Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Autophagic cell death: the story of a misnomer

Abstract

Dying cells often display a large-scale accumulation of autophagosomes and hence adopt a morphology called autophagic cell death. In many cases, it is agreed that this autophagic cell death is cell death with autophagy rather than cell death by autophagy. Here, we evaluate the accumulating body of literature that argues that cell death occurs by autophagy. We also list the caveats that must be considered when deciding whether or not autophagy is an important effector mechanism of cell death.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'Cell death with autophagy' versus 'cell death by autophagy'.

Similar content being viewed by others

References

  1. Kroemer, G. et al. Classifications of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 10 Oct 2008 (doi: 10.1038/cdd.2008.150).

    Article  Google Scholar 

  2. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  Google Scholar 

  3. Lockshin, R. A. & Zakeri, Z. Programmed cell death and apoptosis: origins of the theory. Nature Rev. Mol. Cell Biol. 2, 545–550 (2001).

    Article  CAS  Google Scholar 

  4. Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980).

    Article  CAS  Google Scholar 

  5. Yuan, J. & Horvitz, H. R. A first insight into the molecular mechanisms of apoptosis. Cell 116, S53–S56 (2004).

    Article  CAS  Google Scholar 

  6. Nicholson, D. W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    Article  CAS  Google Scholar 

  7. Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  Google Scholar 

  8. Maiuri, C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  Google Scholar 

  9. Tanaka, Y. et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902–906 (2000).

    Article  CAS  Google Scholar 

  10. Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  11. Kitanaka, C. et al. Increased Ras expression and caspase-independent neuroblastoma cell death: possible mechanism of spontaneous neuroblastoma regression. J. Natl Cancer Inst. 94, 358–368 (2002).

    Article  CAS  Google Scholar 

  12. Overmeyer, J. H., Kaul, A., Johnson, E. E. & Maltese, W. A. Active Ras triggers death in glioblastoma cells through hyperstimulation of macropinocytosis. Mol. Cancer Res. 6, 965–977 (2008).

    Article  CAS  Google Scholar 

  13. Kanzawa, T. et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448–457 (2004).

    Article  CAS  Google Scholar 

  14. Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA 101, 18030–18035 (2004).

    Article  CAS  Google Scholar 

  15. Katayama, M., Kawaguchi, T., Berger, M. S. & Pieper, R. O. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 14, 548–558 (2007).

    Article  CAS  Google Scholar 

  16. Carew, J. S. et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr–Abl-mediated drug resistance. Blood 110, 313–322 (2007).

    Article  CAS  Google Scholar 

  17. Yu, L. et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502 (2004).

    Article  CAS  Google Scholar 

  18. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  Google Scholar 

  19. Samara, C., Syntichaki, P. & Tavernarakis, N. Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ. 15, 105–112 (2008).

    Article  CAS  Google Scholar 

  20. Berry, D. L. & Baehrecke, E. H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137–1148 (2007).

    Article  CAS  Google Scholar 

  21. Koike, M. et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic–ischemic injury. Am. J. Pathol. 172, 454–469 (2008).

    Article  CAS  Google Scholar 

  22. Shintani, T. & Klionsky, D. J. Autophagy in health and disease: a double-edged sword. Science 306, 990–995 (2004).

    Article  CAS  Google Scholar 

  23. Codogno, P. & Meijer, A. J. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 (Suppl. 2), 1509–1518 (2005).

    Article  CAS  Google Scholar 

  24. Baehrecke, E. H. Autophagy: dual roles in life and death? Nature Rev. Mol. Cell Biol. 6, 505–510 (2005).

    Article  CAS  Google Scholar 

  25. Tsujimoto, Y. & Shimizu, S. Another way to die: autophagic programmed cell death. Cell Death Differ. 12 (Suppl. 2), 1528–1534 (2005).

    Article  CAS  Google Scholar 

  26. Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nature Rev. Cancer 5, 886–897 (2005).

    Article  CAS  Google Scholar 

  27. Akar, U. et al. Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 4, 669–679 (2008).

    Article  CAS  Google Scholar 

  28. Turcotte, S. et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 14, 90–102 (2008).

    Article  CAS  Google Scholar 

  29. Kim, K. W., Moretti, L. & Lu, B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. PLoS ONE 3, e2275 (2008).

    Article  Google Scholar 

  30. Rashmi, R., Pillai, S. G., Vijayalingam, S., Ryerse, J. & Chinnadurai, G. BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cells. Oncogene 27, 1366–1375 (2008).

    Article  CAS  Google Scholar 

  31. Wang, M. et al. A small molecule inhibitor of isoprenylcysteine carboxymethyltransferase induces autophagic cell death in PC3 prostate cancer cells. J. Biol. Chem. 283, 18678–18684 (2008).

    Article  CAS  Google Scholar 

  32. Scarlatti, F., Maffei, R., Beau, I., Codogno, P. & Ghidoni, R. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ. 15, 1318–1329 (2008).

    Article  CAS  Google Scholar 

  33. Reef, S. et al. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol. Cell 22, 463–475 (2006).

    Article  CAS  Google Scholar 

  34. Xu, Z. X. et al. A plant triterpenoid, avicin D, induces autophagy by activation of AMP-activated protein kinase. Cell Death Differ. 14, 1948–1957 (2007).

    Article  CAS  Google Scholar 

  35. Chen, Y., McMillan-Ward, E., Kong, J., Israels, S. J. & Gibson, S. B. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 15, 171–182 (2008).

    Article  CAS  Google Scholar 

  36. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007).

    Article  CAS  Google Scholar 

  37. Thorburn, A. Studying autophagy's relationship to cell death. Autophagy 4, 391–394 (2008).

    Article  Google Scholar 

  38. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  Google Scholar 

  39. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R. & Thompson, C. B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15, 1481–1486 (2001).

    Article  CAS  Google Scholar 

  40. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  Google Scholar 

  41. Tresse, E., Kosta, A., Luciani, M. F. & Golstein, P. From autophagic to necrotic cell death in Dictyostelium. Semin. Cancer Biol. 17, 94–100 (2007).

    Article  CAS  Google Scholar 

  42. Kosta, A. et al. Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium. J. Biol. Chem. 279, 48404–48409 (2004).

    Article  CAS  Google Scholar 

  43. Golstein, P. & Kroemer, G. Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci. 32, 37–43 (2007).

    Article  CAS  Google Scholar 

  44. Xue, L., Borutaite, V. & Tolkovsky, A. M. Inhibition of mitochondrial permeability transition and release of cytochrome c by anti-apoptotic nucleoside analogues. Biochem. Pharmacol. 64, 441–449 (2002).

    Article  CAS  Google Scholar 

  45. Scarlatti, F., Granata, R., Meijer, A. J. & Codogno, P. Does autophagy have a license to kill mammalian cells? Cell Death Differ. 4 July 2008 (doi: 10.1038/cdd.2008.101).

    Article  Google Scholar 

  46. Chatterjee, T., Muhkopadhyay, A., Khan, K. A. & Giri, A. K. Comparative mutagenic and genotoxic effects of three antimalarial drugs, chloroquine, primaquine and amodiaquine. Mutagenesis 13, 619–624 (1998).

    Article  CAS  Google Scholar 

  47. McManus, M. T. & Sharp, P. A. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet. 3, 737–747 (2002).

    Article  CAS  Google Scholar 

  48. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  Google Scholar 

  49. Matsumoto, N. et al. Comprehensive proteomics analysis of autophagy-deficient mouse liver. Biochem. Biophys. Res. Commun. 368, 643–649 (2008).

    Article  CAS  Google Scholar 

  50. Cao, Y. & Klionsky, D. J. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17, 839–849 (2007).

    Article  CAS  Google Scholar 

  51. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    Article  CAS  Google Scholar 

  52. Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biol. 8, 1124–1132 (2006).

    Article  CAS  Google Scholar 

  53. Levine, B. & Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679–2688 (2005).

    Article  CAS  Google Scholar 

  54. Berry, D. L. & Baehrecke, E. H. Autophagy functions in programmed cell death. Autophagy 4, 359–360 (2008).

    Article  Google Scholar 

  55. Akdemir, F. et al. Autophagy occurs upstream or parallel to the apoptososome during histolytic cell death. Development 133, 1457–1465 (2006).

    Article  CAS  Google Scholar 

  56. Espert, L. et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest. 116, 2161–2172 (2006).

    Article  CAS  Google Scholar 

  57. Kunchithapautham, K. & Rohrer, B. Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 3, 433–441 (2007).

    Article  CAS  Google Scholar 

  58. Ding, W. X. et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702–4710 (2006).

    Article  Google Scholar 

  59. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  Google Scholar 

  60. Yu, L. et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl Acad. Sci. USA 103, 4952–4957 (2006).

    Article  CAS  Google Scholar 

  61. Scott, R. C., Juhasz, G. & Neufeld, T. P. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr. Biol. 17, 1–11 (2007).

    Article  CAS  Google Scholar 

  62. Zhu, C. et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia–ischemia. Cell Death Differ. 14, 775–784 (2007).

    Article  CAS  Google Scholar 

  63. Gidday, J. M. Cerebral preconditioning and ischaemic tolerance. Nature Rev. Neurosci. 7, 437–448 (2006).

    Article  CAS  Google Scholar 

  64. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  65. Galluzzi, L. et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 14, 1237–1243 (2007).

    Article  CAS  Google Scholar 

  66. Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 12 (Suppl. 2), 1463–1467 (2005).

    Article  CAS  Google Scholar 

  67. Festjens, N., Vanden Berghe, T. & Vandenabeele, P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta 1757, 1371–1387 (2006).

    Article  CAS  Google Scholar 

  68. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol. 4, 313–321 (2008).

    Article  CAS  Google Scholar 

  69. Ogura, K. et al. Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev. 8, 2389–2400 (1994).

    Article  CAS  Google Scholar 

  70. Zhou, X. et al. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory neurons. Proc. Natl Acad. Sci. USA 104, 5842–5847 (2007).

    Article  CAS  Google Scholar 

  71. Jounai, N. et al. The Atg5–Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl Acad. Sci. USA 104, 14050–14055 (2007).

    Article  CAS  Google Scholar 

  72. Kametaka, S., Okano, T., Ohsumi, M. & Ohsumi, Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 273, 22284–22291 (1998).

    Article  CAS  Google Scholar 

  73. Takahasi, Y. et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biol. 9, 1142–1151 (2007).

    Article  Google Scholar 

  74. Takahashi, Y. et al. Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Mol. Cell. Biol. 25, 9369–9382 (2005).

    Article  CAS  Google Scholar 

  75. Perelman, B. et al. Molecular cloning of a novel human gene encoding a 63-kDa protein and its sublocalization within the 11q13 locus. Genomics 41, 397–405 (1997).

    Article  CAS  Google Scholar 

  76. Iida, A. et al. Identification of a gene disrupted by inv(11)(q13.5;q25) in a patient with left–right axis malformation. Hum. Genet. 106, 277–287 (2000).

    Article  CAS  Google Scholar 

  77. Maiuri, C. et al. Functional and physical interaction between Bcl-XL and the BH3 domain of Beclin-1. EMBO J. (in the press).

  78. Fimia, G. M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    CAS  PubMed  Google Scholar 

  79. Massey, D. & Parkes, M. Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn's disease. Autophagy 3, 649–651 (2007).

    Article  CAS  Google Scholar 

  80. Bolanos-Meade, J. et al. Hydroxychloroquine causes severe vacuolar myopathy in a patient with chronic graft-versus-host disease. Am. J. Hematol. 78, 306–309 (2005).

    Article  Google Scholar 

  81. Nishino, I. Autophagic vacuolar myopathy. Semin. Pediatr. Neurol. 13, 90–95 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants to B.L. from the National Institutes of Health, American Cancer Society and Ellison Medical Foundation, and to G.K. from Ligue Nationale Contre le Cancer (Equipe labellisée), Agence Nationale de Recherche, Institut National du Cancer, Cancéropôle Île-de-France, the European Union (ApoSys, ChemoRes, DeathTrain, RIGHT) and the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer.

Related links

Related links

DATABASES

OMIM

Crohn's disease

Danon disease

Parkinson's disease

FURTHER INFORMATION

Guido Kroemer's homepage

Beth Levine's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroemer, G., Levine, B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9, 1004–1010 (2008). https://doi.org/10.1038/nrm2529

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing