Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances in our understanding of hepatorenal syndrome

Abstract

Hepatorenal syndrome (HRS) is a serious complication of advanced cirrhosis with ascites. HRS develops as a result of abnormal haemodynamics, leading to splanchnic and systemic vasodilatation, but renal vasoconstriction. Increased bacterial translocation, various cytokines and mesenteric angiogenesis also contribute to splanchnic vasodilatation, and altered renal autoregulation is involved in the renal vasoconstriction. Type 1 HRS is usually initiated by a precipitating event associated with an exaggerated systemic inflammatory response that perturbs haemodynamics, resulting in multiorgan failure. An inadequate cardiac output with systolic incompetence increases the risk of renal failure. Vasoconstrictors are the main treatment in patients with type 1 HRS; terlipressin is the superior agent. Norepinephrine is similar to terlipressin in efficacy and can be used as an alternative. Transjugular intrahepatic portosystemic stent shunt might be applicable in a small number of patients with type 1 HRS and in most patients with type 2 HRS. Liver transplantation is the definitive treatment for HRS, and should be performed after reversal of HRS. In nonresponders to vasoconstrictor therapy, much controversy still exists as to whether to do simultaneous or sequential liver and kidney transplant. In general, patients who have had >8–12 weeks of pretransplant dialysis should be considered for combined liver–kidney transplantation.

Key Points

  • Hepatorenal syndrome (HRS) in patients with cirrhosis is the result of haemodynamic derangement, which is initiated by portal hypertension and ultimately leads to renal vasoconstriction

  • The diagnosis of HRS has been simplified to enable earlier and easier diagnosis, so that treatment can be started early in the course of the illness

  • Vasoconstrictors are the primary treatment to improve systemic and splanchnic haemodynamics in HRS; terlipressin is superior to midodrine, but norepinephrine is also efficacious and is cheaper than terlipressin

  • Patients with cirrhosis, ascites and HRS who do not respond to vasoconstrictor therapy should be offered liver transplantation early; bridging dialysis is often required until liver transplantation

  • Patients who have had >8–12 weeks of pretransplant dialysis should be considered for combined liver–kidney transplantation to improve patient outcomes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pathophysiology of hepatorenal syndrome.
Figure 2: The natural history of cirrhosis from compensated to decompensated cirrhosis.
Figure 3: Precipitating factors for type 1 hepatorenal syndrome as observed in the author's own cohort of patients with cirrhosis and type 1 hepatorenal syndrome in the past 10 years.39
Figure 4: Treatment of hepatorenal syndrome with vasoconstrictor therapy.

Similar content being viewed by others

References

  1. Garcia-Tsao, G., Parikh, C. R. & Viola A. Acute kidney injury in cirrhosis. Hepatology 48, 2064–2077 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Wong, F. in Schiff's Diseases of the Liver 11th edn (eds Schiff, E. R., Maddrey, W. C. & Sorrell, M. F.) 354–371 (Wiley-Blackwell, 2011).

    Google Scholar 

  3. Schrier, R. et al. Peripheral arterial vasodilatation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 8, 1151–1157 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Salerno, F., Gerbes, A., Ginès, P., Wong, F. & Arroyo, V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 56, 1310–1318 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Montoliu, S. et al. Incidence and prognosis of different types of functional renal failure in cirrhotic patients with ascites. Clin. Gastroenterol. Hepatol. 8, 616–622 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Ginès, P., Guevara, M., Arroyo, V. & Rodés, J. Hepatorenal syndrome. Lancet 362, 1819–1827 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Martin, P. Y., Ginès, P. & Schrier, R. W. Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N. Engl. J. Med. 339, 533–541 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Van Landeghem, L. et al. Carbon monoxide produced by intrasinusoidally located haem-oxygenase-1 regulates the vascular tone in cirrhotic rat liver. Liver Int. 29, 650–660 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Ros, J. et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology 122, 85–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Bátkai, S. et al. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat. Med. 7, 827–832 (2001).

    Article  PubMed  Google Scholar 

  11. Castro, A. et al. Intracellular calcium concentration in vascular smooth muscle cells of rats with cirrhosis. J. Hepatol. 21, 521–526 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Møller, S., Hobolth, L., Winkler, C., Bendtsen, F. & Christensen, E. Determinants of the hyperdynamic circulation and central hypovolaemia in cirrhosis. Gut 60, 1254–1259 (2011).

    Article  PubMed  Google Scholar 

  13. Follo, A. et al. Renal impairment after spontaneous bacterial peritonitis in cirrhosis: incidence, clinical course, predictive factors and prognosis. Hepatology 20, 1495–1501 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Fasolato, S. et al. Renal failure and bacterial infections in patients with cirrhosis: epidemiology and clinical features. Hepatology 45, 223–229 (2007).

    Article  PubMed  Google Scholar 

  15. Sugano, S. Endotoxin levels in cirrhotic rats with sterile and infected ascites. Gastroenterol. Jpn 27, 348–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Heller, J. et al. Effects of lipopolysaccharide on TNF-α production, hepatic NOS2 activity, and hepatic toxicity in rats with cirrhosis. J. Hepatol. 33, 376–381 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Wiest, R. et al. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J. Clin. Invest. 104, 1223–1233 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Albillos, A. et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 37, 208–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Tazi, K. A. et al. Norfloxacin reduces aortic NO synthases and proinflammatory cytokine up-regulation in cirrhotic rats: role of Akt signaling. Gastroenterology 129, 303–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Cejudo-Martín, P. et al. Increased production of vascular endothelial growth factor in peritoneal macrophages of cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 34, 487–493 (2001).

    Article  PubMed  Google Scholar 

  21. Fernandez, M. et al. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology 46, 1208–1217 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Bosch, J., Abraldes, J. G., Fernández, M. & García-Pagán, J. C. Hepatic endothelial dysfunction and abnormal angiogenesis: new targets in the treatment of portal hypertension. J. Hepatol. 53, 558–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Wong, F. Cirrhotic cardiomyopathy. Hepatol. Int. 3, 294–304 (2009).

    Article  PubMed  Google Scholar 

  24. Ruiz-del-Arbol, L. et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology 42, 439–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Krag, A., Bendtsen, F., Henriksen, J. H. & Møller, S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut 59, 105–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Ruiz-del-Arbol, L. et al. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 38, 1210–1218 (2003).

    Article  PubMed  Google Scholar 

  27. Stadlbauer, V. et al. Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology 134, 111–119 (2008).

    Article  PubMed  Google Scholar 

  28. Salerno, F. et al. Diagnosis, treatment and survival of patients with hepatorenal syndrome: A survey on daily medical practice. J. Hepatol. 55, 1241–1248 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Mandal, A. K., Lansing, M. & Fahmy, A. Acute tubular necrosis in hepatorenal syndrome: an electron microscopy study. Am. J. Kidney Dis. 2, 363–374 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Trawalé, J. M. et al. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver Int. 30, 725–732 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. Guevara, M. & Arroyo, V. Hepatorenal syndrome. Expert Opin. Pharmacother. 12, 1405–1417 (2011).

    Article  PubMed  Google Scholar 

  32. Cabrera, J. et al. Aminoglycoside nephrotoxicity in cirrhosis. Value of urinary β2-microglobulin to discriminate functional renal failure from acute tubular damage. Gastroenterology 82, 97–105 (1982).

    Article  CAS  PubMed  Google Scholar 

  33. Meyrier, A., Hill, G. S. & Simon, P. Ischemic renal diseases: new insights into old entities. Kidney Int. 54, 2–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Sersté, T., Lebrec, D., Valla, D. & Moreau, R. Incidence and characteristics of type 2 hepatorenal syndrome in patients with cirrhosis and refractory ascites. Acta Gastroenterol. Belg. 71, 9–14 (2008).

    PubMed  Google Scholar 

  35. Jalan, R. Acute-on-chronic liver failure: from concept to a new syndrome. Curr. Opin. Crit. Care 17, 152 (2011).

    Article  PubMed  Google Scholar 

  36. Olsen, J. C. & Kamath, P. S. Acute-on-chronic liver failure: concept, natural history, and prognosis. Curr. Opin. Crit. Care 17, 165–169 (2011).

    Article  Google Scholar 

  37. Gustot, T., Durand, F., Lebrec, D., Vincent, J. L. & Moreau, R. Severe sepsis in cirrhosis. Hepatology 50, 2022–2033 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Arroyo, V., Fernandez, J. & Ginès, P. Pathogenesis and treatment of hepatorenal syndrome. Semin. Liver Dis. 28, 81–95 (2008).

    Article  PubMed  Google Scholar 

  39. Leung, W., Al Beshir, M., Marquez, M., Renner, E. & Wong, F. Is type 1 hepatorenal syndrome reversible after liver transplantation? [abstract 653]. J. Hepatol. 56 (Suppl. 2), S258–S259 (2012).

    Article  Google Scholar 

  40. Terg, R. et al. Serum creatinine and bilirubin predict renal failure and mortality in patients with spontaneous bacterial peritonitis: a retrospective study. Liver Int. 29, 415–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Sigal, S. H., Stanca, C. M., Fernández, J., Arroyo, V. & Navasa, M. Restricted use of albumin for spontaneous bacterial peritonitis. Gut 56, 597–599 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Poca, M. et al. Role of albumin in the treatment in patients with spontaneous bacterial peritonitis. Clin. Gastroenterol. Hepatol. 10, 309–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Sort, P. et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N. Engl. J. Med. 341, 403–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Chavez-Tapia, N. C. et al. Meta-analysis: antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding—an updated Cochrane review. Aliment. Pharmacol. Ther. 34, 509–518 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Saner, F. H., Canbay, A., Gerken, G. & Broelsch, C. E. Pharmacology, clinical efficacy and safety of terlipressin in esophageal varices bleeding, septic shock and hepatorenal syndrome. Expert Rev. Gastroenterol. Hepatol. 1, 207–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Chiu, K. W., Sheen, I. S. & Liaw, Y. F. A controlled study of glypressin versus vasopressin in the control of bleeding from oesophageal varices. J. Gastroenterol. Hepatol. 5, 549–553 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Sanyal, A. J. et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology 134, 1360–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Martín-Llahí, M. et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology 134, 1352–1359 (2008).

    Article  PubMed  CAS  Google Scholar 

  49. Boyer, T. D. et al. Predictors of response to terlipressin plus albumin in hepatorenal syndrome (HRS) type 1: relationship of serum creatinine to hemodynamics. J. Hepatol. 55, 315–321 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Nazar, A. et al. Predictors of response to therapy with terlipressin and albumin in patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 51, 219–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Wong, F. Drug insight: the role of albumin in the management of chronic liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 4, 43–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson, G., Lindblom, P., Ohlin, M., Berling, R. & Vernersson, E. Pharmacokinetics of terlipressin after single i.v. doses to healthy volunteers. Drugs Exp. Clin. Res. 16, 307–314 (1990).

    CAS  PubMed  Google Scholar 

  53. Angeli, P. et al. Terlipressin given as continuous intravenous infusion is the more suitable schedule for the treatment of type 1 hepatorenal syndrome (HRS) in patients with cirrhosis: results of a controlled clinical trial [abstract LB3]. Hepatology 48 (Suppl.), 378A (2008).

    Google Scholar 

  54. Gerbes, A. L., Huber, E. & Gülberg, V. Terlipressin for hepatorenal syndrome: continuous infusion as an alternative to i.v. bolus administration. Gastroenterology 137, 1179–1181 (2009).

    Article  PubMed  Google Scholar 

  55. Escorsell, A. et al. Time profile of the haemodynamic effects of terlipressin in portal hypertension. J. Hepatol. 26, 621–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Piano, S. et al. Continuous recurrence of type 1 hepatorenal syndrome and long-term treatment with terlipressin and albumin: a new exception to MELD score in the allocation system to liver transplantation? J. Hepatol. 55, 491–496 (2011).

    Article  PubMed  Google Scholar 

  57. Angeli, P. et al. Reversal of type 1 hepatorenal syndrome with the administration of midodrine and octreotide. Hepatology 29, 1690–1697 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Wong, F., Pantea, L. & Sniderman, K. Midodrine, octreotide, albumin and TIPS in selected patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 40, 55–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Esrailian, E., Pantangco, E. R., Kyulo, N. L., Hu, K. Q. & Runyon, B. A. Octreotide/midodrine therapy significantly improves renal function and 30-day survival in patients with type 1 hepatorenal syndrome. Dig. Dis. Sci. 52, 742–748 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Cavallin, M. et al. Terlipressin and albumin vs. midodrine plus octreotide and albumin in the treatment of hepatorenal syndrome in patients with cirrhosis: results of a controlled clinical trial by the Italian Association for the Study of the Liver [abstract LB-2]. Hepatology 54 (Suppl. 1), 1426A (2011).

    Google Scholar 

  61. Rice, J. P., Skagen, C. & Said, A. Liver transplant outcomes for patients with hepatorenal syndrome treated with pretransplant vasoconstrictors and albumin. Transplantation 91, 1141–1147 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Sharma, P., Kumar, A., Shrama, B. C. & Sarin, S. K. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. Am. J. Gastroenterol. 103, 1689–1697 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Alessandria, C. et al. Noradrenalin vs terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. J. Hepatol. 47, 499–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Singh, V. et al. Noradrenaline versus terlipressin in the treatment of hepatorenal syndrome: a randomized study. J. Hepatol. http://dx.doi.org/10.1016/j.jhep.2012.01.012.

  65. Gluud, L. L., Christensen, K., Christensen, E. & Krag, A. Systematic review of randomized trials on vasoconstrictor drugs for hepatorenal syndrome. Hepatology 51, 576–584 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Sagi, S. V., Mittal, S., Kasturi, K. S. & Sood, G. K. Terlipressin therapy for reversal of type 1 hepatorenal syndrome: a meta-analysis of randomized controlled trials. J. Gastroenterol. Hepatol. 25, 880–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Guevara, M. et al. Transjugular intrahepatic portosystemic shunt in hepatorenal syndrome: effects on renal function and vasoactive systems. Hepatology 28, 416–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Brensing, K. A. et al. Transjugular intrahepatic portosystemic stent-shunt for hepatorenal syndrome. Lancet 349, 697–698 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Brensing, K. A. et al. Long term outcome after transjugular intrahepatic portosystemic stent-shunt in non-transplant cirrhotics with hepatorenal syndrome: a phase II study. Gut 47, 288–295 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Jalan, R. et al. Extracorporeal liver support with molecular adsorbents recirculating system in patients with severe acute alcoholic hepatitis. J. Hepatol. 38, 24–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Di Campli, C. et al. Catholic university experience with molecular adsorbent recycling system in patients with severe liver failure. Transplant. Proc. 37, 2547–2550 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Mitzner, S. R. et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis MARS: Results of a prospective, randomized, controlled clinical trial. Liver Transpl. 6, 277–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Wong, F., Raina, N. & Richardson, R. Molecular adsorbent recirculating system is ineffective in the management of type 1 hepatorenal syndrome in patients with cirrhosis with ascites who have failed vasoconstrictor treatment. Gut 59, 381–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Ruiz-del-Arbol, L. et al. Paracentesis-induced circulatory dysfunction: mechanism and effect on hepatic hemodynamics in cirrhosis. Gastroenterology 113, 579–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Ortega, R. et al. Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: results of a prospective, nonrandomized study. Hepatology 36, 941–948 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Testino, G. et al. Type-2 hepatorenal syndrome and refractory ascites: role of transjugular intrahepatic portosystemic stent-shunt in eighteen patients with advanced cirrhosis awaiting orthotopic liver transplantation. Hepatogastroenterology 50, 1753–1755 (2003).

    PubMed  Google Scholar 

  77. Alessandria, C., Venon, W. & Marzano, A. Renal failure in cirrhotic patients: role of terlipressin in clinical approach to hepatorenal syndrome type 2. Eur. J. Gastroenterol. Hepatol. 14, 1363–1368 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Cassinello, C. et al. Effects of orthotopic liver transplantation on vasoactive systems and renal function in patients with advanced liver cirrhosis. Dig. Dis. Sci. 48, 179–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Wiesner, R. et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 124, 91–96 (2003).

    Article  PubMed  Google Scholar 

  80. Memon, I. & Klein, C. L. Impact of hepatorenal syndrome and liver transplantation. Curr. Opin. Organ. Transplant. 16, 301–305 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Restuccia, T. et al. Effects of treatment of hepatorenal syndrome before transplantation on posttransplantation outcome. A case-control study. J. Hepatol. 40, 140–146 (2004).

    Article  PubMed  Google Scholar 

  82. Ginès, P. Hepatorenal syndrome, pharmacological therapy, and liver transplantation. Liver Transpl. 17, 1244–1246 (2011).

    Article  PubMed  Google Scholar 

  83. Wong, L. P. et al. Survival of liver transplant candidates with acute renal failure receiving renal replacement therapy. Kidney Int. 68, 362–370 (2005).

    Article  PubMed  Google Scholar 

  84. Marik, P. E., Wood, K. & Starzl, T. E. The course of type 1 hepatorenal syndrome post liver transplantation. Nephrol. Dial. Transplant. 21, 478–482 (2006).

    Article  PubMed  Google Scholar 

  85. Hadengue, A. et al. Persistence of systemic and splanchnic hyperkinetic circulation in liver transplant patients. Hepatology 17, 175–178 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Davis, C. L. et al. Simultaneous liver–kidney transplantation: evaluation to decision making. Am. J. Transplant. 7, 1702–1709 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Papafragkakis, H., Martin, P. & Akalin, E. Combined liver and kidney transplantation. Curr. Opin. Organ. Transplant. 15, 263–268 (2010).

    Article  PubMed  Google Scholar 

  88. Locke, J. E. et al. Declining outcomes in simultaneous liver-kidney transplantation in the MELD era: ineffective usage of renal allografts. Transplantation 85, 935–942 (2008).

    Article  PubMed  Google Scholar 

  89. Ruiz, R. et al. Hepatorenal syndrome: a proposal for kidney after liver transplantation (KALT). Liver Transpl. 13, 838–843 (2007).

    Article  PubMed  Google Scholar 

  90. Somsouk, M. et al. Ascites improves upon serum sodium plus model for end-stage liver disease (MELD) for predicting mortality in patients with advanced liver disease. Aliment. Pharmacol. Ther. 30, 741–748 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Somsouk, M., Kornfield, R., Vittinghoff, E., Inadomi, J. M. & Biggins, S. W. Moderate ascites identifies patients with low model for end-stage liver disease scores awaiting liver transplantation who have a high mortality risk. Liver Transpl. 17, 129–136 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  92. Fernández, J. et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology 133, 818–824 (2007).

    Article  PubMed  CAS  Google Scholar 

  93. Lebrec, D. et al. Pentoxifylline does not decrease short-term mortality but does reduce complications in patients with advanced cirrhosis. Gastroenterology 138, 1755–1762 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Akriviadis, E. et al. Pentoxifylline improves short-term survival in severe acute alcoholic hepatitis: a double-blind, placebo-controlled trial. Gastroenterology 119, 1637–1648 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Whitfield, K., Rambaldi, A., Wetterslev, J. & Gluud, C. Pentoxifylline for alcoholic hepatitis. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD007339. http://dx.doi.org/10.1002/14651858.CD007339.pub2.

  96. Lake, J. R. et al. Transjugular intrahepatic portacaval stent shunts in patients with renal insufficiency. Transplant. Proc. 25, 1766–1767 (1993).

    CAS  PubMed  Google Scholar 

  97. Spahr, L. et al. Improvement of hepatorenal syndrome by transjugular intrahepatic portosystemic shunt. Am. J. Gastroenterol. 90, 1169–1171 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

F. Wong has received grant/research support from Ikaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, F. Recent advances in our understanding of hepatorenal syndrome. Nat Rev Gastroenterol Hepatol 9, 382–391 (2012). https://doi.org/10.1038/nrgastro.2012.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing