421 (2002).

    Article  PubMed  Google Scholar 

  20. Shelburne, K. B., Torry, M. R., Steadman, J. R. & Pandy, M. G. Effects of foot orthoses and valgus bracing on the knee adduction moment and medial joint load during gait. Clin. Biomech. (Bristol, Avon) 23, 814–821 (2008).

    Article  Google Scholar 

  21. Barrios, J. A., Higginson, J. S., Royer, T. D. & Davis, I. S. Static and dynamic correlates of the knee adduction moment in healthy knees ranging from normal to varus-aligned. Clin. Biomech. (Bristol, Avon) 24, 850–854 (2009).

    Article  Google Scholar 

  22. Wada, M. et al. Relationships among bone mineral densities, static alignment and dynamic load in patients with medial compartment knee osteoarthritis. Rheumatology (Oxford) 40, 499–505 (2001).

    Article  Google Scholar 

  23. Hunt, M. A. et al. Lateral trunk lean explains variation in dynamic knee joint load in patients with medial compartment knee osteoarthritis. Osteoarthritis Cartilage 16, 591–599 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Hurwitz, D. E., Ryals, A. B., Case, J. P., Block, J. A. & Andriacchi, T. P. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain. J. Orthop. Res. 20, 101–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Thorp, L. E. et al. Bone mineral density in the proximal tibia varies as a function of static alignment and knee adduction angular momentum in individuals with medial knee osteoarthritis. Bone 39, 1116–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Mündermann, A., Dyrby, C. O. & Andriacchi, T. P. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 52, 2835–2844 (2005).

    Article  PubMed  Google Scholar 

  27. Mündermann, A., Dyrby, C. O., Hurwitz, D. E., Sharma, L. & Andriacchi, T. P. Potential strategies to reduce medial compartment loading in patients with knee osteoarthritis of varying severity: reduced walking speed. Arthritis Rheum. 50, 1172–1178 (2004).

    Article  PubMed  Google Scholar 

  28. Wang, J. W., Kuo, K. N., Andriacchi, T. P. & Galante, J. O. The influence of walking mechanics and time on the results of proximal tibial osteotomy. J. Bone Joint Surg. Am. 72, 905–909 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Baliunas, A. J. et al. Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthritis Cartilage 10, 573–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Gök, H., Ergin, S. & Yavuzer, G. Kinetic and kinematic characteristics of gait in patients with medial knee arthrosis. Acta Orthop. Scand. 73, 647–652 (2002).

    Article  PubMed  Google Scholar 

  31. Kim, W. Y., Richards, J., Jones, R. K. & Hegab, A. A new biomechanical model for the functional assessment of knee osteoarthritis. Knee 11, 225–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Thorp, L. E. et al. Knee joint loading differs in individuals with mild compared with moderate medial knee osteoarthritis. Arthritis Rheum. 54, 3842–3849 (2006).

    Article  PubMed  Google Scholar 

  33. Sharma, L. et al. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum. 41, 1233–1240 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Rutherford, D. J., Hubley-Kozey, C. L., Deluzio, K. J., Stanish, W. D. & Dunbar, M. Foot progression angle and the knee adduction moment: a cross-sectional investigation in knee osteoarthritis. Osteoarthritis Cartilage 16, 883–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Katz, B. P. et al. Demographic variation in the rate of knee replacement: a multi-year analysis. Health Serv. Res. 31, 125–140 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kerrigan, D. C., Lelas, J. L. & Karvosky, M. E. Women's shoes and knee osteoarthritis. Lancet 357, 1097–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Kerrigan, D. C., Todd, M. K. & Riley, P. O. Knee osteoarthritis and high-heeled shoes. Lancet 351, 1399–1401 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Shakoor, N. & Block, J. A. Walking barefoot decreases loading on the lower extremity joints in knee osteoarthritis. Arthritis Rheum. 54, 2923–2927 (2006).

    Article  PubMed  Google Scholar 

  39. Shakoor, N. et al. The effects of common footwear on joint loading in osteoarthritis of the knee. Arthritis Care Res. (Hoboken) 62, 917–923 (2010).

    Article  Google Scholar 

  40. Kerrigan, D. C., Karvosky, M. E., Lelas, J. L. & Riley, P. O. Men's shoes and knee joint torques relevant to the development and progression of knee osteoarthritis. J. Rheumatol. 30, 529–533 (2003).

    PubMed  Google Scholar 

  41. Zeni, J. A. Jr & Higginson, J. S. Differences in gait parameters between healthy subjects and persons with moderate and severe knee osteoarthritis: a result of altered walking speed? Clin. Biomech. (Bristol, Avon) 24, 372–378 (2009).

    Article  Google Scholar 

  42. Robbins, S. M. & Maly, M. R. The effect of gait speed on the knee adduction moment depends on waveform summary measures. Gait Posture 30, 543–546 (2009).

    Article  PubMed  Google Scholar 

  43. Kemp, G., Crossley, K. M., Wrigley, T. V., Metcalf, B. R. & Hinman, R. S. Reducing joint loading in medial knee osteoarthritis: shoes and canes. Arthritis Rheum. 59, 609–614 (2008).

    Article  PubMed  Google Scholar 

  44. Shakoor, N., Lidtke, R. H., Sengupta, M., Fogg, L. F. & Block, J. A. Effects of specialized footwear on joint loads in osteoarthritis of the knee. Arthritis Rheum. 59, 1214–1220 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sasaki, T. & Yasuda, K. Clinical evaluation of the treatment of osteoarthritic knees using a newly designed wedged insole. Clin. Orthop. Relat. Res. 221, 181–187 (1987).

    Google Scholar 

  46. Yasuda, K. & Sasaki, T. The mechanics of treatment of the osteoarthritic knee with a wedged insole. Clin. Orthop. Relat. Res. 215, 162–172 (1987).

    Google Scholar 

  47. Hinman, R. S., Bowles, K. A., Payne, C. & Bennell, K. L. Effect of length on laterally-wedged insoles in knee osteoarthritis. Arthritis Rheum. 59, 144–147 (2008).

    Article  PubMed  Google Scholar 

  48. Hinman, R. S., Payne, C., Metcalf, B. R., Wrigley, T. V. & Bennell, K. L. Lateral wedges in knee osteoarthritis: what are their immediate clinical and biomechanical effects and can these predict a three-month clinical outcome? Arthritis Rheum. 59, 408–415 (2008).

    Article  PubMed  Google Scholar 

  49. Kakihana, W. et al. Effects of laterally wedged insoles on knee and subtalar joint moments. Arch. Phys. Med. Rehabil. 86, 1465–1471 (2005).

    Article  PubMed  Google Scholar 

  50. Butler, R. J., Barrios, J. A., Royer, T. & Davis, I. S. Effect of laterally wedged foot orthoses on rearfoot and hip mechanics in patients with medial knee osteoarthritis. Prosthet. Orthot. Int. 33, 107–116 (2009).

    Article  PubMed  Google Scholar 

  51. Kerrigan, D. C. et al. Effectiveness of a lateral-wedge insole on knee varus torque in patients with knee osteoarthritis. Arch. Phys. Med. Rehabil. 83, 889–893 (2002).

    Article  PubMed  Google Scholar 

  52. Maly, M. R., Culham, E. G. & Costigan, P. A. Static and dynamic biomechanics of foot orthoses in people with medial compartment knee osteoarthritis. Clin. Biomech. (Bristol, Avon) 17, 603–610 (2002).

    Article  Google Scholar 

  53. Shimada, S. et al. Effects of disease severity on response to lateral wedged shoe insole for medial compartment knee osteoarthritis. Arch. Phys. Med. Rehabil. 87, 1436–1441 (2006).

    Article  PubMed  Google Scholar 

  54. Kakihana, W., Akai, M., Yamasaki, N., Takashima, T. & Nakazawa, K. Changes of joint moments in the gait of normal subjects wearing laterally wedged insoles. Am. J. Phys. Med. Rehabil. 83, 273–278 (2004).

    Article  PubMed  Google Scholar 

  55. Kakihana, W. et al. Effect of a lateral wedge on joint moments during gait in subjects with recurrent ankle sprain. Am. J. Phys. Med. Rehabil. 84, 858–864 (2005).

    Article  PubMed  Google Scholar 

  56. Nakajima, K. et al. Addition of an arch support improves the biomechanical effect of a laterally wedged insole. Gait Posture 29, 208–213 (2009).

    Article  PubMed  Google Scholar 

  57. Franz, J. R. et al. The influence of arch supports on knee torques relevant to knee osteoarthritis. Med. Sci. Sports Exerc. 40, 913–917 (2008).

    Article  PubMed  Google Scholar 

  58. Hinman, R. S., Bowles, K. A. & Bennell, K. L. Laterally wedged insoles in knee osteoarthritis: do biomechanical effects decline after one month of wear? BMC Musculoskelet. Disord. 10, 146 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Keating, E. M., Faris, P. M., Ritter, M. A. & Kane, J. Use of lateral heel and sole wedges in the treatment of medial osteoarthritis of the knee. Orthop. Rev. 22, 921–924 (1993).

    CAS  PubMed  Google Scholar 

  60. Pham, T. et al. Laterally elevated wedged insoles in the treatment of medial knee osteoarthritis. A two-year prospective randomized controlled study. Osteoarthritis Cartilage 12, 46–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Toda, Y. & Tsukimura, N. A 2-year follow-up of a study to compare the efficacy of lateral wedged insoles with subtalar strapping and in-shoe lateral wedged insoles in patients with varus deformity osteoarthritis of the knee. Osteoarthritis Cartilage 14, 231–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Erhart, J. C., Mündermann, A., Elspas, B., Giori, N. J. & Andriacchi, T. P. A variable-stiffness shoe lowers the knee adduction moment in subjects with symptoms of medial compartment knee osteoarthritis. J. Biomech. 41, 2720–2725 (2008).

    Article  PubMed  Google Scholar 

  63. Guo, M., Axe, M. J. & Manal, K. The influence of foot progression angle on the knee adduction moment during walking and stair climbing in pain free individuals with knee osteoarthritis. Gait Posture 26, 436–441 (2007).

    Article  PubMed  Google Scholar 

  64. Jenkyn, T. R., Hunt, M. A., Jones, I. C., Giffin, J. R. & Birmingham, T. B. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism. J. Biomech. 41, 276–283 (2008).

    Article  PubMed  Google Scholar 

  65. Lynn, S. K. & Costigan, P. A. Effect of foot rotation on knee kinetics and hamstring activation in older adults with and without signs of knee osteoarthritis. Clin. Biomech. (Bristol, Avon) 23, 779–786 (2008).

    Article  Google Scholar 

  66. Chang, A. et al. The relationship between toe-out angle during gait and progression of medial tibiofemoral osteoarthritis. Ann. Rheum. Dis. 66, 1271–1275 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Teichtahl, A. J. et al. Foot rotation--a potential target to modify the knee adduction moment. J. Sci. Med. Sport 9, 67–71 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Andrews, M., Noyes, F. R., Hewett, T. E. & Andriacchi, T. P. Lower limb alignment and foot angle are related to stance phase knee adduction in normal subjects: a critical analysis of the reliability of gait analysis data. J. Orthop. Res. 14, 289–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Linley, H. S., Sled, E. A., Culham, E. G. & Deluzio, K. J. A biomechanical analysis of trunk and pelvis motion during gait in subjects with knee osteoarthritis compared to control subjects. Clin. Biomech. (Bristol, Avon) doi:10.1016/j.clinbiomech.2010.07.012.

  70. Hunt, M. A., Wrigley, T. V., Hinman, R. S. & Bennell, K. L. Individuals with severe knee osteoarthritis (OA) exhibit altered proximal walking mechanics compared with individuals with less severe OA and those without knee pain. Arthritis Care Res. (Hoboken) 62, 1426–1432 (2010).

    Article  Google Scholar 

  71. Mündermann, A., Asay, J. L., Mündermann, L. & Andriacchi, T. P. Implications of increased medio-lateral trunk sway for ambulatory mechanics. J. Biomech. 41, 165–170 (2008).

    Article  PubMed  Google Scholar 

  72. Fregly, B. J., D'Lima, D. D. & Colwell, C. W. Jr. Effective gait patterns for offloading the medial compartment of the knee. J. Orthop. Res. 27, 1016–1021 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fregly, B. J., Reinbolt, J. A., Rooney, K. L., Mitchell, K. H. & Chmielewski, T. L. Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans. Biomed. Eng. 54, 1687–1695 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Barrios, J. A., Crossley, K. M. & Davis, I. S. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J. Biomech. 43, 2208–2213 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chan, G. N., Smith, A. W., Kirtley, C. & Tsang, W. W. Changes in knee moments with contralateral versus ipsilateral cane usage in females with knee osteoarthritis. Clin. Biomech. (Bristol, Avon) 20, 396–404 (2005).

    Article  Google Scholar 

  76. Gaasbeek, R. D., Groen, B. E., Hampsink, B., van Heerwaarden, R. J. & Duysens, J. Valgus bracing in patients with medial compartment osteoarthritis of the knee. A gait analysis study of a new brace. Gait Posture 26, 3–10 (2007).

    Article  PubMed  Google Scholar 

  77. Lindenfeld, T. N., Hewett, T. E. & Andriacchi, T. P. Joint loading with valgus bracing in patients with varus gonarthrosis. Clin. Orthop. Relat. Res. 344, 290–297 (1997).

    Article  Google Scholar 

  78. Hewett, T. E., Noyes, F. R., Barber-Westin, S. D. & Heckmann, T. P. Decrease in knee joint pain and increase in function in patients with medial compartment arthrosis: a prospective analysis of valgus bracing. Orthopedics 21, 131–138 (1998).

    CAS  PubMed  Google Scholar 

  79. Fantini Pagani, C. H., Potthast, W. & Brüggemann, G. P. The effect of valgus bracing on the knee adduction moment during gait and running in male subjects with varus alignment. Clin. Biomech. (Bristol, Avon) 25, 70–76 (2010).

    Article  Google Scholar 

  80. Draper, E. R. et al. Improvement in function after valgus bracing of the knee. An analysis of gait symmetry. J. Bone Joint Surg. Br. 82, 1001–1005 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Kirkley, A. et al. The effect of bracing on varus gonarthrosis. J. Bone Joint Surg. Am. 81, 539–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. van Raaij, T. M., Reijman, M., Brouwer, R. W., Bierma-Zeinstra, S. M. & Verhaar, J. A. Medial knee osteoarthritis treated by insoles or braces: a randomized trial. Clin. Orthop. Relat. Res. 468, 1926–1932 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Heiden, T. L., Lloyd, D. G. & Ackland, T. R. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clin. Biomech. (Bristol, Avon) 24, 833–841 (2009).

    Article  Google Scholar 

  84. Hubley-Kozey, C. L., Deluzio, K. J., Landry, S. C., McNutt, J. S. & Stanish, W. D. Neuromuscular alterations during walking in persons with moderate knee osteoarthritis. J. Electromyogr. Kinesiol. 16, 365–378 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Rutherford, D. J., Hubley-Kozey, C. L. & Stanish, W. D. The neuromuscular demands of altering foot progression angle during gait in asymptomatic individuals and those with knee osteoarthritis. Osteoarthritis Cartilage 18, 654–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Thorp, L. E. et al. The biomechanical effects of focused muscle training on medial knee loads in OA of the knee: a pilot, proof of concept study. J. Musculoskelet. Neuronal Interact. 10, 166–173 (2010).

    CAS  PubMed  Google Scholar 

  87. Bennell, K. L. et al. Hip strengthening reduces symptoms but not knee load in people with medial knee osteoarthritis and varus malalignment: a randomised controlled trial. Osteoarthritis Cartilage 18, 621–628 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Roddy, E., Zhang, W. & Doherty, M. Aerobic walking or strengthening exercise for osteoarthritis of the knee? A systematic review. Ann. Rheum. Dis. 64, 544–548 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, W. et al. OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis Cartilage 15, 981–1000 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Lim, B. W., Hinman, R. S., Wrigley, T. V., Sharma, L. & Bennell, K. L. Does knee malalignment mediate the effects of quadriceps strengthening on knee adduction moment, pain, and function in medial knee osteoarthritis? A randomized controlled trial. Arthritis Rheum. 59, 943–951 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

N. D. Reeves and F. L. Bowling contributed equally to researching the data for the article, to discussions of the content and to reviewing and/or editing of the manuscript before submission. N. D. Reeves provided a substantial contribution to writing the article.

Corresponding author

Correspondence to Neil D. Reeves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeves, N., Bowling, F. Conservative biomechanical strategies for knee osteoarthritis. Nat Rev Rheumatol 7, 113–122 (2011). https://doi.org/10.1038/nrrheum.2010.212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing