Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiorenal syndrome: pathophysiology and potential targets for clinical management

Abstract

Combined dysfunction of the heart and the kidneys, which can be associated with haemodynamic impairment, is classically referred to as cardiorenal syndrome (CRS). Cardiac pump failure with resulting volume retention by the kidneys, once thought to be the major pathophysiologic mechanism of CRS, is now considered to be only a part of a much more complicated phenomenon. Multiple body systems may contribute to the development of this pathologic constellation in an interconnected network of events. These events include heart failure (systolic or diastolic), atherosclerosis and endothelial cell dysfunction, uraemia and kidney failure, neurohormonal dysregulation, anaemia and iron disorders, mineral metabolic derangements including fibroblast growth factor 23, phosphorus and vitamin D disorders, and inflammatory pathways that may lead to malnutrition–inflammation–cachexia complex and protein–energy wasting. Hence, a pathophysiologically and clinically relevant classification of CRS based on the above components would be prudent. With the existing medical knowledge, it is almost impossible to identify where the process has started in any given patient. Rather, the events involved are closely interrelated, so that once the process starts at a particular point, other pathways of the network are potentially activated. Current therapies for CRS as well as ongoing studies are mostly focused on haemodynamic adjustments. The timely targeting of different components of this complex network, which may eventually lead to haemodynamic and vascular compromise and cause refractoriness to conventional treatments, seems necessary. Future studies should focus on interventions targeting these components.

Key Points

  • The so-called cardiorenal syndrome is a complex phenomenon involving multiple organ systems; traditional understanding of the mechanisms involved forms only a small part of the big picture

  • Any overt or covert involvement of heart or kidney can affect the other organ and usually by the time of clinical manifestation, multiple components of the interconnected network of events are involved

  • It is not usually practically possible to specify whether kidney or heart was the initiator of the events

  • Besides haemodynamic interactions, many other components are involved in the pathophysiology of cardiorenal syndrome; these components can be potential targets for management

  • Most studies, particularly major clinical trials, have targeted and are still focusing on the 'haemodynamic' mechanisms of cardiorenal syndrome; future studies need to concentrate further on the other elements of this complex pathophysiology

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative pathophysiologic connections in cardiorenal syndrome.

Similar content being viewed by others

References

  1. NHLBI Working Group. Cardio-renal connections in heart failure and cardiovascular disease. National Heart, Lung, and Blood Institute website [online], (2004).

  2. Bock, J. S. & Gottlieb, S. S. Cardiorenal syndrome: new perspectives. Circulation 121, 2592–2600 (2010).

    Article  PubMed  Google Scholar 

  3. Dries, D. L., Exner, D. V., Domanski, M. J., Greenberg, B. & Stevenson, L. W. The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 35, 681–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Hillege, H. L. et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation 113, 671–678 (2006).

    Article  PubMed  Google Scholar 

  5. Mann, J. F., Gerstein, H. C, Pogue, J., Bosch, J. & Yusuf, S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann. Intern. Med. 134, 629–636 (2001).

    CAS  PubMed  Google Scholar 

  6. Smith, G. L. et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J. Am. Coll. Cardiol. 47, 1987–1996 (2006).

    Article  PubMed  Google Scholar 

  7. Centers for Disease Control and Prevention. National Chronic Kidney Disease Fact Sheet [online], (2010).

  8. Roger, V. L. et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123, e18–e209 (2011).

    Article  PubMed  Google Scholar 

  9. Manjunath, G. et al. Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J. Am. Coll. Cardiol. 41, 47–55 (2003).

    Article  PubMed  Google Scholar 

  10. Shastri, S. et al. Chronic kidney disease in octogenarians. Clin. J. Am. Soc. Nephrol. 6, 1410–1417 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shlipak, M. G. et al. Rapid decline of kidney function increases cardiovascular risk in the elderly. J. Am. Soc. Nephrol. 20, 2625–2630 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Adams, K. F. J. et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J. 149, 209–216 (2005).

    Article  PubMed  Google Scholar 

  13. Liang, K. V., Williams, A. W., Greene, E. L. & Redfield, M. M. Acute decompensated heart failure and the cardiorenal syndrome. Crit. Care Med. 36 (1 Suppl.), S75–S88 (2008).

    Article  PubMed  Google Scholar 

  14. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article  PubMed  Google Scholar 

  15. Correa de Sa, D. D. et al. Progression of preclinical diastolic dysfunction to the development of symptoms. Heart 96, 528–532 (2010).

    Article  PubMed  Google Scholar 

  16. Bradley, S. E. & Bradley, G. P. The effect of increased intra-abdominal pressure on renal function in man. J. Clin. Invest. 26, 1010–1015 (1947).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winton, F. R. The influence of venous pressure on the isolated mammalian kidney. J. Physiol. 72, 49–61 (1931).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Firth J. D., Raine, A. E. & Ledingham, J. G. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 1, 1033–1035 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Maeder, M. T., Holst, D. P. & Kaye, D. M. Tricuspid regurgitation contributes to renal dysfunction in patients with heart failure. J. Card. Fail. 14, 824–830 (2008).

    Article  PubMed  Google Scholar 

  20. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mohmand, H. & Goldfarb, S. Renal dysfunction associated with intra-abdominal hypertension and the abdominal compartment syndrome. J. Am. Soc. Nephrol. 22, 615–621 (2011).

    Article  PubMed  Google Scholar 

  22. Mullens, W. et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J. Am. Coll. Cardiol. 51, 300–306 (2008).

    Article  PubMed  Google Scholar 

  23. Bristow, M. R. Treatment of chronic heart failure with β-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ. Res. 109, 1176–1194 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Bristow, M. R. et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N. Engl. J. Med. 307, 205–211 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Bristow, M. R. et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ. Res. 59, 297–309 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Bristow, M. R. et al. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J. Clin. Invest. 92, 2737–2745 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Esler, M. D. et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376, 1903–1909 (2010).

    Article  PubMed  Google Scholar 

  28. Remuzzi, G., Perico, N., Macia, M. & Ruggenenti, P. The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int. Suppl. 99, S57–S65 (2005).

    Article  CAS  Google Scholar 

  29. Ruiz-Ortega, M. et al. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int. Suppl. 82, S12–S22 (2002).

    Article  CAS  Google Scholar 

  30. Jaisser, F., Swynghedauw, B. & Delcayre, C. The mineralocorticoid receptor in heart: different effects in different cells. Hypertension 57, 679–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Lother, A. et al. Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension 57, 746–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Goldsmith, S. R., Francis, G. S., Cowley, A. W., Levine, T. B. & Cohn, J. N. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J. Am. Coll. Cardiol. 1, 1385–1390 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Vallon, V., Miracle, C. & Thomson, S. Adenosine and kidney function: potential implications in patients with heart failure. Eur. J. Heart Fail. 10, 176–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Vallon, V., Mühlbauer, B. & Osswald, H. Adenosine and kidney function. Physiol. Rev. 86, 901–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Funaya, H. et al. Plasma adenosine levels increase in patients with chronic heart failure. Circulation 95, 1363–1365 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D. & Alexander, R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74, 1141–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Heymes, C. et al. Increased myocardial NADPH oxidase activity in human heart failure. J. Am. Coll. Cardiol. 41, 2164–2171 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Perianayagam, M. C. et al. NADPH oxidase p22phox and catalase gene variants are associated with biomarkers of oxidative stress and adverse outcomes in acute renal failure. J. Am. Soc. Nephrol. 18, 255–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Vaziri, N. D., Dicus, M., Ho, N. D., Boroujerdi-Rad, L. & Sindhu, R. K. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int. 63, 179–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Young, B. & Zaritsky, J. Hepcidin for clinicians. Clin. J. Am. Soc. Nephrol. 4, 1384–1387 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Kanai, A. J. et al. Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ. Res. 77, 284–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Pan, S. Molecular mechanisms responsible for the atheroprotective effects of laminar shear stress. Antioxid. Redox Signal. 11, 1669–1682 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mendes Ribeiro, A. C., Brunini, T. M., Ellory, J. C. & Mann, G. E. Abnormalities in L-arginine transport and nitric oxide biosynthesis in chronic renal and heart failure. Cardiovasc. Res. 49, 697–712 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Verbeke, F. H. et al. Flow-mediated vasodilation in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 6, 2009–2015 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ontkean, M., Gay, R. & Greenberg, B. Diminished endothelium-derived relaxing factor activity in an experimental model of chronic heart failure. Circ. Res. 69, 1088–1096 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Buga, G. M., Gold, M. E., Fukuto, J. M. & Ignarro, L. J. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 17, 187–193 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Cook, J. P., Rossitch, E., Andon, N. A., Loscalzo, L. & Dazu, V. J. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J. Clin. Invest. 88, 1663–1671 (1991).

    Article  Google Scholar 

  48. Ferrari, R., Bachetti, T., Agnoletti, L., Comini, L. & Curello, S. Endothelial function and dysfunction in heart failure. Eur. Heart J. 19 (Suppl. G), G41–G47 (1998).

    CAS  PubMed  Google Scholar 

  49. Giannattasio, C., Piperno, A., Failla, M., Vergani, A. & Mancia, G. Effects of hematocrit changes on flow-mediated and metabolic vasodilation in humans. Hypertension 40, 74–77 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Francis, G. S. TNF-alpha and heart failure. The difference between proof of principle and hypothesis testing. Circulation 99, 3213–3214 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Levine, B., Kalman, J., Mayer, L., Fillit, H. M. & Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323, 236–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Stenvinkel, P. et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. Kidney Int. 67, 1216–1233 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108, 2154–2169 (2003).

    Article  PubMed  Google Scholar 

  54. Greco, B. A. & Breyer, J. A. Atherosclerotic ischemic renal disease. Am. J. Kidney Dis. 29, 167–187 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Karalliedde, J. & Viberti, G. Proteinuria in diabetes: bystander or pathway to cardiorenal disease? J. Am. Soc. Nephrol. 21, 2020–2027 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. de Zeeuw, D. et al. Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation 110, 921–927 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Ezekowitz, J. A., McAlister, F. A. & Armstrong, P. W. Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12 065 patients with new-onset heart failure. Circulation 107, 223–225 (2003).

    Article  PubMed  Google Scholar 

  58. Horwich, T. B., Fonarow, G. C., Hamilton, M. A., MacLellan, W. R. & Borenstein, J. Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure. J. Am. Coll. Cardiol. 39, 1780–1786 (2002).

    Article  PubMed  Google Scholar 

  59. Okonko, D. O., Mandal, A. K., Missouris, C. G. & Poole-Wilson, P. A. Disordered iron homeostasis in chronic heart failure: prevalence, predictors, and relation to anemia, exercise capacity, and survival. J. Am. Coll. Cardiol. 58, 1241–1251 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Naito, Y. et al. Impaired expression of duodenal iron transporters in Dahl salt-sensitive heart failure rats. J. Hypertens. 29, 741–748 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Divakaran, V. et al. Hepcidin in anemia of chronic heart failure. Am. J. Hematol. 86, 107–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Anand, I. S., Chandrashekhar, Y., Ferrari, R., Poole-Wilson, P. A. & Harris, P. C. Pathogenesis of oedema in chronic severe anaemia: studies of body water and sodium, renal function, haemodynamic variables, and plasma hormones. Br. Heart J. 70, 357–362 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sandgren, P. E. et al. Anemia and new-onset congestive heart failure in the general Medicare population. J. Card. Fail. 11, 99–105 (2005).

    Article  PubMed  Google Scholar 

  64. Anker, S. D. & Sharma, R. The syndrome of cardiac cachexia. Int. J. Cardiol. 85, 51–66 (2002).

    Article  PubMed  Google Scholar 

  65. Kalantar-Zadeh, K. et al. Recent advances in understanding the malnutrition-inflammation-cachexia syndrome in chronic kidney disease patients: what is next? Semin. Dial. 18, 365–369 (2005).

    Article  PubMed  Google Scholar 

  66. Sukhanov, S. et al. Angiotensin II, oxidative stress and skeletal muscle wasting. Am. J. Med. Sci. 342, 143–147 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tan, B. H. & Fearon, K. C. Cachexia: prevalence and impact in medicine. Curr. Opin. Clin. Nutr. Metab. Care 11, 400–407 (2008).

    Article  PubMed  Google Scholar 

  68. Kalantar-Zadeh, K., Anker, S. D., Horwich, T. B. & Fonarow, G. C. Nutritional and anti-inflammatory interventions in chronic heart failure. Am. J. Cardiol. 101, 89E–103E (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kalantar-Zadeh, K. et al. Diets and enteral supplements for improving outcomes in chronic kidney disease. Nat. Rev. Nephrol. 7, 369–384 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Mak, R. H. et al. Wasting in chronic kidney disease. J. Cachexia Sarcopenia Muscle 2, 9–25 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pilz, S. et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J. Clin. Endocrinol. Metab. 93, 3927–3935 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Zittermann, A. et al. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J. Am. Coll. Cardiol. 41, 105–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Lind, L., Wengle, B. & Ljunghall, S. Blood pressure is lowered by vitamin D (alphacalcidol) during long-term treatment of patients with intermittent hypercalcaemia. A double-blind, placebo-controlled study. Acta Med. Scand. 222, 423–427 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Pfeifer, M., Begerow, B., Minne, H. W., Nachtigall, D. & Hansen, C. Effects of a short-term vitamin D(3) and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women. J. Clin. Endocrinol. Metab. 86, 1633–1637 (2001).

    CAS  PubMed  Google Scholar 

  75. Park, C. W. et al. Intravenous calcitriol regresses myocardial hypertrophy in hemodialysis patients with secondary hyperparathyroidism. Am. J. Kidney Dis. 33, 73–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, S. et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 124, 1838–1847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jüppner, H. Phosphate and FGF-23. Kidney Int. Suppl. 79, S24–S27 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  78. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Plischke, M. et al. Inorganic phosphate and FGF-23 predict outcome in stable systolic heart failure. Eur. J. Clin. Invest. 42, 649–656 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Shalhoub, V. et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Invest. 122, 2543–2553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McCullough, P. A., El-Ghoroury, M. & Yamasaki, H. Early detection of acute kidney injury with neutrophil gelatinase-associated lipocalin. J. Am. Coll. Cardiol. 57, 1762–1764 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Ronco, C. et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur. Heart J. 31, 703–711 (2010).

    Article  PubMed  Google Scholar 

  83. Haase, M. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 57, 1752–1761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tallaj, J. A., Singla, I. & Bourge, R. C. Implantable hemodynamic monitors. Cardiol. Clin. 29, 289–299 (2011).

    Article  PubMed  Google Scholar 

  85. deFilippi, C. R., Seliger, S. L., Maynard, S. & Christenson, R. H. Impact of renal disease on natriuretic peptide testing for diagnosing decompensated heart failure and predicting mortality. Clin. Chem. 53, 1511–1519 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Elkayam, U., Hatamizadeh, P. & Janmohamed, M. The challenge of correcting volume overload in hospitalized patients with decompensated heart failure. J. Am. Coll. Cardiol. 49, 684–686 (2007).

    Article  PubMed  Google Scholar 

  87. Gupta, S. & Neyses, L. Diuretic usage in heart failure: a continuing conundrum in 2005. Eur. Heart J. 26, 644–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Konstam, M. A. et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 297, 1319–1331 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Felker, G. M. et al. Diuretic strategies in patients with acute decompensated heart failure. N. Engl. J. Med. 364, 797–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jenkins, P. G. Diuretic strategies in patients with acute heart failure. N. Engl. J. Med. 364, 2066 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Dalzell, J. R. Diuretic strategies in patients with acute heart failure. N. Engl. J. Med. 364, 2066–2067 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Costanzo, M. R. et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J. Am. Coll. Cardiol. 49, 675–683 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Bart, B. A. et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1210357.

  94. Tang, W. H. Reconsidering ultrafiltration in the acute cardiorenal syndrome. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMe1212881.

  95. Khalifeh, N., Vychytil, A. & Horl, W. H. The role of peritoneal dialysis in the management of treatment-resistant congestive heart failure: a European perspective. Kidney Int. Suppl. 103, S72–S75 (2006).

    Article  Google Scholar 

  96. Krishnan, A. & Oreopoulos, D. G. Peritoneal dialysis in congestive heart failure. Adv. Perit. Dial. 23, 82–89 (2007).

    PubMed  Google Scholar 

  97. Mehrotra, R. & Kathuria, P. Place of peritoneal dialysis in the management of treatment-resistant congestive heart failure. Kidney Int. Suppl. 103, S67–S71 (2006).

    Article  Google Scholar 

  98. Sanchez, J. E. et al. Efficacy of peritoneal ultrafiltration in the treatment of refractory congestive heart failure. Nephrol. Dial. Transplant. 25, 605–610 (2010).

    Article  PubMed  Google Scholar 

  99. Uchino, S. et al. Super high flux hemofiltration: a new technique for cytokine removal. Intensive Care Med. 28, 651–655 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Churchill, D. N. et al. Effect of high-flux hemodialysis on cardiac structure and function among patients with end-stage renal failure. Nephron 65, 573–577 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Elkayam, U. et al. Vasodilators. In Congestive Heart Failure 3rd edn (eds Hosenpud, J. D. & Greenberg, B. H.) 489–509 (Lippincott Williams & Wilkins, Philadelphia, 2006).

    Google Scholar 

  102. Elkayam, U., Janmohamed, M., Habib, M. & Hatamizadeh, P. Vasodilators in the management of acute heart failure. Crit. Care Med. 36, S95–S105 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Tavares, M., Rezlan, E., Vostroknoutova, I., Khouadja, H. & Mebazaa, A. New pharmacologic therapies for acute heart failure. Crit. Care Med. 36 (1 Suppl.), S112–S120 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. McMurray, J. J. et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA 298, 2009–2019 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Anand, I. et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 364, 347–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Petersen, J. W. & Felker, G. M. Inotropes in the management of acute heart failure. Crit. Care Med. 36 (1 Suppl.), S106–S111 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Kass, D. A. & Solaro, R. J. Mechanisms and use of calcium-sensitizing agents in the failing heart. Circulation 113, 305–315 (2006).

    Article  PubMed  Google Scholar 

  108. Givertz, M. M., Andreou, C., Conrad, C. H. & Colucci, W. S. Direct myocardial effects of levosimendan in humans with left ventricular dysfunction: alteration of force-frequency and relaxation-frequency relationships. Circulation 115, 1218–1224 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Hajjar, R. J. & Gwathmey, J. K. Calcium-sensitizing inotropic agents in the treatment of heart failure: a critical view. Cardiovasc. Drugs Ther. 5, 961–965 (1991).

    Article  CAS  PubMed  Google Scholar 

  110. Sackner-Bernstein, J. D., Kowalski, M., Fox, M. & Aaronson, K. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA 293, 1900–1905 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Arora, R. R., Venkatesh, P. K. & Molnar, J. Short and long-term mortality with nesiritide. Am. Heart J. 152, 1084–1090 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. O'Connor, C. M. et al. Effect of nesiritide in patients with acute decompensated heart failure. N. Engl. J. Med. 365, 32–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Witteles, R. M. et al. Impact of nesiritide on renal function in patients with acute decompensated heart failure and pre-existing renal dysfunction a randomized, double-blind, placebo-controlled clinical trial. J. Am. Coll. Cardiol. 50, 1835–1840 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Elkayam, U. et al. Impact of acute serum creatinine elevation in patients treated with nesiritide. Clin. Cardiol. 32, 215–219 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. McDonald, R. H., Goldberg, L. I., McNay, J. L. & Tuttle, E. P. Effects of dopamine in man: augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow. J. Clin. Invest. 43, 1116–1124 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Elkayam, U., Ng, T. M., Hatamizadeh, P., Janmohamed, M. & Mehra, A. Renal vasodilatory action of dopamine in patients with heart failure: magnitude of effect and site of action. Circulation 117, 200–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Butler, J. et al. Relationship between renal function and left ventricular assist device use. Ann. Thorac. Surg. 81, 1745–1751 (2006).

    Article  PubMed  Google Scholar 

  118. Sandner, S. E. et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann. Thorac. Surg. 87, 1072–1078 (2009).

    Article  PubMed  Google Scholar 

  119. Santambrogio, L. et al. Right ventricular failure after left ventricular assist device insertion: preoperative risk factors. Interact. Cardiovasc. Thorac. Surg. 5, 379–382 (2006).

    Article  PubMed  Google Scholar 

  120. Demirozu, Z. T., Etheridge, W. B., Radovancevic, R. & Frazier, O. H. Results of HeartMate II left ventricular assist device implantation on renal function in patients requiring post-implant renal replacement therapy. J. Heart Lung Transplant. 30, 182–187 (2011).

    Article  PubMed  Google Scholar 

  121. Russell, S. D. et al. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation 120, 2352–2357 (2009).

    Article  PubMed  Google Scholar 

  122. Sandner, S. E. et al. Renal function after implantation of continuous versus pulsatile flow left ventricular assist devices. J. Heart Lung Transplant. 27, 469–473 (2008).

    Article  PubMed  Google Scholar 

  123. Singh, M. et al. Impact of renal function before mechanical circulatory support on posttransplant renal outcomes. Ann. Thorac. Surg. 91, 1348–1354 (2011).

    Article  PubMed  Google Scholar 

  124. Besarab, A. et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 339, 584–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Besarab, A., Goodkin, D. A. & Nissenson, A. R. The normal hematocrit study—follow-up. N. Engl. J. Med. 358, 433–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Drüeke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    Article  PubMed  Google Scholar 

  127. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Ghali, J. K. et al. Randomized double-blind trial of darbepoetin alfa in patients with symptomatic heart failure and anemia. Circulation 117, 526–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. McMurray, J. J. et al. Design of the Reduction of Events with Darbepoetin alfa in Heart Failure (RED-HF): a phase III, anaemia correction, morbidity-mortality trial. Eur. J. Heart Fail. 11, 795–801 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  131. Okonko, D. O. et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J. Am. Coll. Cardiol. 51, 103–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Kazory, A. & Ross, E. A. Anemia: the point of convergence or divergence for kidney disease and heart failure? J. Am. Coll. Cardiol. 53, 639–647 (2009).

    Article  PubMed  Google Scholar 

  133. Burger, D., Xenocostas, A. & Feng, Q. P. Molecular basis of cardioprotection by erythropoietin. Curr. Mol. Pharmacol. 2, 56–69 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Chatterjee, P. K. Pleiotropic renal actions of erythropoietin. Lancet 365, 1890–1892 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Pitt, B. et al. Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur. Heart J. 32, 820–828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Anker, S. D. et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361, 1077–1083 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Schellenbaum, G. D. et al. Weight loss, muscle strength, and angiotensin-converting enzyme inhibitors in older adults with congestive heart failure or hypertension. J. Am. Geriatr. Soc. 53, 1996–2000 (2005).

    Article  PubMed  Google Scholar 

  138. Hryniewicz, K., Androne, A. S., Hudaihed, A. & Katz, S. D. Partial reversal of cachexia by beta-adrenergic receptor blocker therapy in patients with chronic heart failure. J. Card. Fail. 9, 464–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Hornig, B., Arakawa, N. & Drexler, H. Effect of ACE inhibition on endothelial dysfunction in patients with chronic heart failure. Eur. Heart J. 19, G48–G53 (1998).

    CAS  PubMed  Google Scholar 

  140. Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Reata Pharmaceuticals. Company Statement: Termination of the BEACON Trial [online], (2012).

  142. Givertz, M. M., Massie, B. M., Fields, T. K., Pearson, L. L. & Dittrich, H. C. The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J. Am. Coll. Cardiol. 50, 1551–1560 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Gottlieb, S. S. et al. BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 105, 1348–1353 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Massie, B. M. et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N. Engl. J. Med. 363, 1419–1428 (2010).

    Article  PubMed  Google Scholar 

  145. Bodyak, N. et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc. Natl Acad. Sci. USA 104, 16810–16815 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Thadhani, R. et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA 307, 674–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Hunt, S. A. et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 112, e154–e235 (2005).

    Article  PubMed  Google Scholar 

  148. Downing, J. & Balady, G. J. The role of exercise training in heart failure. J. Am. Coll. Cardiol. 58, 561–569 (2011).

    Article  PubMed  Google Scholar 

  149. Heiwe, S. & Jacobson, S. H. Exercise training for adults with chronic kidney disease. Cochrane Database of Systematic Reviews, Issue 10. Art. No.: CD003236. http://dx.doi.org/10.1002/14651858.CD003236.pub2.

  150. Lin, Q. Q. et al. Effect of exercise training on renal function and renal aquaporin-2 expression in rats with chronic heart failure. Clin. Exp. Pharmacol. Physiol. http://dx.doi.org/10.1111/j.1440-1681.2011.05481.x.

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. Hatamizadeh and K. Kalantar-Zadeh researched data for the article, contributed to the discussion of content, wrote the article and reviewed/edited the manuscript before submission. G. C. Fonarow, M. J. Budoff, S. Darabian and C. P. Kovesdy were involved in the review/editing of manuscript before submission.

Corresponding author

Correspondence to Kamyar Kalantar-Zadeh.

Ethics declarations

Competing interests

G. C. Fonarow is a consultant for the following companies: Boston Scientific, Gambro, Johnson & Johnson, Novartis, Medtronic, Medicines Company, and Takeda. K. Kalantar-Zadeh has received honoraria and/or research grants from Abbott, Amgen, B. Braun, DaVita, Fresenius, Genzyme, Otsuka, Shire, and Vifor. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatamizadeh, P., Fonarow, G., Budoff, M. et al. Cardiorenal syndrome: pathophysiology and potential targets for clinical management. Nat Rev Nephrol 9, 99–111 (2013). https://doi.org/10.1038/nrneph.2012.279

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing