Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular and molecular aspects of vascular dysfunction in systemic sclerosis

Abstract

Systemic sclerosis (SSc) is characterized by vascular alterations, activation of the immune system and tissue fibrosis. Vascular insufficiency manifests early in the disease, and although there is evidence of an active repair process, capillaries deteriorate and regress. Factors that contribute to the failure of vascular regeneration might include persistent injury, an imbalance between proangiogenic and antiangiogenic mediators, intrinsic abnormal properties of the cellular components of the vessels, and the presence of fibroblast-derived antiangiogenic factors. In addition, circulating dysfunctional endothelial progenitor cells might further exacerbate vessel deterioration. Abnormal expression of transcription factors, including Fra2 and Fli1, has been proposed to contribute to SSc vasculopathy. Fli1 regulates genes that are involved in vessel maturation and stabilization, suggesting that reduced levels of Fli1 in SSc vasculature could contribute to the development of unstable vessels that are prone to regression. Conversely, proliferating endothelial cells and pericytes, in the presence of an appropriate stimulus, might transdifferentiate into collagen-producing cells, and thus contribute to the initiation of fibrosis. Despite progress in treating the symptoms of vascular disease in SSc, the underlying mechanisms remain poorly understood. An improved knowledge of the molecular and cellular pathways that contribute to SSc vasculopathy could help in the design of effective therapies in the future.

Key Points

  • Systemic sclerosis (SSc) is initiated by endothelial cell injury; this event leads to progressive structural defects in microvessels

  • There is evidence of enhanced angiogenic activity early in the disease

  • Multiple factors might contribute to defective vascular repair and regeneration

  • Intrinsic pathogenic alterations in endothelial cells might be a key factor that interferes with the vascular repair process

  • Aberrant expression of endothelial transcription factors, including Fra2, Fli1, peroxisome proliferator-activated receptor γ and GATA-6, has been associated with SSc, and might contribute to vascular defects

  • Endothelial cells and pericytes could represent a source of activated fibroblasts early in the disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the principal stages of angiogenesis.
Figure 2: Schematic overview of the potential mechanisms involved in impaired neoangiogenesis in SSc.
Figure 3: Molecular alterations of components of the SSc vasculature.
Figure 4: Possible links between vasculopathy and fibrosis in SSc.

Similar content being viewed by others

References

  1. Sapadin, A. N., Esser, A. C. & Fleischmajer, R. Immunopathogenesis of scleroderma—evolving concepts. Mt Sinai J. Med. 68, 233–242 (2001).

    CAS  PubMed  Google Scholar 

  2. Varga, J. & Abraham, D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117, 557–567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bakst, R., Merola, J. F., Franks, A. G. Jr & Sanchez, M. Raynaud's phenomenon: pathogenesis and management. J. Am. Acad. Dermatol. 59, 633–653 (2008).

    Article  PubMed  Google Scholar 

  4. LeRoy, E. C. & Medsger, T. A. Jr. Raynaud's phenomenon: a proposal for classification. Clin. Exp. Rheumatol. 10, 485–488 (1992).

    CAS  PubMed  Google Scholar 

  5. Koenig, M. et al. Autoantibodies and microvascular damage are independent predictive factors for the progression of Raynaud's phenomenon to systemic sclerosis: a twenty-year prospective study of 586 patients, with validation of proposed criteria for early systemic sclerosis. Arthritis Rheum. 58, 3902–3912 (2008).

    Article  PubMed  Google Scholar 

  6. Kahaleh, B. Vascular disease in scleroderma: mechanisms of vascular injury. Rheum. Dis. Clin. North Am. 34, 57–71 (2008).

    Article  PubMed  Google Scholar 

  7. Herrick, A. L. Pathogenesis of Raynaud's phenomenon. Rheumatology (Oxford) 44, 587–596 (2005).

    Article  CAS  Google Scholar 

  8. Wigley, F. M. Vascular disease in scleroderma. Clin. Rev. Allergy Immunol. 36, 150–175 (2009).

    Article  PubMed  Google Scholar 

  9. Brown, G. E. & O'Leary, P. A. Skin capillaries in scleroderma. Arch. Intern. Med. 36, 73–88 (1925).

    Article  Google Scholar 

  10. Campbell, P. M. & LeRoy, E. C. Pathogenesis of systemic sclerosis: a vascular hypothesis. Semin. Arthritis Rheum. 4, 351–368 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Michalowski, R. & Kudejko, J. Electron microscopic observations on skeletal muscle in diffuse scleroderma. Br. J. Dermatol. 78, 24–28 (1966).

    Article  CAS  PubMed  Google Scholar 

  12. Freemont, A. J., Hoyland, J., Fielding, P., Hodson, N. & Jayson, M. I. Studies of the microvascular endothelium in uninvolved skin of patients with systemic sclerosis: direct evidence for a generalized microangiopathy. Br. J. Dermatol. 126, 561–568 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Prescott, R. J., Freemont, A. J., Jones, C. J., Hoyland, J. & Fielding, P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J. Pathol. 166, 255–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Cool, C. D., Kennedy, D., Voelkel, N. F. & Tuder, R. M. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Hum. Pathol. 28, 434–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Dorfmuller, P. et al. Fibrous remodeling of the pulmonary venous system in pulmonary arterial hypertension associated with connective tissue diseases. Hum. Pathol. 38, 893–902 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. Nagai, Y. et al. Autopsy case of systemic sclerosis with severe pulmonary hypertension. J. Dermatol. 34, 769–772 (2007).

    Article  PubMed  Google Scholar 

  17. Cannon, P. J. et al. The relationship of hypertension and renal failure in scleroderma (progressive systemic sclerosis) to structural and functional abnormalities of the renal cortical circulation. Medicine (Baltimore) 53, 1–46 (1974).

    Article  CAS  Google Scholar 

  18. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Papetti, M. & Herman, I. M. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol. 282, C947–C970 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Fleischmajer, R. & Perlish, J. S. [3H]Thymidine labeling of dermal endothelial cells in scleroderma. J. Invest. Dermatol. 69, 379–382 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Kazandjian, S., Bruneval, P., Fiessinger, J. N., Camilleri, J. P. & Housset, E. Active proliferation of telangiectases in skin of patients with progressive systemic sclerosis (PSS). Arch. Dermatol. Res. 279, 8–11 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Kazandjian, S., Fiessinger, J. N., Camilleri, J. P., Dadoune, J. P. & Housset, E. Endothelial cell renewal in skin of patients with progressive systemic sclerosis (PSS): an in vitro autoradiographic study. Acta Derm. Venereol. 62, 425–429 (1982).

    CAS  PubMed  Google Scholar 

  23. Dong, C. et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc. Natl Acad. Sci. USA 99, 3908–3913 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ribatti, D. et al. Systemic sclerosis stimulates angiogenesis in the chick embryo chorioallantoic membrane. Clin. Rheumatol. 17, 115–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Beon, M., Harley, R. A., Wessels, A., Silver, R. M. & Ludwicka-Bradley, A. Myofibroblast induction and microvascular alteration in scleroderma lung fibrosis. Clin. Exp. Rheumatol. 22, 733–742 (2004).

    CAS  PubMed  Google Scholar 

  26. Distler, O. et al. Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res. 4, R11 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hummers, L. K., Hall, A., Wigley, F. M. & Simons, M. Abnormalities in the regulators of angiogenesis in patients with scleroderma. J. Rheumatol. 36, 576–582 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Davies, C. A., Jeziorska, M., Freemont, A. J. & Herrick, A. L. The differential expression of VEGF, VEGFR-2, and GLUT-1 proteins in disease subtypes of systemic sclerosis. Hum. Pathol. 37, 190–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Distler, O. et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ. Res. 95, 109–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Mackiewicz, Z. et al. Increased but imbalanced expression of VEGF and its receptors has no positive effect on angiogenesis in systemic sclerosis skin. Clin. Exp. Rheumatol. 20, 641–646 (2002).

    CAS  PubMed  Google Scholar 

  31. Dor, Y. et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 21, 1939–1947 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koch, A. E. & Distler, O. Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis. Arthritis Res. Ther. 9 (Suppl. 2), S3 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mulligan-Kehoe, M. J. et al. Antiangiogenic plasma activity in patients with systemic sclerosis. Arthritis Rheum. 56, 3448–3458 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Urbich, C. & Dimmeler, S. Endothelial progenitor cells functional characterization. Trends Cardiovasc. Med. 14, 318–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Yoder, M. C. Defining human endothelial progenitor cells. J. Thromb. Haemost. 7 (Suppl. 1), 49–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Purhonen, S. et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc. Natl Acad. Sci. USA 105, 6620–6625 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kilarski, W. W., Samolov, B., Petersson, L., Kvanta, A. & Gerwins, P. Biomechanical regulation of blood vessel growth during tissue vascularization. Nat. Med. 15, 657–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Westerweel, P. E. & Verhaar, M. C. Endothelial progenitor cell dysfunction in rheumatic disease. Nat. Rev. Rheumatol. 5, 332–340 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, S. et al. Transcriptional regulation of Bim by FOXO3a and Akt mediates scleroderma serum-induced apoptosis in endothelial progenitor cells. Circulation 118, 2156–2165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cipriani, P. et al. Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum. 56, 1994–2004 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Kuwana, M. et al. Increase in circulating endothelial precursors by atorvastatin in patients with systemic sclerosis. Arthritis Rheum. 54, 1946–1951 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Fleming, J. N. et al. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS ONE 3, e1452 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Asano, Y. et al. Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. Am. J. Pathol. 176, 1983–1998 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rajkumar, V. S. et al. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res. Ther. 7, R1113–R1123 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giusti, B. et al. A model of anti-angiogenesis: differential transcriptosome profiling of microvascular endothelial cells from diffuse systemic sclerosis patients. Arthritis Res. Ther. 8, R115 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Taddei, A. et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat. Cell Biol. 10, 923–934 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Gargalovic, P. S. et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 2490–2496 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Lenna, S. et al. HLA-B35 upregulates endothelin-1 and downregulates endothelial nitric oxide synthase via endoplasmic reticulum stress response in endothelial cells. J. Immunol. 184, 4654–4661 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Sgonc, R. et al. Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J. Clin. Invest. 98, 785–792 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Margheri, F. et al. Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphologic and functional, β2 integrin-mediated connection with actin cytoskeleton in human microvascular endothelial cells: failure of association in systemic sclerosis endothelial cells. Arthritis Rheum. 54, 3926–3938 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Serrati, S. et al. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J. Pathol. 210, 240–248 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Kutcher, M. E. & Herman, I. M. The pericyte: cellular regulator of microvascular blood flow. Microvasc. Res. 77, 235–246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rajkumar, V. S., Sundberg, C., Abraham, D. J., Rubin, K. & Black, C. M. Activation of microvascular pericytes in autoimmune Raynaud's phenomenon and systemic sclerosis. Arthritis Rheum. 42, 930–941 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Manzur, M. & Ganss, R. Regulator of G protein signaling 5: a new player in vascular remodeling. Trends Cardiovasc. Med. 19, 26–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453, 410–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Helmbold, P., Fiedler, E., Fischer, M. & Marsch, W. Hyperplasia of dermal microvascular pericytes in scleroderma. J. Cutan. Pathol. 31, 431–440 (2004).

    Article  PubMed  Google Scholar 

  58. Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3, 422–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Hoyland, J. A., Newson, L., Jayson, M. I. & Freemont, A. J. The vascular basement membrane in systemic sclerosis skin: heterogeneity of type IV collagen. Br. J. Dermatol. 129, 384–388 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Zenz, R. et al. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res. Ther. 10, 201 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Eferl, R. et al. Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1. Proc. Natl Acad. Sci. USA 105, 10525–10530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maurer, B. et al. Transcription factor fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis. Circulation 120, 2367–2376 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Oikawa, T. & Yamada, T. Molecular biology of the Ets family of transcription factors. Gene 303, 11–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Asano, Y. et al. Transcription factor Fli1 regulates collagen fibrillogenesis in mouse skin. Mol. Cell. Biol. 29, 425–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Czuwara-Ladykowska, J., Shirasaki, F., Jackers, P., Watson, D. K. & Trojanowska, M. Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J. Biol. Chem. 276, 20839–20848 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Jinnin, M. et al. α2(I) collagen gene regulation by protein kinase C signaling in human dermal fibroblasts. Nucleic Acids Res. 33, 1337–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kubo, M. et al. Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am. J. Pathol. 163, 571–581 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakerakanti, S. S., Kapanadze, B., Yamasaki, M., Markiewicz, M. & Trojanowska, M. Fli1 and Ets1 have distinct roles in connective tissue growth factor/CCN2 gene regulation and induction of the profibrotic gene program. J. Biol. Chem. 281, 25259–25269 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Glass, C. K. & Ogawa, S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat. Rev. Immunol. 6, 44–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Shi-wen, X. et al. Rosiglitazone alleviates the persistent fibrotic phenotype of lesional skin scleroderma fibroblasts. Rheumatology (Oxford) 49, 259–263 (2010).

    Article  CAS  Google Scholar 

  71. Wu, M. et al. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am. J. Pathol. 174, 519–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ameshima, S. et al. Peroxisome proliferator-activated receptor gamma (PPARγ) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ. Res. 92, 1162–1169 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Guignabert, C. et al. Tie2-mediated loss of peroxisome proliferator-activated receptor-γ in mice causes PDGF receptor-β-dependent pulmonary arterial muscularization. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L1082–L1090 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hansmann, G. et al. An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J. Clin. Invest. 118, 1846–1857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hansmann, G. et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-γ activation. Circulation 115, 1275–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Summer, R. et al. Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L432–L438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lepparanta, O. et al. Transcription factor GATA-6 is expressed in quiescent myofibroblasts in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 42, 626–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Mano, T., Luo, Z., Malendowicz, S. L., Evans, T. & Walsh, K. Reversal of GATA-6 downregulation promotes smooth muscle differentiation and inhibits intimal hyperplasia in balloon-injured rat carotid artery. Circ. Res. 84, 647–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Perlman, H., Suzuki, E., Simonson, M., Smith, R. C. & Walsh, K. GATA-6 induces p21(Cip1) expression and G1 cell cycle arrest. J. Biol. Chem. 273, 13713–13718 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Ghatnekar, A. V. et al. The role of GATA-6 in pulmonary arterial hypertension in scleroderma patients. Arthritis Rheum. 60, 1266 (2009).

    Google Scholar 

  81. Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67, 10123–10128 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 19, 2282–2287 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Leask, A. et al. Dysregulation of transforming growth factor β signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum. 46, 1857–1865 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Pannu, J. et al. Smad1 pathway is activated in systemic sclerosis fibroblasts and is targeted by imatinib mesylate. Arthritis Rheum. 58, 2528–2537 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sundberg, C., Ivarsson, M., Gerdin, B. & Rubin, K. Pericytes as collagen-producing cells in excessive dermal scarring. Lab. Invest. 74, 452–466 (1996).

    CAS  PubMed  Google Scholar 

  87. Kulozik, M., Hogg, A., Lankat-Buttgereit, B. & Krieg, T. Co-localization of transforming growth factor β2 with α1(I) procollagen mRNA in tissue sections of patients with systemic sclerosis. J. Clin. Invest. 86, 917–922 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, Y., Fan, P. S. & Kahaleh, B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 54, 2271–2279 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trojanowska, M. Cellular and molecular aspects of vascular dysfunction in systemic sclerosis. Nat Rev Rheumatol 6, 453–460 (2010). https://doi.org/10.1038/nrrheum.2010.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing