Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunology of atherosclerosis

Key Points

  • Atherosclerotic cardiovascular disease is the leading cause of death worldwide; the disease process is accelerated in patients with chronic kidney disease

  • Hypercholesterolemia leads to accumulation of plasma LDL in the artery wall; LDL and its components elicit vascular inflammation that drives the build-up of lipid-laden atherosclerotic plaques

  • Several small populations of innate immune cells have important roles at different stages of atherosclerosis development, but macrophages are the main innate immune effector cell type in the plaque

  • T cells that respond to autoantigenic components of LDL particles orchestrate plaque development; T helper type 1 (TH1) cells promote atherosclerosis, regulatory T cells are protective and TH17 cells promote plaque stability

  • Many connections between the immune system and metabolism exist; acute inflammation induces hypertriglyceridemia, whereas chronic inflammation has more complex effects

  • Novel approaches such as anti-inflammatory therapies, T-cell-based treatments or vaccination against LDL, could potentially reduce cardiovascular inflammation and protect against the development of atherosclerosis

Abstract

Cardiovascular disease is the leading cause of death worldwide, both in the general population and among patients with chronic kidney disease (CKD). In most cases, the underlying cause of the cardiovascular event is atherosclerosis — a chronic inflammatory disease. CKD accelerates atherosclerosis via augmentation of inflammation, perturbation of lipid metabolism, and other mechanisms. In the artery wall, subendothelial retention of plasma lipoproteins triggers monocyte-derived macrophages and T helper type 1 (TH1) cells to form atherosclerotic plaques. Inflammation is initiated by innate immune reactions to modified lipoproteins and is perpetuated by TH1 cells that react to autoantigens from the apolipoprotein B100 protein of LDL. Other T cells are also active in atherosclerotic lesions; regulatory T cells inhibit pathological inflammation, whereas TH17 cells can promote plaque fibrosis. The slow build-up of atherosclerotic plaques is asymptomatic, but plaque rupture or endothelial erosion can induce thrombus formation, leading to myocardial infarction or ischaemic stroke. Targeting risk factors for atherosclerosis has reduced mortality, but a need exists for novel therapies to stabilize plaques and to treat arterial inflammation. Patients with CKD would likely benefit from such preventive measures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate immune responses in atherosclerosis.
Figure 2: Adaptive immunity in atherosclerosis.
Figure 3: LDL autoimmunity in atherosclerosis.

Similar content being viewed by others

References

  1. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).

    Article  PubMed  Google Scholar 

  2. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Schiffrin, E. L., Lipman, M. L. & Mann, J. F. Chronic kidney disease: effects on the cardiovascular system. Circulation 116, 85–97 (2007).

    Article  PubMed  Google Scholar 

  4. Hakeem, A., Bhatti, S. & Chang, S. M. Screening and risk stratification of coronary artery disease in end-stage renal disease. JACC Cardiovasc. Imaging 7, 715–728 (2014).

    Article  PubMed  Google Scholar 

  5. Stenvinkel, P. et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 55, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Hansson, G. K. & Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 12, 204–212 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92, 3893–3897 (1995). Discovery of the cellular immune response in the atherosclerotic plaque.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frostegard, J. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 145, 33–43 (1999). Study demonstrating that atherosclerosis is a T H 1-type disease.

    Article  CAS  PubMed  Google Scholar 

  13. Virchow, R. in Gesammelte Abhandlungen zur Wissenschaftlichen Medicin (Meidinger & Sohn Corp, 1856).

    Google Scholar 

  14. Anitschkoff, N. Über Veränderungen der Kaninchen-Aorta bei experimentelle Cholesterolinsteatose. Beitr. Path. Anat. 56, 379–391 (in German) (1913).

    Google Scholar 

  15. de Beer, F. C. et al. Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br. Heart J. 47, 239–243 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liuzzo, G. et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N. Engl. J. Med. 331, 417–424 (1994). Study demonstrating that CRP is a biomarker for cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  17. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Hirschfield, G. M. et al. Transgenic human C-reactive protein is not proatherogenic in apolipoprotein E-deficient mice. Proc. Natl Acad. Sci. USA 102, 8309–8314 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tennent, G. A. et al. Transgenic human CRP is not pro-atherogenic, pro-atherothrombotic or pro-inflammatory in apoE−/− mice. Atherosclerosis 196, 248–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Morrone, G. et al. Recombinant interleukin 6 regulates the transcriptional activation of a set of human acute phase genes. J. Biol. Chem. 263, 12554–12558 (1988).

    CAS  PubMed  Google Scholar 

  21. Hoefer, I. E. et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur. Heart J. 36, 2635–2642 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008). Report that patients with elevated CRP levels benefit from statin therapy.

    Article  CAS  PubMed  Google Scholar 

  23. Qureshi, A. R. et al. Inflammation, malnutrition, and cardiac disease as predictors of mortality in hemodialysis patients. J. Am. Soc. Nephrol. 13 (Suppl. 1), S28–S36 (2002).

    PubMed  Google Scholar 

  24. Tong, M. et al. Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality. Clin. J. Am. Soc. Nephrol. 2, 889–897 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Norata, G. D., Garlanda, C. & Catapano, A. L. The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases. Trends Cardiovasc. Med. 20, 35–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Deban, L. et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat. Immunol. 11, 328–334 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Norata, G. D. et al. Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation 120, 699–708 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Muhlestein, J. B. et al. Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. Circulation 97, 633–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Caligiuri, G., Rottenberg, M., Nicoletti, A., Wigzell, H. & Hansson, G. K. Chlamydia pneumoniae infection does not induce or modify atherosclerosis in mice. Circulation 103, 2834–2838 (2001). Study demonstrating that Chlamydia pneumoniae does not cause atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  30. Wright, S. D. et al. Infectious agents are not necessary for murine atherogenesis. J. Exp. Med. 191, 1437–1442 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andraws, R., Berger, J. S. & Brown, D. L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 293, 2641–2647 (2005). Study demonstrating that antibiotics do not prevent myocardial infarction.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011). Study linking gut metabolism to cardiovascular disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature 470, 264–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lusis, A. J. Genetics of atherosclerosis. Trends Genet. 28, 267–275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davies, R. W. et al. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circ. Cardiovasc. Genet. 5, 217–225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Swanberg, M. et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat. Genet. 37, 486–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Bjorkbacka, H. et al. Weak associations between human leucocyte antigen genotype and acute myocardial infarction. J. Intern. Med. 268, 50–58 (2010).

    CAS  PubMed  Google Scholar 

  39. Pentikainen, M. O., Oorni, K., Ala-Korpela, M. & Kovanen, P. T. Modified LDL — trigger of atherosclerosis and inflammation in the arterial intima. J. Intern. Med. 247, 359–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Cybulsky, M. I. & Gimbrone, M. A. Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251, 788–791 (1991). Discovery that the leukocyte-recruiting adhesion molecule VCAM-1 is induced during atherogenesis.

    Article  CAS  PubMed  Google Scholar 

  41. Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L. & Ross, R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842–851 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Chevre, R. et al. High-resolution imaging of intravascular atherogenic inflammation in live mice. Circ. Res. 114, 770–779 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. McArdle, S., Mikulski, Z. & Ley, K. Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J. Exp. Med. 213, 1117–1131 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fowler, S., Shio, H. & Haley, N. J. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations. Lab. Invest. 41, 372–378 (1979).

    CAS  PubMed  Google Scholar 

  45. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goldstein, J. L., Ho, Y. K., Basu, S. K. & Brown, M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl Acad. Sci. USA 76, 333–337 (1979). Discovery of scavenger receptor expression on macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013). State-of-the-art review of the role of macrophages in atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kunjathoor, V. V. et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 277, 49982–49988 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Buono, C., Anzinger, J. J., Amar, M. & Kruth, H. S. Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J. Clin. Invest. 119, 1373–1381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park, Y. M., Febbraio, M. & Silverstein, R. L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest. 119, 136–145 (2009).

    CAS  PubMed  Google Scholar 

  51. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Chinetti-Gbaguidi, G. et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ. Res. 108, 985–995 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kadl, A. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res. 107, 737–746 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Google Scholar 

  55. Rong, J. X., Shapiro, M., Trogan, E. & Fisher, E. A. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc. Natl Acad. Sci. USA 100, 13531–13536 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feil, S. et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ. Res. 115, 662–667 (2014). Evidence for transdifferentiation accounting for foam cells of lesions.

    Article  CAS  PubMed  Google Scholar 

  57. Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 21, 628–637 (2015). Further evidence that smooth muscle cells can develop into macrophage-like cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Allahverdian, S., Chehroudi, A. C., McManus, B. M., Abraham, T. & Francis, G. A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129, 1551–1559 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Jonasson, L., Holm, J., Skalli, O., Bondjers, G. & Hansson, G. K. Regional accumulations of T-cells, macrophages, and smooth-muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6, 131–138 (1986). Discovery of immune cells in atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  60. Richardson, P. D., Davies, M. J. & Born, G. V. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2, 941–944 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Naghavi, M. et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108, 1664–1672 (2003).

    Article  PubMed  Google Scholar 

  62. van der Wal, A. C., Becker, A. E., van der Loos, C. M. & Das, P. K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89, 36–44 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Kubo, T. et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50, 933–939 (2007).

    Article  PubMed  Google Scholar 

  64. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Libby, P. & Pasterkamp, G. Requiem for the 'vulnerable plaque'. Eur. Heart J. 36, 2984–2987 (2015). Provocative review on the changing features of acute coronary syndromes.

    PubMed  Google Scholar 

  66. van Lammeren, G. W. et al. Time-dependent changes in atherosclerotic plaque composition in patients undergoing carotid surgery. Circulation 129, 2269–2276 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Amento, E. P., Ehsani, N., Palmer, H. & Libby, P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb. 11, 1223–1230 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Ovchinnikova, O. A. et al. The collagen cross-linking enzyme lysyl oxidase is associated with the healing of human atherosclerotic lesions. J. Intern. Med. 276, 525–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Hansson, G. K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med. 170, 1595–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Ovchinnikova, O. et al. T-cell activation leads to reduced collagen maturation in atherosclerotic plaques of Apoe−/− mice. Am. J. Pathol. 174, 693–700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Back, M., Ketelhuth, D. F. & Agewall, S. Matrix metalloproteinases in atherothrombosis. Prog. Cardiovasc. Dis. 52, 410–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Kovanen, P. T., Kaartinen, M. & Paavonen, T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92, 1084–1088 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Ehara, S. et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110, 3424–3429 (2004).

    Article  PubMed  Google Scholar 

  74. Edfeldt, K., Swedenborg, J., Hansson, G. K. & Yan, Z. Q. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158–1161 (2002). Discovery of Toll-like receptors in human atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  75. Miller, Y. I. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 278, 1561–1568 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. West, X. Z. et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467, 972–976 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lundberg, A. M. & Hansson, G. K. Innate immune signals in atherosclerosis. Clin. Immunol. 134, 5–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med. 10, 416–421 (2004). Study demonstrating an effect of innate immune activation on atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  79. Hurt-Camejo, E., Camejo, G., Peilot, H., Oorni, K. & Kovanen, P. Phospholipase A2 in vascular disease. Circ. Res. 89, 298–304 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Lonn, E. et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293, 1338–1347 (2005).

    Article  PubMed  Google Scholar 

  81. Mann, J. F. et al. Homocysteine lowering with folic acid and B vitamins in people with chronic kidney disease — results of the renal Hope-2 study. Nephrol. Dial. Transplant. 23, 645–653 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. White, H. D. et al. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med. 370, 1702–1711 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. O'Donoghue, M. L. et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA 312, 1006–1015 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010). Study showing that cholesterol crystals activate the inflammasome in early atherogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rajamaki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ridker, P. M., Thuren, T., Zalewski, A. & Libby, P. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 162, 597–605 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Loppnow, H. & Libby, P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J. Clin. Invest. 85, 731–738 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maier, W. et al. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation 111, 1355–1361 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Biasucci, L. M. et al. Elevated levels of interleukin-6 in unstable angina. Circulation 94, 874–877 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Drechsler, M., Megens, R. T., van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122, 1837–1845 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Tupin, E. et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199, 417–422 (2004). Study demonstrating a role of lipid-recognizing natural killer T cells in atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Whitman, S. C., Rateri, D. L., Szilvassy, S. J., Yokoyama, W. & Daugherty, A. Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice. Arterioscler. Thromb. Vasc. Biol. 24, 1049–1054 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. van Puijvelde, G. H. et al. Effect of natural killer T cell activation on the initiation of atherosclerosis. Thromb. Haemost. 102, 223–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Cheng, H. Y., Wu, R. & Hedrick, C. C. Gammadelta (γδ) T lymphocytes do not impact the development of early atherosclerosis. Atherosclerosis 234, 265–269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Elhage, R. et al. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am. J. Pathol. 165, 2013–2018 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jonasson, L., Holm, J., Skalli, O., Gabbiani, G. & Hansson, G. K. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J. Clin. Invest. 76, 125–131 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bobryshev, Y. V. & Lord, R. S. Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions. Cardiovasc. Res. 37, 799–810 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Llodra, J. et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl Acad. Sci. USA 101, 11779–11784 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Palinski, W. et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl Acad. Sci. USA 86, 1372–1376 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bui, M. N. et al. Autoantibody titers to oxidized low-density lipoprotein in patients with coronary atherosclerosis. Am. Heart J. 131, 663–667 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Wu, R., Huang, Y. H., Elinder, L. S. & Frostegard, J. Lysophosphatidylcholine is involved in the antigenicity of oxidized LDL. Arterioscler. Thromb. Vasc. Biol. 18, 626–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fredrikson, G. N. et al. Identification of immune responses against aldehyde-modified peptide sequences in apoB associated with cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 23, 872–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Xu, Q., Kleindienst, R., Waitz, W., Dietrich, H. & Wick, G. Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J. Clin. Invest. 91, 2693–2702 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Benagiano, M. et al. Human 60-kDa heat shock protein is a target autoantigen of T cells derived from atherosclerotic plaques. J. Immunol. 174, 6509–6517 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. George, J., Afek, A., Gilburd, B., Shoenfeld, Y. & Harats, D. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J. Am. Coll. Cardiol. 38, 900–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Schett, G. et al. Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J. Clin. Invest. 96, 2569–2577 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wick, G., Jakic, B., Buszko, M., Wick, M. C. & Grundtman, C. The role of heat shock proteins in atherosclerosis. Nat. Rev. Cardiol. 11, 516–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106, 1708–1715 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Klingenberg, R., Ketelhuth, D. F., Strodthoff, D., Gregori, S. & Hansson, G. K. Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoe−/− mice. Immunobiology 217, 540–547 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. George, J. et al. Adoptive transfer of beta2-glycoprotein I-reactive lymphocytes enhances early atherosclerosis in LDL receptor-deficient mice. Circulation 102, 1822–1827 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Duner, P. et al. Immunization of apoE−/− mice with aldehyde-modified fibronectin inhibits the development of atherosclerosis. Cardiovasc. Res. 91, 528–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Grabner, R. et al. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Martel, C. et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Invest. 123, 1571–1579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cuffy, M. C. et al. Induction of indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-gamma contributes to medial immunoprivilege. J. Immunol. 179, 5246–5254 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Galkina, E. et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203, 1273–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Watanabe, M. et al. Distribution of inflammatory cells in adventitia changed with advancing atherosclerosis of human coronary artery. J. Atheroscler. Thromb. 14, 325–331 (2007).

    Article  PubMed  Google Scholar 

  118. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity 42, 1100–1115 (2015). Study describing the formation of tertiary lymphoid organs around atherosclerotic arteries.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Clement, M. et al. Control of the T follicular helper-germinal center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Hansson, G. K., Holm, J. & Jonasson, L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol. 135, 169–175 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou, X., Stemme, S. & Hansson, G. K. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am. J. Pathol. 149, 359–366 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Stemme, S., Holm, J. & Hansson, G. K. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler. Thromb. 12, 206–211 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Paulsson, G., Zhou, X., Tornquist, E. & Hansson, G. K. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 20, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Zhou, X., Nicoletti, A., Elhage, R. & Hansson, G. K. Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102, 2919–2922 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Zhou, X., Robertson, A. K., Hjerpe, C. & Hansson, G. K. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 864–870 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Dansky, H. M., Charlton, S. A., Harper, M. M. & Smith, J. D. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA 94, 4642–4646 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Song, L., Leung, C. & Schindler, C. Lymphocytes are important in early atherosclerosis. J. Clin. Invest. 108, 251–259 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Daugherty, A. et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J. Clin. Invest. 100, 1575–1580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Emeson, E. E., Shen, M. L., Bell, C. G. & Qureshi, A. Inhibition of atherosclerosis in CD4 T-cell-ablated and nude (nu/nu) C57BL/6 hyperlipidemic mice. Am. J. Pathol. 149, 675–685 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Olofsson, P. S. et al. CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. Circulation 117, 1292–1301 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Hermansson, A. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J. Exp. Med. 207, 1081–1093 (2010). Study showing that T cells recognize ApoB peptides of LDL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Uyemura, K. et al. Cross-regulatory roles of interleukin (IL)-12 and IL-10 in atherosclerosis. J. Clin. Invest. 97, 2130–2138 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gupta, S. et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest. 99, 2752–2761 (1997). Study showing that the T H 1 cytokine IFN γ promotes atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Whitman, S. C., Ravisankar, P. & Daugherty, A. IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E−/− mice. J. Interferon Cytokine Res. 22, 661–670 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Buono, C. et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 23, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Buono, C. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl Acad. Sci. USA 102, 1596–1601 (2005). Study showing that the T H 1 pathway is proatherogenic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pober, J. S. et al. Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J. Exp. Med. 157, 1339–1353 (1983).

    Article  CAS  PubMed  Google Scholar 

  138. Hansson, G. K., Jonasson, L., Holm, J., Clowes, M. M. & Clowes, A. W. Gamma-interferon regulates vascular smooth muscle proliferation and Ia antigen expression in vivo and in vitro. Circ. Res. 63, 712–719 (1988).

    Article  CAS  PubMed  Google Scholar 

  139. Perisic, L. et al. Gene expression signatures, pathways and networks in carotid atherosclerosis. J. Intern. Med. 279, 293–308 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Zhou, X., Paulsson, G., Stemme, S. & Hansson, G. K. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J. Clin. Invest. 101, 1717–1725 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163, 1117–1125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. King, V. L., Szilvassy, S. J. & Daugherty, A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 22, 456–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114, 427–437 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cardilo-Reis, L. et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med. 4, 1072–1086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Miller, A. M. et al. IL-33 reduces the development of atherosclerosis. J. Exp. Med. 205, 339–346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. IBC 50K CAD Consortium. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet. 7, e1002260 (2011).

  147. Lim, H. et al. Proatherogenic conditions promote autoimmune T helper 17 cell responses in vivo. Immunity 40, 153–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Eid, R. E. et al. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119, 1424–1432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. de Boer, O. J. et al. Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques. J. Pathol. 220, 499–508 (2010).

    CAS  PubMed  Google Scholar 

  150. Danzaki, K. et al. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32, 273–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Usui, F. et al. Interleukin-17 deficiency reduced vascular inflammation and development of atherosclerosis in Western diet-induced apoE-deficient mice. Biochem. Biophys. Res. Commun. 420, 72–77 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Madhur, M. S. et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 1565–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gao, Q. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J. Immunol. 185, 5820–5827 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Erbel, C. et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J. Immunol. 183, 8167–8175 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Smith, E. et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121, 1746–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Taleb, S. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med. 206, 2067–2077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cheng, X. et al. Inhibition of IL-17A in atherosclerosis. Atherosclerosis 215, 471–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Gistera, A. et al. Transforming growth factor-beta signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci. Transl Med. 5, 196ra100 (2013). Study of the plaque-stabilizing role of T H 17 cells.

    Article  CAS  PubMed  Google Scholar 

  160. Cheng, X. et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin. Immunol. 127, 89–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Simon, T. et al. Circulating levels of interleukin-17 and cardiovascular outcomes in patients with acute myocardial infarction. Eur. Heart J. 34, 570–577 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. de Boer, O. J., van der Meer, J. J., Teeling, P., van der Loos, C. M. & van der Wal, A. C. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS ONE 2, e779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Maganto-Garcia, E., Tarrio, M. L., Grabie, N., Bu, D. X. & Lichtman, A. H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124, 185–195 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006). Study showing an atheroprotective role of T reg cells.

    Article  CAS  PubMed  Google Scholar 

  165. Klingenberg, R. et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest. 123, 1323–1334 (2013). Definitive evidence for an atheroprotective role of FOXP3+ T reg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mor, A. et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 893–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Dinh, T. N. et al. Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation 126, 1256–1266 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Takeda, M. et al. Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler. Thromb. Vasc. Biol. 30, 2495–2503 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Sasaki, N. et al. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation 120, 1996–2005 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Kita, T. et al. Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc. Res. 102, 107–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Foks, A. C. et al. Differential effects of regulatory T cells on the initiation and regression of atherosclerosis. Atherosclerosis 218, 53–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Klingenberg, R. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 946–952 (2010). Study showing that mucosal vaccination protects against atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  173. Wigren, M. et al. Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine. J. Intern. Med. 269, 546–556 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Herbin, O. et al. Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 605–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Mallat, Z. et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–e24 (1999). Discovery of the atheroprotective role of IL-10.

    Article  CAS  PubMed  Google Scholar 

  176. Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 19, 2847–2853 (1999).

    Article  CAS  PubMed  Google Scholar 

  177. Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-beta regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Robertson, A. K. et al. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112, 1342–1350 (2003). Study demonstrating that the immunomodulatory action of TGFβ controls atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mallat, Z. et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89, 930–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  181. Lutgens, E. et al. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler. Thromb. Vasc. Biol. 22, 975–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  182. Frutkin, A. D. et al. TGF-β1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol. 29, 1251–1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Reifenberg, K. et al. Overexpression of TGF-beta1 in macrophages reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice. PLoS ONE 7, e40990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Buday, A. et al. Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE−/− mice. Am. J. Physiol. Heart Circ. Physiol. 299, H386–H395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhou, X. & Hansson, G. K. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand. J. Immunol. 50, 25–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  186. Caligiuri, G., Nicoletti, A., Poirier, B. & Hansson, G. K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 109, 745–753 (2002). Discovery of atheroprotective immunity carried by B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Major, A. S., Fazio, S. & Linton, M. F. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 22, 1892–1898 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Robinette, C. D. & Fraumeni, J. F. Jr. Splenectomy and subsequent mortality in veterans of the 1939–1945 war. Lancet 2, 127–129 (1977).

    Article  CAS  PubMed  Google Scholar 

  189. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185, 4410–4419 (2010).

    Article  CAS  PubMed  Google Scholar 

  191. Kerekes, G. et al. Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin. Rheumatol. 28, 705–710 (2009).

    Article  PubMed  Google Scholar 

  192. Kyaw, T. et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ. Res. 109, 830–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9, 736–743 (2003). Report that molecular mimicry with pneumococci is involved in LDL reactivity and atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  194. Centa, M. et al. Atherosclerosis susceptibility in mice is independent of the V1 immunoglobulin heavy chain gene. Arterioscler. Thromb. Vasc. Biol. 36, 25–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Chang, M. K. et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med. 200, 1359–1370 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Grasset, E. K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proc. Natl Acad. Sci. USA 112, E2030–E2038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Isomaa, B. et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24, 683–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  198. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006). Expert review on the role of inflammation in metabolic disorders.

    Article  CAS  PubMed  Google Scholar 

  199. Sammalkorpi, K., Valtonen, V., Kerttula, Y., Nikkila, E. & Taskinen, M. R. Changes in serum lipoprotein pattern induced by acute infections. Metab. Clin. Exp. 37, 859–865 (1988).

    Article  CAS  PubMed  Google Scholar 

  200. Tracey, K. J. et al. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J. Exp. Med. 167, 1211–1227 (1988).

    Article  CAS  PubMed  Google Scholar 

  201. Beutler, B. & Cerami, A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 320, 584–588 (1986). Discovery of TNF as a metabolic cytokine — a pioneering study of immunometabolism.

    Article  CAS  PubMed  Google Scholar 

  202. Khovidhunkit, W. et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J. Lipid Res. 45, 1169–1196 (2004).

    Article  CAS  PubMed  Google Scholar 

  203. Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Holmqvist, M. E. et al. Rapid increase in myocardial infarction risk following diagnosis of rheumatoid arthritis amongst patients diagnosed between 1995 and 2006. J. Intern. Med. 268, 578–585 (2010). Study demonstrating an increased risk of cardiovascular disease in patients with rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  205. Kerekes, G. et al. Effects of biologics on vascular function and atherosclerosis associated with rheumatoid arthritis. Ann. NY Acad. Sci. 1173, 814–821 (2009).

    Article  PubMed  Google Scholar 

  206. Jacobsson, L. T. et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J. Rheumatol. 32, 1213–1218 (2005). Study demonstrating that TNF blockade protects against cardiovascular disease in patients with rheumatoid arthritis.

    CAS  PubMed  Google Scholar 

  207. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013). Study demonstrating that gut microbiota control regulatory immunity.

    Article  CAS  PubMed  Google Scholar 

  208. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sommer, F. & Backhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Jonasson, L., Holm, J. & Hansson, G. K. Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc. Natl Acad. Sci. USA 85, 2303–2306 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Marx, S. O. & Marks, A. R. Bench to bedside: the development of rapamycin and its application to stent restenosis. Circulation 104, 852–855 (2001).

    Article  CAS  PubMed  Google Scholar 

  213. Back, M. & Hansson, G. K. Anti-inflammatory therapies for atherosclerosis. Nat. Rev. Cardiol. 12, 199–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Palinski, W., Miller, E. & Witztum, J. L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA 92, 821–825 (1995). First report of protective immunity against atherosclerosis induced by vaccination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ameli, S. et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16, 1074–1079 (1996).

    Article  CAS  PubMed  Google Scholar 

  216. George, J. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138, 147–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  217. Zhou, X., Caligiuri, G., Hamsten, A., Lefvert, A. K. & Hansson, G. K. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 108–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  218. Fredrikson, G. N. et al. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler. Thromb. Vasc. Biol. 23, 879–884 (2003). Study showing that ApoB vaccination reduces atherosclerosis in mice.

    Article  CAS  PubMed  Google Scholar 

  219. Tse, K. et al. Atheroprotective vaccination with MHC-II restricted peptides from ApoB-100. Front. Immunol. 4, 493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Gistera, A. et al. Vaccination against T-cell epitopes of native ApoB100 reduces vascular inflammation and disease in a humanized mouse model of atherosclerosis. J. Intern. Med. 281, 383–397 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. van Puijvelde, G. H. et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 114, 1968–1976 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Hermansson, A. et al. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 123, 1083–1091 (2011). Study of cellular immunotherapy targeting LDL in mice.

    Article  CAS  PubMed  Google Scholar 

  223. Ketelhuth, D. F., Gistera, A., Johansson, D. K. & Hansson, G. K. T cell-based therapies for atherosclerosis. Curr. Pharm. Des. 19, 5850–5858 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Tsimikas, S. et al. Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J. Lipid Res. 48, 425–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  225. Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imaging 8, 493–494 (2015).

    Article  PubMed  Google Scholar 

  226. Hartvigsen, K. et al. The role of innate immunity in atherogenesis. J. Lipid Res. 50 (Suppl.), S388–S393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Shoji, T. et al. Inverse relationship between circulating oxidized low density lipoprotein (oxLDL) and anti-oxLDL antibody levels in healthy subjects. Atherosclerosis 148, 171–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  228. Habets, K. L. et al. Vaccination using oxidized low-density lipoprotein-pulsed dendritic cells reduces atherosclerosis in LDL receptor-deficient mice. Cardiovasc. Res. 85, 622–630 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Freigang, S., Horkko, S., Miller, E., Witztum, J. L. & Palinski, W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol. 18, 1972–1982 (1998).

    Article  CAS  PubMed  Google Scholar 

  230. Schiopu, A. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110, 2047–2052 (2004).

    Article  CAS  PubMed  Google Scholar 

  231. Ketelhuth, D. F. et al. Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses. Circulation 124, 2433–2443 (2011). Study showing that ApoB activates innate immunity.

    Article  CAS  PubMed  Google Scholar 

  232. Steinberg, D. The LDL modification hypothesis of atherogenesis: an update. J. Lipid Res. 50 (Suppl.), S376–S381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Dongre, A. R. et al. In vivo MHC class II presentation of cytosolic proteins revealed by rapid automated tandem mass spectrometry and functional analyses. Eur. J. Immunol. 31, 1485–1494 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by project grant 02738 and Linnaeus support 349-2007-8703 from the Swedish Research Council, and by grants from the Swedish Heart-Lung Foundation, the Foundation for Strategic Research (SSF), Vinnova, Stockholm County Council, King Gustav V and Queen Victoria Foundation, Prof Nanna Svartz foundation, and the European Union's Seventh Framework Programme [FP7/2007-2013] under grant agreement Athero-Flux (no 602222) and VIA (no 603131).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data, discussed the content, wrote the manuscript and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Göran K. Hansson.

Ethics declarations

Competing interests

G.K.H has intellectual property rights in the area of immunotherapy for cardiovascular disease. A.G. declares no competing interests.

PowerPoint slides

Glossary

Acute phase response

The systemic inflammatory reaction to an infection or injury, including fever, tachycardia, leukocytosis and changes in circulating acute phase proteins, such as C-reactive protein.

Foam cells

Lipid-laden macrophages with a 'foamy' appearance.

Scavenger receptors

Receptors that mediate uptake of macromolecules with a negative charge, such as oxidized LDL.

Pinocytosis

A mechanism for uptake of extracellular fluids and small particles through an invagination of the cell membrane.

Germinal centres

Sites in lymphoid organs where mature B cells proliferate, differentiate, mutate their antibody genes and switch antibody classes.

Apoptotic cell immunization

A vaccination approach in which cells undergoing programmed cell death are used to evoke an immune response against oxidation-specific epitopes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gisterå, A., Hansson, G. The immunology of atherosclerosis. Nat Rev Nephrol 13, 368–380 (2017). https://doi.org/10.1038/nrneph.2017.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing