Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnosis and management of iron deficiency anemia in patients with IBD

Abstract

Anemia is the most prevalent extraintestinal complication of IBD. It can affect quality of life and ability to work, and can also increase the hospitalization rate in patients with IBD. Although the causes of anemia in IBD are multifactorial, iron deficiency anemia (IDA) is the most common. Assessment of the iron status of patients who have a condition associated with inflammation, such as IBD, by using common biochemical values is insufficient. However, new indices of iron metabolism (for instance ferritin:transferrin receptor ratio, reticulocyte hemoglobin content or percentage of hypochromic red blood cells) may help to improve the assessment of iron status in patients with IBD. The treatment of IDA traditionally involves oral iron supplementation. However, because of extensive gastrointestinal adverse effects, and data showing that the use of oral iron in IBD may be associated with disease exacerbation, current guidelines suggest that iron supplementation in IBD should be administered intravenously. This Review provides an overview of iron homeostasis in health before discussing diagnostic and therapeutic strategies for IDA in patients with IBD.

Key Points

  • Anemia is the most prevalent extraintestinal complication of IBD

  • Although there are several causes of anemia in IBD, iron deficiency anemia (IDA) is the most common

  • Common biochemical values are insufficient for assessing the iron status of patients who have an inflammatory condition, such as IBD

  • The major goal of therapy for IDA is to supply sufficient iron to increase hemoglobin levels by >2 g/dl or increase them to normal values within 4 weeks, and to replenish iron stores

  • Iron supplementation should be administered intravenously to patients with IBD, even though many will respond to oral administration of iron

  • Compared with oral iron therapy, in patients with IBD intravenous iron replenishes iron stores more effectively and overcomes the block to intestinal iron absorption induced by hepcidin

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iron homeostasis in the healthy state.
Figure 2: Mechanisms of duodenal absorption of heme and nonheme iron.
Figure 3: Role of hepcidin in the regulation of intestinal iron absorption.
Figure 4: Algorithm for the management of iron deficiency anemia in IBD.

Similar content being viewed by others

References

  1. Gasche, C., Lomer, M. C., Cavill, I. & Weiss, G. Iron, anaemia, and inflammatory bowel diseases. Gut 53, 1190–1197 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vijverman, A., Piront, P., Belaiche, J. & Louis, E. Evolution of the prevalence and characteristics of anemia in inflammatory bowel diseases between 1993 and 2003. Acta Gastroenterol. Belg. 69, 1–4 (2006).

    CAS  PubMed  Google Scholar 

  3. Wilson, A., Reyes, E. & Ofman, J. Prevalence and outcomes of anemia in inflammatory bowel disease: a systematic review of the literature. Am. J. Med. 116 (Suppl. 7A), 44S–49S (2004).

    Article  PubMed  Google Scholar 

  4. Gisbert, J. P. & Gomollon, F. Common misconceptions in the diagnosis and management of anemia in inflammatory bowel disease. Am. J. Gastroenterol. 103, 1299–1307 (2008).

    Article  PubMed  Google Scholar 

  5. Kullnigg, S. & Gasche, C. Systemic review: managing anaemia in Crohn's disease. Aliment. Pharmacol. Ther. 24, 1507–1523 (2006).

    Article  CAS  Google Scholar 

  6. Wells, C. W., Lewis, S., Barton, J. R. & Corbett, S. Effects of changes in hemoglobin level on quality of life and cognitive function in inflammatory bowel disease patients. Inflamm. Bowel Dis. 12, 123–130 (2006).

    Article  PubMed  Google Scholar 

  7. Munoz, M., Villar, I. & Garcia-Erce, J. A. An update on iron physiology. World J. Gastroenterol. 15, 4617–4626 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hurrell, R. & Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 91, 1461S–1467S (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Geisser, P. Safety and efficacy of iron(III)-hydroxide polymaltose complex/a review of over 25 years experience. Arzneimittelforschung 57, 439–452 (2007).

    CAS  PubMed  Google Scholar 

  10. Barrett, J. F., Witthaker, P. G., Williams, J. G. & Lind, T. Absorption of non-haem iron from food during normal pregnancy. BMJ 309, 79–82 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schade, S. G., Cohen, R. J. & Conrad, M. E. Effect of hydrochloric acid on iron absorption. N. Engl. J. Med. 279, 672–674 (1968).

    Article  CAS  PubMed  Google Scholar 

  12. McColl, K. E. Effect of proton pump inhibitors on vitamins and iron. Am. J. Gastroenterol. 104 (Suppl. 2), S5–S9 (2009).

    CAS  PubMed  Google Scholar 

  13. Frazer, D. M. & Anderson, G. J. Iron imports. I. Intestinal iron absorption and its regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G631–G635 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Shayeghi, M. et al. Identification of an intestinal heme transporter. Cell 122, 789–801 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Qiu, A. et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127, 917–928 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Lopez, M. A. & Martos, F. C. Iron availability: an update review. Int. J. Food Sci. Nutr. 55, 597–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Geisser, P. In vitro studies on interactions of iron salts and complexes with food-stuffs and medicaments. Arzneimittelforschung 40, 754–760 (1990).

    CAS  PubMed  Google Scholar 

  18. Crichton, R. R., Danielson, B. G. & Geisser, P. Iron Therapy with Special Emphasis on Intravenous Administration (Uni-Med Verlag, Bremen, 2006).

    Google Scholar 

  19. Anderson, G. J., Frazer, D. M. & McLaren, G. D. Iron absorption and metabolism. Curr. Opin. Gastroenterol. 25, 129–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Collins, J. F., Wessling-Resnick, M. & Knutson, M. D. Hepcidin regulation of iron transport. J. Nutr. 138, 2284–2288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ganz, T. Molecular control of iron transport. J. Am. Soc. Nephrol. 18, 394–400 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. De Domenico, I. et al. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol. Biol. Cell 18, 2569–2578 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Domenico, I., Lo, E., Ward, D. M. & Kaplan, J. Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc. Natl Acad. Sci. USA 106, 3800–3805 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamaji, S., Sharp, P., Ramesh, B. & Srai, S. K. Inhibition of iron transport across human intestinal epithelial cells by hepcidin. Blood 104, 2178–2180 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Mena, N. P., Esparza, A., Tapia, V., Valdes, P. & Nunez, M. T. Hepcidin inhibits apical iron uptake in intestinal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G192–G198 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Theurl, I. et al. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood 111, 2392–2399 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Wrighting, D. M. & Andrews, N. C. Interleukin-6 induces hepcidin expression through STAT3. Blood 108, 3204–3209 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verga Falzacappa, M. V. et al. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109, 353–358 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. Arndt, S. et al. Iron-induced expression of bone morphogenic protein 6 in intestinal cells is the main regulator of hepatic hepcidin expression in vivo. Gastroenterology 138, 372–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Knutson, M. D. Iron-sensing proteins that regulate hepcidin and enteric iron absorption. Annu. Rev. Nutr. 30, 149–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Gasche, C. et al. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases. Inflamm. Bowel Dis. 13, 1545–1553 (2007).

    Article  PubMed  Google Scholar 

  33. Hodges, P., Gee, M., Grace, M. & Thomson, A. B. Vitamin and iron intake in patients with Crohn's disease. J. Am. Diet. Assoc. 84, 52–58 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Lomer, M. C. et al. Intake of dietary iron is low in patients with Crohn's disease: a case–control study. Br. J. Nutr. 91, 141–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Cartwright, G. E. The anemia of chronic disorders. Semin. Hematol. 3, 351–375 (1966).

    CAS  PubMed  Google Scholar 

  36. Weiss, G. & Gasche, C. Pathogenesis and treatment of anemia in inflammatory bowel disease. Haematologica 95, 175–178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andrews, N. C. Forging a field: the golden age of iron biology. Blood 112, 219–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clark, S. F. Iron deficiency anemia: diagnosis and management. Curr. Opin. Gastroenterol. 25, 122–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Guagnozzi, D. et al. Ferritin as a simple indicator of iron deficiency in anemic IBD patients. Inflamm. Bowel Dis. 12, 150–151 (2006).

    Article  PubMed  Google Scholar 

  40. Das, S. & Philip, K. J. Evaluation of iron status: zinc protoporphyrin vis-a-vis bone marrow iron stores. Indian J. Pathol. Microbiol. 51, 105–107 (2008).

    Article  PubMed  Google Scholar 

  41. Metzgeroth, G. & Hastka, J. Diagnostic work-up of iron deficiency. J. Lab. Med. 28, 391–399 (2004).

    CAS  Google Scholar 

  42. Scrimgeour, A. G. & Condlin, M. L. Zinc and micronutrient combinations to combat gastrointestinal inflammation. Curr. Opin. Clin. Nutr. Metab. Care 12, 653–660 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Beguin, Y. Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin. Chim. Acta 329, 9–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Thomas, L. & Thomas, C. Anemia in iron deficiency and disorders of iron metabolism. Dtsch. Med. Wochenschr. 127, 1591–1594 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Punnonen, K., Irjala, K. & Rajamaki, A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood 89, 1052–1057 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Mast, A. E., Blinder, M. A., Gronowski, A. M., Chumley, C. & Scott, M. G. Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clin. Chem. 44, 45–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Wish, J. B. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol. 1 (Suppl. 1), S4–S8 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Fernández-Rodríguez, A. M. et al. Diagnosis of iron deficiency in chronic renal failure. Am. J. Kidney Dis. 34, 508–513 (1999).

    Article  PubMed  Google Scholar 

  49. Thomas, C. & Thomas, L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin. Chem. 48, 1066–1076 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Mast, A. E., Blinder, M. A. & Dietzen, D. J. Reticulocyte hemoglobin content. Am. J. Hematol. 83, 307–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Brugnara, C. Iron deficiency and erythropoiesis: new diagnostic approaches. Clin. Chem. 49, 1573–1578 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Ganzoni, A. M. Intravenous iron-dextran: therapeutic and experimental possibilities [German]. Schweiz. Med. Wochenschr. 100, 301–303 (1970).

    CAS  PubMed  Google Scholar 

  53. Zhu, A., Kaneshiro, M. & Kaunitz, J. D. Evaluation and treatment of iron deficiency anemia: a gastroenterological perspective. Dig. Dis. Sci. 55, 548–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rimon, E. et al. Are we giving too much iron? Low-dose iron therapy is effective in octogenarians. Am. J. Med. 118, 1142–1147 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, S. J., Gibson, R. A., Crowther, C. A. & Makrides, M. Should we lower the dose of iron when treating anaemia in pregnancy? A randomized dose-response trial. Eur. J. Clin. Nutr. 63, 183–190 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Semrin, G. et al. Impaired intestinal iron absorption in Crohn's disease correlates with disease activity and markers of inflammation. Inflamm. Bowel Dis. 12, 1101–1106 (2006).

    Article  PubMed  Google Scholar 

  57. Schroder, O. et al. Intravenous iron sucrose versus oral iron supplementation for the treatment of iron deficiency anemia in patients with inflammatory bowel disease—a randomized, controlled, open-label, multicenter study. Am. J. Gastroenterol. 100, 2503–2509 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. Haig, A. & Driman, D. K. Iron-induced mucosal injury to the upper gastrointestinal tract. Histopathology 48, 808–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Kaye, P. et al. Iron-induced mucosal pathology of the upper gastrointestinal tract: a common finding in patients on oral iron therapy. Histopathology 53, 311–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Carrier, J., Aghdassi, E., Platt, I., Cullen, J. & Allard, J. P. Effect of oral iron supplementation on oxidative stress and colonic inflammation in rats with induced colitis. Aliment. Pharmacol. Ther. 15, 1989–1999 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Carrier, J., Aghdassi, E., Cullen, J. & Allard, J. P. Iron supplementation increases disease activity and vitamin E ameliorates the effect in rats with dextran sulfate sodium-induced colitis. J. Nutr. 132, 3146–3150 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Klopcic, B., Chua, A., Loh, L. L., Trinder, D. & Lawrance, I. C. Increased dietary iron increases the level of chronic intestine inflammation and the development of colonic tumorgenesis in the mouse. Gastroenterology 136, A90 (2009).

    Article  Google Scholar 

  63. Erichsen, K. et al. Oral ferrous fumarate or intravenous iron sucrose for patients with inflammatory bowel disease. Scand. J. Gastroenterol. 40, 1058–1065 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Aghdassi, E., Carrier, J., Cullen, J., Tischler, M. & Allard, J. P. Effect of iron supplementation on oxidative stress and intestinal inflammation in rats with acute colitis. Dig. Dis. Sci. 46, 1088–1094 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Seril, D. N. et al. Dietary iron supplementation enhances DSS-induced colitis and associated colorectal carcinoma development in mice. Dig. Dis. Sci. 47, 1266–1278 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Seril, D. N., Liao, J., Yang, C. S. & Yang, G. Y. Systemic iron supplementation replenishes iron stores without enhancing colon carcinogenesis in murine models of ulcerative colitis: comparison with iron-enriched diet. Dig. Dis. Sci. 50, 696–707 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Troost, F. J. et al. Iron supplements inhibit zinc but not copper absorption in vivo in ileostomy subjects. Am. J. Clin. Nutr. 78, 1018–1023 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Sharma, J. B. et al. A prospective, partially randomized study of pregnancy outcomes and hematologic responses to oral and intramuscular iron treatment in moderately anemic pregnant women. Am. J. Clin. Nutr. 79, 116–122 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Bork, K. Localized cutaneous siderosis following intramuscular iron injections [German]. Hautarzt 35, 598–599 (1984).

    CAS  PubMed  Google Scholar 

  70. MacKinnon, A. E. & Bancewicz, J. Sarcoma after injection of intramuscular iron. Br. Med. J. 2, 277–279 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Greenberg, G. Sarcoma after intramuscular iron injection. Br. Med. J. 1, 1508–1509 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fielding, J. Does sarcoma occur in man after intramuscular iron? Scand. J. Haematol. Suppl. 32, 100–104 (1977).

    CAS  PubMed  Google Scholar 

  73. Kaushansky, K. & Kipps, T. in Goodman & Gilman's The Pharmacological Basis of Therapeutics (eds Hardman, J. G., Limbird, L. E. & Gilman, A. G.) 1433–1466 (McGraw-Hill Professional, Maidenhead, 2005).

    Google Scholar 

  74. Auerbach, M., Ballard, H. & Glaspy, J. Clinical update: intravenous iron for anaemia. Lancet 369, 1502–1504 (2007).

    Article  PubMed  Google Scholar 

  75. Auerbach, M., Goodnough, L. T., Picard, D. & Maniatis, A. The role of intravenous iron in anemia management and transfusion avoidance. Transfusion 48, 988–1000 (2008).

    CAS  PubMed  Google Scholar 

  76. Fletes, R., Lazarus, J. M., Gage, J. & Chertow, G. M. Suspected iron dextran-related adverse drug events in hemodialysis patients. Am. J. Kidney Dis. 37, 743–749 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Chertow, G. M., Mason, P. D., Vaage-Nilsen, O. & Ahlmen, J. On the relative safety of parenteral iron formulations. Nephrol. Dial. Transplant. 19, 1571–1575 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Chertow, G. M., Mason, P. D., Vaage-Nilsen, O. & Ahlmen, J. Update on adverse drug events associated with parenteral iron. Nephrol. Dial. Transplant. 21, 378–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Pharmacovigilance Working Party. May 2010 plenary meeting. European Medicines Agency [online], (2010).

  80. Macdougall, I. C. Strategies for iron supplementation: oral versus intravenous. Kidney Int. Suppl. 69, S61–S66 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Ferriclet® (ferric gluconate injection) package insert (Sanofi-Aventis, 2010).

  82. Geisser, P., Baer, M. & Schaub, E. Structure/histotoxicity relationship of parenteral iron preparations. Arzneimittelforschung 42, 1439–1452 (1992).

    CAS  PubMed  Google Scholar 

  83. Schroder, O. et al. A study for the evaluation of safety and tolerability of intravenous high-dose iron sucrose in patients with iron deficiency anemia due to gastrointestinal bleeding. Z. Gastroenterol. 42, 663–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Venofer 20 mg/ml Solution for Injection. Electronic Medicines Compendium [online], (2006).

  85. Szczech, L. A. et al. Randomized Evaluation of efficacy and safety of ferric carboxymaltose in Patients with iron deficiency Anaemia and Impaired Renal function (REPAIR-IDA): rationale and study design. Nephrol. Dial. Transplant. 25, 2368–2375 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Covic, A. & Mircescu, G. The safety and efficacy of intravenous ferric carboxymaltose in anaemic patients undergoing haemodialysis: a multi-centre, open-label, clinical study. Nephrol. Dial. Transplant. 25, 2722–2730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grimmelt, A. C., Cohen, C. D., Fehr, T., Serra, A. L. & Wuethrich, R. P. Safety and tolerability of ferric carboxymaltose (FCM) for treatment of iron deficiency in patients with chronic kidney disease and in kidney transplant recipients. Clin. Nephrol. 71, 125–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Tagboto, S., Cropper, L., Turner, J. & Pugh-Clarke, K. The efficacy of a single dose of intravenous ferric carboxymaltose (Ferinject) on anaemia in a pre-dialysis population of chronic kidney disease patients. J. Ren. Care 35, 18–23 (2009).

    Article  PubMed  Google Scholar 

  89. Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436–2448 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Breymann, C., Gliga, F., Bejenariu, C. & Strizhova, N. Comparative efficacy and safety of intravenous ferric carboxymaltose in the treatment of postpartum iron deficiency anemia. Int. J. Gynaecol. Obstet. 101, 67–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Van Wyck, D. B. et al. Large-dose intravenous ferric carboxymaltose injection for iron deficiency anemia in heavy uterine bleeding: a randomized, controlled trial. Transfusion 49, 2719–2728 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Seid, M. H. et al. Ferric carboxymaltose injection in the treatment of postpartum iron deficiency anemia: a randomized controlled clinical trial. Am. J. Obstet. Gynecol. 199, 435 e1–e7 (2008).

    Article  CAS  Google Scholar 

  93. Kulnigg, S. et al. A novel intravenous iron formulation for treatment of anemia in inflammatory bowel disease: the ferric carboxymaltose (FERINJECT) randomized controlled trial. Am. J. Gastroenterol. 103, 1182–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Evstatiev, R. et al. Efficacy and safety of standardised ferric carboxymaltose doses vs. individually calculated iron sucrose doses for IBD-associated iron deficiency anemia: a multicentre, randomised controlled trial. Presented at the 18th United European Gastroenterology Week (Barcelona, 2010).

  95. Balakrishnan, V. S. et al. Physicochemical properties of ferumoxytol, a new intravenous iron preparation. Eur. J. Clin. Invest. 39, 489–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Lu, M., Cohen, M. H., Rieves, D. & Pazdur, R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am. J. Hematol. 85, 315–319 (2010).

    CAS  PubMed  Google Scholar 

  97. Coyne, D. W. Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease. Expert Opin. Pharmacother. 10, 2563–2568 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Bruining, D. H. & Loftus, E. V. Jr. Technology insight: new techniques for imaging the gut in patients with IBD. Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 154–161 (2008).

    Article  PubMed  Google Scholar 

  99. Sinha, R. et al. Role of MRI in Crohn's disease. Clin. Radiol. 64, 341–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Gasche, C. et al. Intravenous iron and erythropoietin for anemia associated with Crohn disease. A randomized, controlled trial. Ann. Intern. Med. 126, 782–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Gasche, C. et al. Sequential treatment of anemia in ulcerative colitis with intravenous iron and erythropoietin. Digestion 60, 262–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Dohil, R., Hassall, E., Wadsworth, L. D. & Israel, D. M. Recombinant human erythropoietin for treatment of anemia of chronic disease in children with Crohn's disease. J. Pediatr. 132, 155–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Schreiber, S. et al. Recombinant erythropoietin for the treatment of anemia in inflammatory bowel disease. N. Engl. J. Med. 334, 619–623 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Koutroubakis, I. E. et al. Effectiveness of darbepoetin-alfa in combination with intravenous iron sucrose in patients with inflammatory bowel disease and refractory anaemia: a pilot study. Eur. J. Gastroenterol. Hepatol. 18, 421–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Kulnigg, S., Teischinger, L., Dejaco, C., Waldhor, T. & Gasche, C. Rapid recurrence of IBD-associated anemia and iron deficiency after intravenous iron sucrose and erythropoietin treatment. Am. J. Gastroenterol. 104, 1460–1467 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Kosch, M., Schaefer, R. M. & Bahner, U. Supplementation with minerals and trace elements. Iron, zinc and selenium [German]. Internist (Berl.) 43, 1299–1307 (2002).

    Article  CAS  Google Scholar 

  107. Unger, E. F., Thompson, A. M., Blank, M. J. & Temple, R. Erythropoiesis-stimulating agents—time for a reevaluation. N. Engl. J. Med. 362, 189–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Bergamaschi, G. et al. Prevalence and pathogenesis of anemia in inflammatory bowel disease. Influence of anti-tumor necrosis factor-alpha treatment. Haematologica 95, 199–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. de Vizia, B., Poggi, V., Conenna, R., Fiorillo, A. & Scippa, L. Iron absorption and iron deficiency in infants and children with gastrointestinal diseases. J. Pediatr. Gastroenterol. Nutr. 14, 21–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  110. Gasche, C. et al. Anemia in Crohn's disease. Importance of inadequate erythropoietin production and iron deficiency. Dig. Dis. Sci. 39, 1930–1934 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Lakatos, L. et al. Association of extraintestinal manifestations of inflammatory bowel disease in a province of western Hungary with disease phenotype: results of a 25-year follow-up study. World J. Gastroenterol. 9, 2300–2307 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ormerod, T. P. Observations on the incidence and cause of anaemia in ulcerative colitis. Gut 8, 107–114 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Revel-Vilk, S. et al. Serum transferrin receptor in children and adolescents with inflammatory bowel disease. Eur. J. Pediatr. 159, 585–589 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Bodemar, G., Kechagias, S., Almer, S. & Danielson, B. G. Treatment of anaemia in inflammatory bowel disease with iron sucrose. Scand. J. Gastroenterol. 39, 454–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Gasche, C. et al. Prediction of response to iron sucrose in inflammatory bowel disease-associated anemia. Am. J. Gastroenterol. 96, 2382–2387 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Gisbert, J. P. et al. Oral and intravenous iron treatment in inflammatory bowel disease: hematological response and quality of life improvement. Inflamm. Bowel Dis. 15, 1485–1491 (2009).

    Article  PubMed  Google Scholar 

  117. Katsanos, K. et al. Intravenous iron therapy restores functional iron deficiency induced by infliximab. J. Crohn's Colitis 1, 97–105 (2007).

    Article  Google Scholar 

  118. Koutroubakis, I. E., Oustamanolakis, P., Karakoidas, C., Mantzaris, G. J. & Kouroumalis, E. A. Safety and efficacy of total-dose infusion of low molecular weight iron dextran for iron deficiency anemia in patients with inflammatory bowel disease. Dig. Dis. Sci. 55, 2327–2331 (2009).

    Article  PubMed  CAS  Google Scholar 

  119. Lindgren, S. et al. Intravenous iron sucrose is superior to oral iron sulphate for correcting anaemia and restoring iron stores in IBD patients: A randomized, controlled, evaluator-blind, multicentre study. Scand. J. Gastroenterol. 44, 838–845 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Mamula, P., Piccoli, D. A., Peck, S. N., Markowitz, J. E. & Baldassano, R. N. Total dose intravenous infusion of iron dextran for iron-deficiency anemia in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 34, 286–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Zhu, Y. I. & Haas, J. D. Iron depletion without anemia and physical performance in young women. Am. J. Clin. Nutr. 66, 334–341 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Hinton, P. S., Giordano, C., Brownlie, T. & Haas, J. D. Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J. Appl. Physiol. 88, 1103–1111 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Brownlie, T. 4th, Utermohlen, V., Hinton, P. S. & Haas, J. D. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am. J. Clin. Nutr. 79, 437–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Hinton, P. S. & Sinclair, L. M. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur. J. Clin. Nutr. 61, 30–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Wilson, C. & Brothers, M. Iron deficiency in women and its potential impact on military effectiveness. Nurs. Clin. North Am. 45, 95–108 (2010).

    Article  PubMed  Google Scholar 

  126. McCann, J. C. & Ames, B. N. An overview of evidence for a causal relation between iron deficiency during development and deficits in cognitive or behavioral function. Am. J. Clin. Nutr. 85, 931–945 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Kordas, K. Iron, lead, and children's behavior and cognition. Annu. Rev. Nutr. 30, 123–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Verdon, F. et al. Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomised placebo controlled trial. BMJ 326, 1124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Patterson, A. J., Brown, W. J., Powers, J. R. & Roberts, D. C. Iron deficiency, general health and fatigue: results from the Australian Longitudinal Study on Women's Health. Qual. Life Res. 9, 491–497 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Allen, R. P., Barker, P. B., Wehrl, F., Song, H. K. & Earley, C. J. MRI measurement of brain iron in patients with restless legs syndrome. Neurology 56, 263–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Berger, K. et al. Iron metabolism and the risk of restless legs syndrome in an elderly general population—the MEMO-Study. J. Neurol. 249, 1195–1199 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Sloand, J. A., Shelly, M. A., Feigin, A., Bernstein, P. & Monk, R. D. A double-blind, placebo-controlled trial of intravenous iron dextran therapy in patients with ESRD and restless legs syndrome. Am. J. Kidney Dis. 43, 663–670 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Ondo, W. G. Intravenous iron dextran for severe refractory restless legs syndrome. Sleep Med. 11, 494–496 (2010).

    Article  PubMed  Google Scholar 

  134. Martinez-Torres, C. et al. Effect of exposure to low temperature on normal and iron-deficient subjects. Am. J. Physiol. 246, R380–R383 (1984).

    CAS  PubMed  Google Scholar 

  135. Beard, J. L., Borel, M. J. & Derr, J. Impaired thermoregulation and thyroid function in iron-deficiency anemia. Am. J. Clin. Nutr. 52, 813–819 (1990).

    Article  CAS  PubMed  Google Scholar 

  136. Beard, J. L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 131, 568S–579S (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Ahluwalia, N., Sun, J., Krause, D., Mastro, A. & Handte, G. Immune function is impaired in iron-deficient, homebound, older women. Am. J. Clin. Nutr. 79, 516–521 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Moeinvaziri, M., Mansoori, P., Holakooee, K., Safaee Naraghi, Z. & Abbasi, A. Iron status in diffuse telogen hair loss among women. Acta Dermatovenerol. Croat. 17, 279–284 (2009).

    PubMed  Google Scholar 

  139. Trost, L. B., Bergfeld, W. F. & Calogeras, E. The diagnosis and treatment of iron deficiency and its potential relationship to hair loss. J. Am. Acad. Dermatol. 54, 824–844 (2006).

    Article  PubMed  Google Scholar 

  140. Baird, I. M., Dodge, O. G., Palmer, F. J. & Wawman, R. J. The tongue and oesophagus in iron-deficiency anaemia and the effect of iron therapy. J. Clin. Pathol. 14, 603–609 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Novacek, G. Plummer-Vinson syndrome. Orphanet J. Rare Dis. 1, 36 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Khan, Y. & Tisman, G. Pica in iron deficiency: a case series. J. Med. Case Reports 4, 86 (2010).

    Article  PubMed Central  Google Scholar 

  143. Christian, P. Micronutrients, birth weight, and survival. Annu. Rev. Nutr. 30, 83–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Lizarraga, A. et al. Atrophy of the intestinal villi in a post-gastrectomy patient with severe iron deficiency anemia. Nutr. Hosp. 24, 618–621 (2009).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. Stein contributed to the research, discussion, writing and reviewing of the manuscript. F. Hartmann and A. Dignass contributed to the research, discussion and reviewing of the manuscript.

Corresponding author

Correspondence to Jürgen Stein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, J., Hartmann, F. & Dignass, A. Diagnosis and management of iron deficiency anemia in patients with IBD. Nat Rev Gastroenterol Hepatol 7, 599–610 (2010). https://doi.org/10.1038/nrgastro.2010.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing