Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical diagnosis and staging of cholangiocarcinoma

Abstract

Cholangiocarcinoma is the most frequent biliary malignancy. It is difficult to diagnose owing to its anatomic location, growth patterns and lack of definite diagnostic criteria. Currently, cholangiocarcinoma is classified into the following types according to its anatomic location along the biliary tree: intrahepatic, perihilar or distal extrahepatic cholangiocarcinoma. These cholangiocarcinoma types differ in their biological behavior and management. The appropriate stratification of patients with regard to the anatomic location and stage of cholangiocarcinoma is a key determinate in their management. Staging systems can guide this stratification and provide prognostic information. In addition, staging systems are essential in order to compare and contrast the outcomes of different therapeutic approaches. A number of staging systems exist for cholangiocarcinoma—several early ones have been updated, and new ones are being developed. We discuss the emerging diagnostic criteria as well as the different staging systems for cholangiocarcinoma, and provide a critical appraisal regarding these advances in biliary tract malignancies.

Key Points

  • Cholangiocarcinoma is classified according to its anatomic location into three subtypes: intrahepatic, perihilar and distal extrahepatic cholangiocarcinoma

  • The diagnosis of intrahepatic cholangiocarcinoma requires histopathology and is a diagnosis of exclusion; a pathologic staging system for this cholangiocarcinoma subtype has been proposed

  • The diagnosis of perihilar cholangiocarcinoma is often made clinically, and is aided by cytologic fluorescent in situ hybridization studies; staging systems for this subtype of cholangiocarcinoma are still evolving

  • A diagnosis of distal extrahepatic cholangiocarcinoma can usually be confirmed by cytology; stage is highly dependent upon depth of invasion of surrounding structures

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cholangiocarcinoma subtypes.
Figure 2: Intrahepatic cholangiocarcinoma growth types.
Figure 3: Histpathological features of mucin-producing cholangiocarcinoma and cholangiolocellular carcinoma with mixed features.
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Everhart, J. E. & Ruhl, C. E. Burden of digestive diseases in the United States Part III: liver, biliary tract, and pancreas. Gastroenterology 136, 1134–1144 (2009).

    Article  PubMed  Google Scholar 

  2. DeOliveira, M. L. et al. New staging system and a registry for perihilar cholangiocarcinoma. Hepatology 53, 1363–1371 (2011).

    Article  PubMed  Google Scholar 

  3. DeOliveira, M. L. et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann. Surg. 245, 755–762 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Welzel, T. M., McGlynn, K. A., Hsing, A. W., O'Brien, T. R. & Pfeiffer, R. M. Impact of classification of hilar cholangiocarcinomas (Klatskin tumors) on the incidence of intra- and extrahepatic cholangiocarcinoma in the United States. J. Natl Cancer Inst. 98, 873–875 (2006).

    Article  PubMed  Google Scholar 

  5. Burak, K. et al. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am. J. Gastroenterol. 99, 523–526 (2004).

    Article  PubMed  Google Scholar 

  6. Yamasaki, S. Intrahepatic cholangiocarcinoma: macroscopic type and stage classification. J. Hepatobiliary Pancreat. Surg. 10, 288–291 (2003).

    Article  PubMed  Google Scholar 

  7. Nathan, H. et al. A proposed staging system for intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 16, 14–22 (2009).

    Article  PubMed  Google Scholar 

  8. Sasaki, A. et al. Intrahepatic peripheral cholangiocarcinoma: mode of spread and choice of surgical treatment. Br. J. Surg. 85, 1206–1209 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Shimada, K. et al. Surgical outcomes of the mass-forming plus periductal infiltrating types of intrahepatic cholangiocarcinoma: a comparative study with the typical mass-forming type of intrahepatic cholangiocarcinoma. World J. Surg. 31, 2016–2022 (2007).

    Article  PubMed  Google Scholar 

  10. Yamamoto, Y. et al. Clinicopathological characteristics of intrahepatic cholangiocellular carcinoma presenting intrahepatic bile duct growth. J. Surg. Oncol. 99, 161–165 (2009).

    Article  PubMed  Google Scholar 

  11. Farges, O. et al. AJCC 7th edition of TNM staging accurately discriminates outcomes of patients with resectable intrahepatic cholangiocarcinoma: by the AFC-IHCC-2009 study group. Cancer 117, 2170–2177 (2010).

    Article  PubMed  Google Scholar 

  12. El Rassi, Z. E. et al. Peripheral cholangiocarcinoma: presentation, diagnosis, pathology and management. Eur. J. Surg. Oncol. 25, 375–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Torzilli, G. et al. Accurate preoperative evaluation of liver mass lesions without fine-needle biopsy. Hepatology 30, 889–893 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Blechacz, B. & Gores, G. J. Positron emission tomography scan for a hepatic mass. Hepatology 52, 2186–2191 (2010).

    Article  PubMed  Google Scholar 

  15. Vilgrain, V. et al. Intrahepatic cholangiocarcinoma: MRI and pathologic correlation in 14 patients. J. Comput. Assist. Tomogr. 21, 59–65 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Braga, H. J., Imam, K. & Bluemke, D. A. MR imaging of intrahepatic cholangiocarcinoma: use of ferumoxides for lesion localization and extension. AJR Am. J. Roentgenol. 177, 111–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Raman, S. S. et al. Hepatic MR imaging using ferumoxides: prospective evaluation with surgical and intraoperative sonographic confirmation in 25 cases. AJR Am. J. Roentgenol. 177, 807–812 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Rimola, J. et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology 50, 791–798 (2009).

    Article  PubMed  Google Scholar 

  19. Vilgrain, V. Staging cholangiocarcinoma by imaging studies. HPB (Oxford) 10, 106–109 (2008).

    Article  CAS  Google Scholar 

  20. Corvera, C. U. et al. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J. Am. Coll. Surg. 206, 57–65 (2008).

    Article  PubMed  Google Scholar 

  21. Tao, L. Y., Cai, L., He, X. D., Liu, W. & Qu, Q. Comparison of serum tumor markers for intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Am. Surg. 76, 1210–1213 (2010).

    PubMed  Google Scholar 

  22. Uenishi, T. et al. Cytokeratin-19 fragments in serum (CYFRA 21–1) as a marker in primary liver cancer. Br. J. Cancer 88, 1894–1899 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uenishi, T. et al. Serum cytokeratin 19 fragment (CYFRA21–1) as a prognostic factor in intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 15, 583–589 (2008).

    Article  PubMed  Google Scholar 

  24. Nakanuma, Y. et al. Intrahepatic cholangiocarcinoma. 217–224 (International Agency for Research on Cancer [IARC], Lyon, 2010).

    Google Scholar 

  25. Desmet, V., Roskams, T. & De Vos, R. Normal Anatomy in Gastroenterology and Hepatology. The Comprehensive Visual Reference (ed. LaRusso, N. F.) 1.14 (Current Medicine, Philadelphia, 1997).

    Google Scholar 

  26. Nakanuma, Y., Hoso, M., Sanzen, T. & Sasaki, M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc. Res. Tech. 38, 552–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Komuta, M. et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology 47, 1544–1556 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Asayama, Y. et al. Imaging of cholangiolocellular carcinoma of the liver. Eur. J. Radiol. 75, e120–e125 (2010).

    Article  PubMed  Google Scholar 

  29. Motosugi, U. et al. Cholangiolocellular carcinoma of the liver: imaging findings. J. Comput. Assist. Tomogr. 33, 682–688 (2009).

    Article  PubMed  Google Scholar 

  30. Rullier, A. et al. Cytokeratin 7 and 20 expression in cholangiocarcinomas varies along the biliary tract but still differs from that in colorectal carcinoma metastasis. Am. J. Surg. Pathol. 24, 870–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Maeda, T. et al. The expression of cytokeratins 7, 19, and 20 in primary and metastatic carcinomas of the liver. Mod. Pathol. 9, 901–909 (1996).

    CAS  PubMed  Google Scholar 

  32. Vilana, R. et al. Intrahepatic peripheral cholangiocarcinoma in cirrhosis patients may display a vascular pattern similar to hepatocellular carcinoma on contrast-enhanced ultrasound. Hepatology 51, 2020–2029 (2010).

    Article  PubMed  Google Scholar 

  33. Sapisochin, G., Fidelman, N., Roberts, J. P. & Yao, F. Y. Mixed hepatocellular-cholangiocarcinoma (HCC-CC) and intra-hepatic cholangiocarcinoma (I-CC) in patients transplanted for hepatocellular carcinoma. Liver Transpl. doi:10.1002/lt.22307.

    Article  PubMed  Google Scholar 

  34. Yamashita, Y., Takahashi, M., Kanazawa, S., Charnsangavej, C. & Wallace, S. Hilar cholangiocarcinoma. An evaluation of subtypes with CT and angiography. Acta Radiol. 33, 351–355 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Alden, M. E. et al. Cholangiocarcinoma: clinical significance of tumor location along the extrahepatic bile duct. Radiology 197, 511–516 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, S. R., Kelly, B. S., Pennington, L. J. & Hanto, D. W. A single center experience with extrahepatic cholangiocarcinomas. Surgery 130, 584–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Heron, D. E. et al. Cholangiocarcinoma: the impact of tumor location and treatment strategy on outcome. Am. J. Clin. Oncol. 26, 422–428 (2003).

    PubMed  Google Scholar 

  38. Blechacz, B. & Gores, G. J. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology 48, 308–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Nagorney, D. M., Donohue, J. H., Farnell, M. B., Schleck, C. D. & Ilstrup, D. M. Outcomes after curative resections of cholangiocarcinoma. Arch. Surg. 128, 871–877 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Hann, L. E. et al. Hepatic lobar atrophy: association with ipsilateral portal vein obstruction. AJR Am. J. Roentgenol. 167, 1017–1021 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Nakeeb, A. et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann. Surg. 224, 463–473 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghazale, A. et al. Immunoglobulin G4-associated cholangitis: clinical profile and response to therapy. Gastroenterology 134, 706–715 (2008).

    Article  PubMed  Google Scholar 

  43. Akdogan, M. et al. Extraordinarily elevated CA19–9 in benign conditions: a case report and review of the literature. Tumori 87, 337–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Levy, C. et al. The value of serum CA 19–9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig. Dis. Sci. 50, 1734–1740 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Patel, A. H., Harnois, D. M., Klee, G. G., LaRusso, N. F. & Gores, G. J. The utility of CA 19–9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am. J. Gastroenterol. 95, 204–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Vestergaard, E. M. et al. Reference values and biological variation for tumor marker CA 19–9 in serum for different Lewis and secretor genotypes and evaluation of secretor and Lewis genotyping in a Caucasian population. Clin. Chem. 45, 54–61 (1999).

    CAS  PubMed  Google Scholar 

  47. Feydy, A. et al. Helical CT assessment in hilar cholangiocarcinoma: correlation with surgical and pathologic findings. AJR Am. J. Roentgenol. 172, 73–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, H. Y. et al. Preoperative assessment of resectability of hepatic hilar cholangiocarcinoma: combined CT and cholangiography with revised criteria. Radiology 239, 113–121 (2006).

    Article  PubMed  Google Scholar 

  49. Aloia, T. A. et al. High-resolution computed tomography accurately predicts resectability in hilar cholangiocarcinoma. Am. J. Surg. 193, 702–706 (2007).

    Article  PubMed  Google Scholar 

  50. Tillich, M., Mischinger, H. J., Preisegger, K. H., Rabl, H. & Szolar, D. H. Multiphasic helical CT in diagnosis and staging of hilar cholangiocarcinoma. AJR Am. J. Roentgenol. 171, 651–658 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Kato, T. et al. Clinical role of (18)F-FDG PET for initial staging of patients with extrahepatic bile duct cancer. Eur. J. Nucl. Med. Mol. Imaging 29, 1047–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Lopera, J. E., Soto, J. A. & Munera, F. Malignant hilar and perihilar biliary obstruction: use of MR cholangiography to define the extent of biliary ductal involvement and plan percutaneous interventions. Radiology 220, 90–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Manfredi, R., Barbaro, B., Masselli, G., Vecchioli, A. & Marano, P. Magnetic resonance imaging of cholangiocarcinoma. Semin. Liver Dis. 24, 155–164 (2004).

    Article  PubMed  Google Scholar 

  54. Masselli, G., Manfredi, R., Vecchioli, A. & Gualdi, G. MR imaging and MR cholangiopancreatography in the preoperative evaluation of hilar cholangiocarcinoma: correlation with surgical and pathologic findings. Eur. Radiol. 18, 2213–2221 (2008).

    Article  PubMed  Google Scholar 

  55. Vogl, T. J. et al. Staging of Klatskin tumours (hilar cholangiocarcinomas): comparison of MR cholangiography, MR imaging, and endoscopic retrograde cholangiography. Eur. Radiol. 16, 2317–2325 (2006).

    Article  PubMed  Google Scholar 

  56. Kluge, R. et al. Positron emission tomography with [(18)F]fluoro-2-deoxy-D-glucose for diagnosis and staging of bile duct cancer. Hepatology 33, 1029–1035 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Hattori, M. et al. Prospective study of biliary cytology in suspected perihilar cholangiocarcinoma. Br. J. Surg. 98, 704–709 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Halling, K. C. & Kipp, B. R. Fluorescence in situ hybridization in diagnostic cytology. Hum. Pathol. 38, 1137–1144 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. DeHaan, R. D. et al. An assessment of chromosomal alterations detected by fluorescence in situ hybridization and p16 expression in sporadic and primary sclerosing cholangitis-associated cholangiocarcinomas. Hum. Pathol. 38, 491–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Lee, M., Banerjee, S., Posner, M. C. & Cartwright, C. A. Distal extrahepatic cholangiocarcinoma presenting as cholangitis. Dig. Dis. Sci. 55, 1852–1855 (2010).

    Article  PubMed  Google Scholar 

  61. Sobin, L. H. TNM: principles, history, and relation to other prognostic factors. Cancer 91, 1589–1592 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Choi, S. B. et al. The prognosis and survival outcome of intrahepatic cholangiocarcinoma following surgical resection: association of lymph node metastasis and lymph node dissection with survival. Ann. Surg. Oncol. 16, 3048–3056 (2009).

    Article  PubMed  Google Scholar 

  63. Tamandl, D. et al. Lymph node ratio after curative surgery for intrahepatic cholangiocarcinoma. Br. J. Surg. 96, 919–925 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Endo, I. et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann. Surg. 248, 84–96 (2008).

    Article  PubMed  Google Scholar 

  65. Shen, W. F. et al. Clinicopathological and prognostic analysis of 429 patients with intrahepatic cholangiocarcinoma. World J. Gastroenterol. 15, 5976–5982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weber, S. M. et al. Intrahepatic cholangiocarcinoma: resectability, recurrence pattern, and outcomes. J. Am. Coll. Surg. 193, 384–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Uchiyama, K. et al. Impact of nodal involvement on surgical outcomes of intrahepatic cholangiocarcinoma: a multicenter analysis by the Study Group for Hepatic Surgery of the Japanese Society of Hepato-Biliary-Pancreatic Surgery. J. Hepatobiliary Pancreat. Sci. 18, 443–452 (2011).

    Article  PubMed  Google Scholar 

  68. Okabayashi, T. et al. A new staging system for mass-forming intrahepatic cholangiocarcinoma: analysis of preoperative and postoperative variables. Cancer 92, 2374–2383 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Farges, O. et al. AJCC 7th edition of TNM staging accurately discriminates outcomes of patients with resectable intrahepatic cholangiocarcinoma: by the AFC-IHCC-2009 study group. Cancer 117, 2170–2177 (2011).

    Article  PubMed  Google Scholar 

  70. Uenishi, T. et al. Serosal invasion in TNM staging of mass-forming intrahepatic cholangiocarcinoma. J. Hepatobiliary Pancreat. Surg. 12, 479–483 (2005).

    Article  PubMed  Google Scholar 

  71. Sotiropoulos, G. C. et al. Multicentric evaluation of a clinical and prognostic scoring system predictive of survival after resection of intrahepatic cholangiocarcinomas. Liver Int. 30, 996–1002 (2010).

    Article  PubMed  Google Scholar 

  72. Ito, K. et al. Adequate lymph node assessment for extrahepatic bile duct adenocarcinoma. Ann. Surg. 251, 675–681 (2010).

    Article  PubMed  Google Scholar 

  73. Klempnauer, J. et al. Resectional surgery of hilar cholangiocarcinoma: a multivariate analysis of prognostic factors. J. Clin. Oncol. 15, 947–954 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Ramacciato, G. et al. Univariate and multivariate analysis of prognostic factors in the surgical treatment of hilar cholangiocarcinoma. Am. Surg. 76, 1260–1268 (2010).

    PubMed  Google Scholar 

  75. Fernandez-Ruiz, M., Guerra-Vales, J. M. & Colina-Ruizdelgado, F. Comorbidity negatively influences prognosis in patients with extrahepatic cholangiocarcinoma. World J. Gastroenterol. 15, 5279–5286 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Park, J. et al. Natural history and prognostic factors of advanced cholangiocarcinoma without surgery, chemotherapy, or radiotherapy: a large-scale observational study. Gut Liver 3, 298–305 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heimbach, J. K. et al. Predictors of disease recurrence following neoadjuvant chemoradiotherapy and liver transplantation for unresectable perihilar cholangiocarcinoma. Transplantation 82, 1703–1707 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Bismuth, H. & Corlette, M. B. Intrahepatic cholangioenteric anastomosis in carcinoma of the hilus of the liver. Surg. Gynecol. Obstet. 140, 170–178 (1975).

    CAS  PubMed  Google Scholar 

  79. Bismuth, H., Nakache, R. & Diamond, T. Management strategies in resection for hilar cholangiocarcinoma. Ann. Surg. 215, 31–38 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zervos, E. E. et al. Stage does not predict survival after resection of hilar cholangiocarcinomas promoting an aggressive operative approach. Am. J. Surg. 190, 810–815 (2005).

    Article  PubMed  Google Scholar 

  81. Jarnagin, W. R. et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann. Surg. 234, 507–517 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ebata, T. et al. The concept of perihilar cholangiocarcinoma is valid. Br. J. Surg. 96, 926–934 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Sano, T. et al. Prognosis of perihilar cholangiocarcinoma: hilar bile duct cancer versus intrahepatic cholangiocarcinoma involving the hepatic hilus. Ann. Surg. Oncol. 15, 590–599 (2008).

    Article  PubMed  Google Scholar 

  84. Blechacz, B. R., Sanchez, W. & Gores, G. J. A conceptual proposal for staging ductal cholangiocarcinoma. Curr. Opin. Gastroenterol. 25, 238–239 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ito, F. et al. Resection of hilar cholangiocarcinoma: concomitant liver resection decreases hepatic recurrence. Ann. Surg. 248, 273–279 (2008).

    Article  PubMed  Google Scholar 

  86. Guglielmi, A. et al. Intrahepatic cholangiocarcinoma: prognostic factors after surgical resection. World J. Surg. 33, 1247–1254 (2009).

    Article  PubMed  Google Scholar 

  87. Nagino, M. Perihilar cholangiocarcinoma: a much needed but imperfect new staging system. Nat. Rev. Gastroenterol. Hepatol. 8, 252–253 (2010).

    Article  Google Scholar 

  88. Sakamoto, Y. et al. Prognostic factors of surgical resection in middle and distal bile duct cancer: an analysis of 55 patients concerning the significance of ductal and radial margins. Surgery 137, 396–402 (2005).

    Article  PubMed  Google Scholar 

  89. Hong, S. M. et al. Depth of tumor invasion better predicts prognosis than the current American Joint Committee on Cancer T classification for distal bile duct carcinoma. Surgery 146, 250–257 (2009).

    Article  PubMed  Google Scholar 

  90. Murakami, Y. et al. Prognostic significance of lymph node metastasis and surgical margin status for distal cholangiocarcinoma. J. Surg. Oncol. 95, 207–212 (2007).

    Article  PubMed  Google Scholar 

  91. Woo, S. M. et al. Recurrence and prognostic factors of ampullary carcinoma after radical resection: comparison with distal extrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 14, 3195–3201 (2007).

    Article  PubMed  Google Scholar 

  92. Yoshida, T. et al. Lymphatic spread differs according to tumor location in extrahepatic bile duct cancer. Hepatogastroenterology 50, 17–20 (2003).

    PubMed  Google Scholar 

  93. Murakami, Y. et al. Pancreatoduodenectomy for distal cholangiocarcinoma: prognostic impact of lymph node metastasis. World J. Surg. 31, 337–342 (2007).

    Article  PubMed  Google Scholar 

  94. Yoshida, T. et al. Prognostic factors after pancreatoduodenectomy with extended lymphadenectomy for distal bile duct cancer. Arch. Surg. 137, 69–73 (2002).

    Article  PubMed  Google Scholar 

  95. Ebata, T. et al. Pancreatic and duodenal invasion in distal bile duct cancer: paradox in the tumor classification of the American Joint Committee on Cancer. World J. Surg. 31, 2008–2015 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant DK59427 from the NIH (G. J. Gores), the Mayo Clinic Clinical Investigator Program (B. Blechacz) and the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B. Blechacz and G. J. Gores contributed to all aspects of this Review. M. Komuta contributed to the writing and editing; T. Roskams contributed to the discussion of content, writing and editing of this Review.

Corresponding author

Correspondence to Gregory J. Gores.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Box 1

American Joint Cancer Committee/Union for International Cancer Control 7th edition TNM staging for intrahepatic cholangiocarcinoma (DOC 33 kb)

Supplementary Box 2

Liver Cancer Study Group of Japan (LCSGJ) staging system for intrahepatic cholangiocarcinoma (DOC 31 kb)

Supplementary Box 3

National Cancer Center in Japan (NCCJ) staging system for mass-forming intrahepatic cholangiocarcinoma (DOC 32 kb)

Supplementary Box 4

American Joint Cancer Committee/Union for International Cancer Control 7th edition TNM staging for perihilar cholangiocarcinoma (DOC 33 kb)

Supplementary Box 5

American Joint Cancer Committee/Union for International Cancer Control 7th edition TNM staging for distal extrahepatic cholangiocarcinoma (DOC 33 kb)

Supplementary Table 1

Memorial Sloan-Kettering Cancer Center staging system for hilar cholangiocarcinoma (DOC 38 kb)

Supplementary Table 2

Proposed clinical staging system for perihilar cholangiocarcinoma (DOC 41 kb)

Supplementary Table 3

Proposed staging system by Deoliveira et al. (DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blechacz, B., Komuta, M., Roskams, T. et al. Clinical diagnosis and staging of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 8, 512–522 (2011). https://doi.org/10.1038/nrgastro.2011.131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing