Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabetic neuropathy: cellular mechanisms as therapeutic targets

Abstract

In patients with diabetes, nerve injury is a common complication that leads to chronic pain, numbness and substantial loss of quality of life. Good glycemic control can decrease the incidence of diabetic neuropathy, but more than half of all patients with diabetes still develop this complication. There is no approved treatment to prevent or halt diabetic neuropathy, and only symptomatic pain therapies, with variable efficacy, are available. New insights into the mechanisms leading to the development of diabetic neuropathy continue to point to systemic and cellular imbalances in metabolites of glucose and lipids. In the PNS, sensory neurons, Schwann cells and the microvascular endothelium are vulnerable to oxidative and inflammatory stress in the presence of these altered metabolic substrates. This Review discusses the emerging cellular mechanisms that are activated in the diabetic milieu of hyperglycemia, dyslipidemia and impaired insulin signaling. We highlight the pathways to cellular injury, thereby identifying promising therapeutic targets, including mitochondrial function and inflammation.

Key Points

  • Multiple metabolic imbalances underlie the development of diabetic neuropathy

  • Hyperglycemia, dyslipidemia and cardiovascular dysfunction are each independent risk factors for neuropathy

  • Targeting risk factors as well as cellular oxidative stress and inflammation will be important in future treatment approaches

  • Injury to neurons, Schwann cells and microvascular endothelial cells in the diabetic milieu contributes to the pathogenesis of neuropathy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hyperglycemia and hyperlipidemia activate multiple injury mechanisms in sensory neurons.
Figure 2: Proposed algorithm for treating pain in diabetic neuropathy.

Similar content being viewed by others

References

  1. Dyck, P. J. et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 43, 817–824 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Dyck, P. J. et al. Variables influencing neuropathic endpoints: the Rochester Diabetic Neuropathy Study of Healthy Subjects. Neurology 45, 1115–1121 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Edwards, J. L., Vincent, A. M., Cheng, H. T. & Feldman, E. L. Diabetic neuropathy: mechanisms to management. Pharmacol. Ther. 120, 1–34 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guastella, V. & Mick, G. Strategies for the diagnosis and treatment of neuropathic pain secondary to diabetic peripheral sensory polyneuropathy. Diabetes Metab. 35, 12–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Veves, A., Backonja, M. & Malik, R. A. Painful diabetic neuropathy: epidemiology, natural history, early diagnosis, and treatment options. Pain Med. 9, 660–674 (2008).

    Article  PubMed  Google Scholar 

  6. Gandhi, R. A., Marques, J. L., Selvarajah, D., Emery, C. J. & Tesfaye, S. Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care 33, 1585–1590 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Obrosova, I. G. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics 6, 638–647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Athans, W. & Stephens, H. Open calcaneal fractures in diabetic patients with neuropathy: a report of three cases and literature review. Foot Ankle Int. 29, 1049–1053 (2008).

    Article  PubMed  Google Scholar 

  9. Pop-Busui, R. et al. DCCT and EDIC studies in type 1 diabetes: lessons for diabetic neuropathy regarding metabolic memory and natural history. Curr. Diab. Rep. 10, 276–282 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lo, Y. L. et al. The laterality index in the evaluation of distal sensorimotor neuropathy. J. Clin. Neuromuscul. Dis. 10, 18–21 (2008).

    Article  PubMed  Google Scholar 

  11. Koura, N. H. A comparison of sciatic nerve neuropathy in diabetic and aged rats. Folia Biol. (Krakow) 51, 213–218 (2003).

    Google Scholar 

  12. Said, G., Baudoin, D. & Toyooka, K. Sensory loss, pains, motor deficit and axonal regeneration in length-dependent diabetic polyneuropathy. J. Neurol. 255, 1693–1702 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Cameron, N. E. & Cotter, M. A. Diabetes causes an early reduction in autonomic ganglion blood flow in rats. J. Diabetes Complications 15, 198–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Zent, R. & Pozzi, A. Angiogenesis in diabetic nephropathy. Semin. Nephrol. 27, 161–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Morales, A. A better future for children with type 1 diabetes: review of the conclusions from the Diabetes Control and Complications Trial and the Epidemiology of Diabetes Interventions and Complications study. J. Ark. Med. Soc. 106, 90–93 (2009).

    PubMed  Google Scholar 

  16. Dyck, P. J. et al. Risk factors for severity of diabetic polyneuropathy: intensive longitudinal assessment of the Rochester Diabetic Neuropathy Study cohort. Diabetes Care 22, 1479–1486 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Obrosova, I. G. et al. High-fat diet induced neuropathy of pre-diabetes and obesity: effects of “healthy” diet and aldose reductase inhibition. Diabetes 56, 2598–2608 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, C. & Zochodne, D. W. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 52, 2363–2371 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Schmeichel, A. M., Schmelzer, J. D. & Low, P. A. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52, 165–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Vincent, A. M. et al. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes 58, 2376–2385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vincent, A. M., McLean, L. L., Backus, C. & Feldman, E. L. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J. 19, 638–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Lupachyk, S., Shevalye, H., Maksimchyk, Y., Drel, V. R. & Obrosova, I. G. PARP inhibition alleviates diabetes-induced systemic oxidative stress and neural tissue 4-hydroxynonenal adduct accumulation: correlation with peripheral nerve function. Free Radic. Biol. Med. 50, 1400–1409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chowdhury, S. K. et al. Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes 59, 1082–1091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vincent, A. M., Russell, J. W., Low, P. & Feldman, E. L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 25, 612–628 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Vincent, A. M. et al. SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Exp. Neurol. 208, 216–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vincent, A. M. & Feldman, E. L. New insights into the mechanisms of diabetic neuropathy. Rev. Endocr. Metab. Disord. 5, 227–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Bruckner, B. A., Ammini, C. V., Otal, M. P., Raizada, M. K. & Stacpoole, P. W. Regulation of brain glucose transporters by glucose and oxygen deprivation. Metabolism 48, 422–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Yan, L. J., Levine, R. L. & Sohal, R. S. Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl Acad. Sci. USA 94, 11168–11172 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morrison, A. D., Clements, R. S. Jr & Winegrad, A. I. Effects of elevated glucose concentrations on the metabolism of the aortic wall. J. Clin. Invest. 51, 3114–3123 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Obrosova, I., Faller, A., Burgan, J., Ostrow, E. & Williamson, J. R. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor. Curr. Eye Res. 16, 34–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Obrosova, I. G. Diabetes and the peripheral nerve. Biochim. Biophys. Acta 1792, 931–940 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Schemmel, K. E., Padiyara, R. S. & D'Souza, J. J. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. J. Diabetes Complications 24, 354–360 (2010).

    Article  PubMed  Google Scholar 

  34. Obrosova, I. G. Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxid. Redox Signal. 7, 1543–1552 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Askwith, T., Zeng, W., Eggo, M. C. & Stevens, M. J. Oxidative stress and dysregulation of the taurine transporter in high-glucose-exposed human Schwann cells: implications for pathogenesis of diabetic neuropathy. Am. J. Physiol. Endocrinol. Metab. 297, E620–E628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tattersall, R. Alpha-glucosidase inhibition as an adjunct to the treatment of type 1 diabetes. Diabet. Med. 10, 688–693 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Issad, T. & Kuo, M. O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol. Metab. 19, 380–389 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Wiggin, T. D. et al. Rosiglitazone treatment reduces diabetic neuropathy in streptozotocin-treated DBA/2J mice. Endocrinology 149, 4928–4937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duran-Jimenez, B. et al. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 58, 2893–2903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Balakumar, P., Rohilla, A., Krishan, P., Solairaj, P. & Thangathirupathi, A. The multifaceted therapeutic potential of benfotiamine. Pharmacol. Res. 61, 482–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Miyazawa, T., Nakagawa, K., Shimasaki, S. & Nagai, R. Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids doi:10.1007/s00726-010-0772-3.

    Article  PubMed  CAS  Google Scholar 

  42. Vincent, A. M. et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148, 548–558 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Drel, V. R., Pacher, P., Stevens, M. J. & Obrosova, I. G. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. Free Radic. Biol. Med. 40, 1454–1465 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Toth, C. et al. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes 57, 1002–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Cameron, N. E., Gibson, T. M., Nangle, M. R. & Cotter, M. A. Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann. NY Acad. Sci. 1043, 784–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Bierhaus, A. & Nawroth, P. P. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52, 2251–2263 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Vincent, A. M., Hinder, L. M., Pop-Busui, R. & Feldman, E. L. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J. Peripher. Nerv. Syst. 14, 257–267 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fioretto, P., Dodson, P. M., Ziegler, D. & Rosenson, R. S. Residual microvascular risk in diabetes: unmet needs and future directions. Nat. Rev. Endocrinol. 6, 19–25 (2010).

    Article  PubMed  Google Scholar 

  49. Wiggin, T. D. et al. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes 58, 1634–1640 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tesfaye, S. et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33, 2285–2293 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tesfaye, S. & Selvarajah, D. The Eurodiab study: what has this taught us about diabetic peripheral neuropathy? Curr. Diab. Rep. 9, 432–434 (2009).

    Article  PubMed  Google Scholar 

  52. Lacigova, S. et al. Influence of cardiovascular autonomic neuropathy on atherogenesis and heart function in patients with type 1 diabetes. Diabetes Res. Clin. Pract. 83, 26–31 (2009).

    Article  PubMed  Google Scholar 

  53. Elliott, J. et al. Large-fiber dysfunction in diabetic peripheral neuropathy is predicted by cardiovascular risk factors. Diabetes Care 32, 1896–1900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karvestedt, L. et al. Peripheral sensory neuropathy associates with micro- or macroangiopathy: results from a population-based study of type 2 diabetic patients in Sweden. Diabetes Care 32, 317–322 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rockenfeller, P. et al. Fatty acids trigger mitochondrion-dependent necrosis. Cell Cycle 9, 2836–2842 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Vincent, A. M. et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 120, 477–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McAlpine, C. S., Bowes, A. J. & Werstuck, G. H. Diabetes, hyperglycemia and accelerated atherosclerosis: evidence supporting a role for endoplasmic reticulum (ER) stress signaling. Cardiovasc. Hematol. Disord. Drug Targets. 10, 151–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Jiao, P. et al. FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKβ pathways. Obesity doi:10.1038/oby.2010.200.

    Article  PubMed  CAS  Google Scholar 

  59. McCall, K. D. et al. Phenylmethimazole blocks palmitate-mediated induction of inflammatory cytokine pathways in 3T3L1 adipocytes and RAW 264.7 macrophages. J. Endocrinol. 207, 343–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Almaguel, F. G. et al. Lipotoxicity-mediated cell dysfunction and death involve lysosomal membrane permeabilization and cathepsin L activity. Brain Res. 1318, 133–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Padilla, A., Descorbeth, M., Almeyda, A. L., Payne, K. & De Leon, M. Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity. Brain Res. 1370, 64–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Tsintzas, K. et al. Elevated free fatty acids attenuate the insulin-induced suppression of PDK4 gene expression in human skeletal muscle: potential role of intramuscular long-chain acyl-coenzyme A. J. Clin. Endocrinol. Metab. 92, 3967–3972 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Geng, H. et al. The effects of ox-LDL in human atherosclerosis may be mediated in part via the toll-like receptor 4 pathway. Mol. Cell. Biochem. 342, 201–206 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Ishiyama, J., Taguchi, R., Yamamoto, A. & Murakami, K. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis 209, 118–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Nowicki, M. et al. Oxidized low-density lipoprotein (oxLDL)-induced cell death in dorsal root ganglion cell cultures depends not on the lectin-like oxLDL receptor-1 but on the toll-like receptor-4. J. Neurosci. Res. 88, 403–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Honjo, T. et al. Essential role of NOXA1 in generation of reactive oxygen species induced by oxidized low-density lipoprotein in human vascular endothelial cells. Endothelium 15, 137–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Stielow, C. et al. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem. Biophys. Res. Commun. 344, 200–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Shafaati, M. et al. Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer's patients with the Swedish APP 670/671 mutation. J. Lipid Res. 52, 1004–1010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jang, E. R. & Lee, C. S. 7-ketocholesterol induces apoptosis in differentiated PC12 cells via reactive oxygen species-dependent activation of NF-κB and Akt pathways. Neurochem. Int. 58, 52–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Sims-Robinson, C., Kim, B., Rosko, A. & Feldman, E. L. How does diabetes accelerate Alzheimer disease pathology? Nat. Rev. Neurol. 6, 551–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sahin, M. et al. High prevalence of neuropathy in patients with impaired 60-minute oral glucose tolerance test but normal fasting and 120-minute glucose levels. Minerva Endocrinol. 33, 289–296 (2008).

    CAS  PubMed  Google Scholar 

  72. Smith, A. G. & Singleton, J. R. Impaired glucose tolerance and neuropathy. Neurologist 14, 23–29 (2008).

    Article  PubMed  Google Scholar 

  73. Kim, B., Sullivan, K. A., Backus, C. & Feldman, E. L. Cortical neurons develop insulin resistance and blunted Akt signaling: a potential mechanism contributing to enhanced ischemic injury in diabetes. Antioxid. Redox Signal. 14, 1829–1839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chillaron, J. J. et al. Estimated glucose disposal rate in assessment of the metabolic syndrome and microvascular complications in patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 94, 3530–3534 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Frangioudakis, G. & Cooney, G. J. Acute elevation of circulating fatty acids impairs downstream insulin signalling in rat skeletal muscle in vivo independent of effects on stress signalling. J. Endocrinol. 197, 277–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Pratchayasakul, W. et al. Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci. 88, 619–627 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Ziegler, D. et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 29, 2365–2370 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Genuth, S. Insights from the diabetes control and complications trial/epidemiology of diabetes interventions and complications study on the use of intensive glycemic treatment to reduce the risk of complications of type 1 diabetes. Endocr. Pract. 12 (Suppl. 1), 34–41 (2006).

    Article  PubMed  Google Scholar 

  79. Martin, C. L. et al. Neuropathy among the diabetes control and complications trial cohort 8 years after trial completion. Diabetes Care 29, 340–344 (2006).

    Article  PubMed  Google Scholar 

  80. Ce, G. V. et al. Endothelial dysfunction is related to poor glycemic control in adolescents with type 1 diabetes under 5 years of disease: evidence of metabolic memory. J. Clin. Endocrinol. Metab. 96, 1493–1499 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Jax, T. W. Metabolic memory: a vascular perspective. Cardiovasc. Diabetol. 9, 51 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tonna, S., El-Osta, A., Cooper, M. E. & Tikellis, C. Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms. Nat. Rev. Nephrol. 6, 332–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. [No authors listed] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 837–853 (1998).

  84. Van Acker, K. et al. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab. 35, 206–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Jensen, T. S. et al. New perspectives on the management of diabetic peripheral neuropathic pain. Diab. Vasc. Dis. Res. 3, 108–119 (2006).

    Article  PubMed  Google Scholar 

  86. Bril, V. et al. Evidence-based guideline: Treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. PM R. 3, 345–352, 352.e1–21 (2011).

    Article  PubMed  Google Scholar 

  87. Lunn, M. P., Hughes, R. A. & Wiffen, P. J. Duloxetine for treating painful neuropathy or chronic pain. Cochrane Database of Systematic Reviews, Issue 4, Art. No.: CD007115. doi:10.1002/14651858.CD007115.pub2 (2009).

  88. Moore, R. A., Straube, S., Wiffen, P. J., Derry, S. & McQuay, H. J. Pregabalin for acute and chronic pain in adults. Cochrane Database of Systematic Reviews, Issue 3, Art. No.: CD007076. doi:10.1002/14651858.CD007076.pub2 (2009).

  89. Saarto, T. & Wiffen, P. J. Antidepressants for neuropathic pain. Cochrane Database of Systematic Reviews, Issue 4, Art. No.: CD005454. doi:10.1002/14651858.CD005454.pub2 (2007).

  90. Wiffen, P. et al. Anticonvulsant drugs for acute and chronic pain. Cochrane Database of Systematic Reviews, Issue 3, Art. No.: CD001133. doi:10.1002/14651858.CD001133.pub2 (2005).

  91. Schwartz, S. et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial. Curr. Med. Res. Opin. 27, 151–162 (2010).

    Article  CAS  Google Scholar 

  92. Gaede, P. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 348, 383–393 (2003).

    Article  PubMed  Google Scholar 

  93. Tesfaye, S. et al. Factors that impact symptomatic diabetic peripheral neuropathy in placebo-administered patients from two 1-year clinical trials. Diabetes Care 30, 2626–2632 (2007).

    Article  PubMed  Google Scholar 

  94. Asnaghi, V., Gerhardinger, C., Hoehn, T., Adeboje, A. & Lorenzi, M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 52, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Drel, V. R. et al. Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int. J. Mol. Med. 21, 667–676 (2008).

    CAS  PubMed  Google Scholar 

  96. Ekshyyan, O. & Aw, T. Y. Apoptosis in acute and chronic neurological disorders. Front. Biosci. 9, 1567–1576 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Russell, J. W., Sullivan, K. A., Windebank, A. J., Herrmann, D. N. & Feldman, E. L. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol. Dis. 6, 347–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Srinivasan, S., Stevens, M. J., Sheng, H., Hall, K. E. & Wiley, J. W. Serum from patients with type 2 diabetes with neuropathy induces complement-independent, calcium-dependent apoptosis in cultured neuronal cells. J. Clin. Invest. 102, 1454–1462 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schmidt, R. E. Neuronal preservation in the sympathetic ganglia of rats with chronic streptozotocin-induced diabetes. Brain Res. 921, 256–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Kuhad, A. & Chopra, K. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 57, 456–462 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Curtin, N. J. PARP inhibitors for cancer therapy. Expert Rev. Mol. Med. 7, 1–20 (2005).

    Article  PubMed  Google Scholar 

  102. Negi, G., Kumar, A. & Sharma, S. S. Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy. Biochem. Biophys. Res. Commun. 391, 102–106 (2009).

    Article  PubMed  CAS  Google Scholar 

  103. Obrosova, I. G. et al. Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes 54, 234–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Liang, H. & Tan, A. R. Iniparib, a PARP1 inhibitor for the potential treatment of cancer, including triple-negative breast cancer. IDrugs 13, 646–656 (2010).

    CAS  PubMed  Google Scholar 

  105. Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Kruse, V. et al. PARP inhibitors in oncology: a new synthetic lethal approach to cancer therapy. Acta Clin. Belg. 66, 2–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Chattopadhyay, M. et al. Prolonged preservation of nerve function in diabetic neuropathy in mice by herpes simplex virus-mediated gene transfer. Diabetologia 50, 1550–1558 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Jeong, J. O. et al. Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation 119, 699–708 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Naruse, K. et al. Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes 54, 1823–1828 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Benter, I. F. et al. Angiotensin-(1–7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am. J. Nephrol. 28, 25–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Wind, S. et al. Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br. J. Pharmacol. 161, 885–898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stefanska, J. et al. Apocynin decreases hydrogen peroxide and nitrate concentrations in exhaled breath in healthy subjects. Pulm. Pharmacol. Ther. 23, 48–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Matsushima, S. et al. Increased myocardial NAD(P)H oxidase-derived superoxide causes the exacerbation of postinfarct heart failure in type 2 diabetes. Am. J. Physiol. Heart Circ. Physiol. 297, H409–H416 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Sonta, T. et al. Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity. Free Radic. Biol. Med. 37, 115–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Cotter, M. A. & Cameron, N. E. Effect of the NAD(P)H oxidase inhibitor, apocynin, on peripheral nerve perfusion and function in diabetic rats. Life Sci. 73, 1813–1824 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Loesch, A., Tang, H., Cotter, M. A. & Cameron, N. E. Sciatic nerve of diabetic rat treated with epoetin delta: effects on C-fibers and blood vessels including pericytes. Angiology 61, 651–668 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Anand, P. et al. Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur. J. Pain doi:10.1016/j.ejpain.2011.04.005.

    Article  CAS  PubMed  Google Scholar 

  118. Genovese, M. C. et al. A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis. J. Rheumatol. 38, 846–854 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Kellogg, A. P., Converso, K., Wiggin, T., Stevens, M. & Pop-Busui, R. Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes. Am. J. Physiol. Heart Circ. Physiol. 296, H453–H461 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Lecka-Czernik, B. Aleglitazar, a dual PPARα and PPARγ agonist for the potential oral treatment of type 2 diabetes mellitus. IDrugs 13, 793–801 (2010).

    CAS  PubMed  Google Scholar 

  121. Cavender, M. A. & Lincoff, A. M. Therapeutic potential of aleglitazar, a new dual PPAR-α/γ agonist: implications for cardiovascular disease in patients with diabetes mellitus. Am. J. Cardiovasc. Drugs 10, 209–216 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Canty, J. M. Jr & Smith, T. P. Jr. Modulation of coronary autoregulatory responses by endothelium-derived nitric oxide. Int. J. Cardiol. 50, 207–215 (1995).

    Article  PubMed  Google Scholar 

  123. Jude, E. B., Dang, C. & Boulton, A. J. Effect of L-arginine on the microcirculation in the neuropathic diabetic foot in type 2 diabetes mellitus: a double-blind, placebo-controlled study. Diabet. Med. 27, 113–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Shimoshige, Y., Enomoto, R., Aoki, T., Matsuoka, N. & Kaneko, S. The involvement of aldose reductase in alterations to neurotrophin receptors and neuronal cytoskeletal protein mRNA levels in the dorsal root ganglion of streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 33, 67–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Kuzumoto, Y., Kusunoki, S., Kato, N., Kihara, M. & Low, P. A. Effect of the aldose reductase inhibitor fidarestat on experimental diabetic neuropathy in the rat. Diabetologia 49, 3085–3093 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Bril, V., Hirose, T., Tomioka, S. & Buchanan, R. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care 32, 1256–1260 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ramirez, M. A. & Borja, N. L. Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy 28, 646–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Hotta, N. et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care 29, 1538–1544 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Skalska, S. et al. Neuropathy in a rat model of mild diabetes induced by multiple low doses of streptozotocin: effects of the antioxidant stobadine in comparison with a high-dose α-lipoic acid treatment. Gen. Physiol. Biophys. 29, 50–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Poh, Z. X. & Goh, K. P. A current update on the use of alpha lipoic acid in the management of type 2 diabetes mellitus. Endocr. Metab. Immune Disord. Drug Targets. 9, 392–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Vallianou, N., Evangelopoulos, A. & Koutalas, P. Alpha-lipoic acid and diabetic neuropathy. Rev. Diabet. Stud. 6, 230–236 (2009).

    Article  PubMed  Google Scholar 

  132. Foster, T. S. Efficacy and safety of α-lipoic acid supplementation in the treatment of symptomatic diabetic neuropathy. Diabetes Educ. 33, 111–117 (2007).

    Article  PubMed  Google Scholar 

  133. Hoyer, S. & Betz, K. Elimination of the delayed postischemic energy deficit in cerebral cortex and hippocampus of aged rats with a dried, deproteinized blood extract (Actovegin). Arch. Gerontol. Geriatr. 9, 181–192 (1989).

    Article  CAS  PubMed  Google Scholar 

  134. Ziegler, D. et al. Treatment of symptomatic polyneuropathy with actovegin in type 2 diabetic patients. Diabetes Care 32, 1479–1484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lee, H. J. et al. Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats. Biochem. Biophys. Res. Commun. 296, 293–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Li, P. et al. Fenofibrate promotes ischemia-induced revascularization through the adiponectin-dependent pathway. Am. J. Physiol. Endocrinol. Metab. 299, E560–E566 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Zhao, Z. et al. Rosiglitazone and fenofibrate improve insulin sensitivity of pre-diabetic OLETF rats by reducing malonyl-CoA levels in the liver and skeletal muscle. Life Sci. 84, 688–695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ansquer, J. C., Foucher, C., Aubonnet, P. & Le Malicot, K. Fibrates and microvascular complications in diabetes—insight from the FIELD study. Curr. Pharm. Des. 15, 537–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Rajamani, K. et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet 373, 1780–1788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Eroglu, C. et al. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Backonja, M. M. Use of anticonvulsants for treatment of neuropathic pain. Neurology 59, S14–S17 (2002).

    Article  PubMed  Google Scholar 

  142. Ermis, N. et al. Gabapentin therapy improves heart rate variability in diabetic patients with peripheral neuropathy. J. Diabetes Complications 24, 229–233 (2010).

    Article  PubMed  Google Scholar 

  143. Nakamura, J. et al. Polyol pathway hyperactivity is closely related to carnitine deficiency in the pathogenesis of diabetic neuropathy of streptozotocin-diabetic rats. J. Pharmacol. Exp. Ther. 287, 897–902 (1998).

    CAS  PubMed  Google Scholar 

  144. Evans, J. D., Jacobs, T. F. & Evans, E. W. Role of acetyl-L-carnitine in the treatment of diabetic peripheral neuropathy. Ann. Pharmacother. 42, 1686–1691 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Cameron, N. E. & Cotter, M. A. The effects of 5-hydroxytryptamine 5-HT2 receptor antagonists on nerve conduction velocity and endoneurial perfusion in diabetic rats. Naunyn Schmiedebergs Arch. Pharmacol. 367, 607–614 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. O'Donnell, M. E. et al. The effects of cilostazol on peripheral neuropathy in diabetic patients with peripheral arterial disease. Angiology 59, 695–704 (2008).

    Article  PubMed  Google Scholar 

  147. Laczy, B. et al. Effects of pentoxifylline and pentosan polysulphate combination therapy on diabetic neuropathy in type 2 diabetes mellitus. Acta Diabetol. 46, 105–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Karachalias, N., Babaei-Jadidi, R., Rabbani, N. & Thornalley, P. J. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia 53, 1506–1516 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Katare, R. G. et al. Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway. Circ. Heart Fail. 3, 294–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hills, C. E. & Brunskill, N. J. Cellular and physiological effects of C-peptide. Clin. Sci. (Lond.) 116, 565–574 (2009).

    Article  CAS  Google Scholar 

  151. Stevens, M. J., Zhang, W., Li, F. & Sima, A. A. C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am. J. Physiol. Endocrinol. Metab. 287, E497–E505 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Zhang, W. et al. Human C-peptide dose dependently prevents early neuropathy in the BB/Wor-rat. Int. J. Exp. Diabetes Res. 2, 187–193 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ekberg, K. & Johansson, B. L. Effect of C-peptide on diabetic neuropathy in patients with type 1 diabetes. Exp. Diabetes Res. 2008, 457912 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Apfel, S. C., Arezzo, J. C., Brownlee, M., Federoff, H. & Kessler, J. A. Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res. 634, 7–12 (1994).

    Article  CAS  PubMed  Google Scholar 

  155. Walwyn, W. M. et al. HSV-1-mediated NGF delivery delays nociceptive deficits in a genetic model of diabetic neuropathy. Exp. Neurol. 198, 260–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Cheng, H. T., Dauch, J. R., Hayes, J. M., Hong, Y. & Feldman, E. L. Nerve growth factor mediates mechanical allodynia in a mouse model of type 2 diabetes. J. Neuropathol. Exp. Neurol. 68, 1229–1243 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Apfel, S. C. et al. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology 51, 695–702 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Apfel, S. C. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int. Rev. Neurobiol. 50, 393–413 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Joy, S. V. et al. Ruboxistaurin, a protein kinase C β inhibitor, as an emerging treatment for diabetes microvascular complications. Ann. Pharmacother. 39, 1693–1699 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Danis, R. P. & Sheetz, M. J. Ruboxistaurin: PKC-β inhibition for complications of diabetes. Expert Opin. Pharmacother. 10, 2913–2925 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Nakae, M. et al. Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats. Diabetes 55, 1470–1477 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Feldman, E. L. & Stevens, M. J. Clinical testing in diabetic peripheral neuropathy. Can. J. Neurol. Sci. 21, S3–S7 (1994).

    Article  CAS  PubMed  Google Scholar 

  163. Hsieh, S. T. Pathology and functional diagnosis of small-fiber painful neuropathy. Acta Neurol. Taiwan 19, 82–89 (2010).

    PubMed  Google Scholar 

  164. Gibbons, C. H., Freeman, R. & Veves, A. Diabetic neuropathy: a cross-sectional study of the relationships among tests of neurophysiology. Diabetes Care 33, 2629–2634 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Asad, A. et al. Comparison of nerve conduction studies with diabetic neuropathy symptom score and diabetic neuropathy examination score in type-2 diabetics for detection of sensorimotor polyneuropathy. J. Pak. Med. Assoc. 59, 594–598 (2009).

    PubMed  Google Scholar 

  166. Singleton, J. R. et al. The Utah Early Neuropathy Scale: a sensitive clinical scale for early sensory predominant neuropathy. J. Peripher. Nerv. Syst. 13, 218–227 (2008).

    Article  PubMed  Google Scholar 

  167. Chao, C. C. et al. Pathophysiology of neuropathic pain in type 2 diabetes: skin denervation and contact heat-evoked potentials. Diabetes Care 33, 2654–2659 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  168. England, J. D. et al. Practice parameter: the evaluation of distal symmetric polyneuropathy: the role of autonomic testing, nerve biopsy, and skin biopsy (an evidence-based review). Report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. PM R. 1, 14–22 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. M. Vincent researched data for the article. All authors contributed to discussions of the content, writing of the article, and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Andrea M. Vincent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, A., Callaghan, B., Smith, A. et al. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7, 573–583 (2011). https://doi.org/10.1038/nrneurol.2011.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.137

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research