Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The endocrine manifestations of anorexia nervosa: mechanisms and management

Key Points

  • Anorexia nervosa is associated with endocrine dysregulation, including dysfunction of the hypothalamic–pituitary axis and alterations in adipokines and appetite-regulating hormone levels

  • Most endocrine abnormalities are adaptive to the state of chronic starvation, but nevertheless might contribute to impaired skeletal integrity, as well as neuropsychiatric symptoms

  • Weight restoration and gonadal recovery are critical to improving skeletal health, but low bone density and increased fracture risk might remain a long-term complication for individuals in recovery from anorexia nervosa

  • Further research on the reported associations between hypothalamic–pituitary axis and appetite-regulating hormones with neuropsychiatric symptoms and brain food motivation circuitry might help inform the pathophysiology of the disease

Abstract

Anorexia nervosa is a psychiatric disorder characterized by altered body image, persistent food restriction and low body weight, and is associated with global endocrine dysregulation in both adolescent girls and women. Dysfunction of the hypothalamic–pituitary axis includes hypogonadotropic hypogonadism with relative oestrogen and androgen deficiency, growth hormone resistance, hypercortisolaemia, non-thyroidal illness syndrome, hyponatraemia and hypooxytocinaemia. Serum levels of leptin, an anorexigenic adipokine, are suppressed and levels of ghrelin, an orexigenic gut peptide, are elevated in women with anorexia nervosa; however, levels of peptide YY, an anorexigenic gut peptide, are paradoxically elevated. Although most, but not all, of these endocrine disturbances are adaptive to the low energy state of chronic starvation and reverse with treatment of the eating disorder, many contribute to impaired skeletal integrity, as well as neuropsychiatric comorbidities, in individuals with anorexia nervosa. Although 5–15% of patients with anorexia nervosa are men, only limited data exist regarding the endocrine impact of the disease in adolescent boys and men. Further research is needed to understand the endocrine determinants of bone loss and neuropsychiatric comorbidities in anorexia nervosa in both women and men, as well as to formulate optimal treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocrine dysregulation in anorexia nervosa.
Figure 2: The effect of endocrine dysregulation on the bone microenvironment.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (American Psychiatric Publishing, 2013).

  2. Miller, K. K. et al. Preservation of neuroendocrine control of reproductive function despite severe undernutrition. J. Clin. Endocrinol. Metab. 89, 4434–4438 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Currin, L., Schmidt, U., Treasure, J. & Jick, H. Time trends in eating disorder incidence. Br. J. Psychiatry 186, 132–135 (2005).

    Article  PubMed  Google Scholar 

  4. Smink, F. R. E. et al. Three decades of eating disorders in Dutch primary care: decreasing incidence of bulimia nervosa but not of anorexia nervosa. Psychol. Med. 46, 1189–1196 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Lucas, A. R., Crowson, C. S., O'Fallon, W. M. & Melton, L. J. The ups and downs of anorexia nervosa. Int. J. Eat. Disord. 26, 397–405 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Smink, F. R. E., van Hoeken, D., Oldehinkel, A. J. & Hoek, H. W. Prevalence and severity of DSM-5 eating disorders in a community cohort of adolescents. Int. J. Eat. Disord. 47, 610–619 (2014).

    Article  PubMed  Google Scholar 

  7. Mancuso, S. G. et al. Classification of eating disorders: comparison of relative prevalence rates using DSM-IV and DSM-5 criteria. Br. J. Psychiatry 206, 519–520 (2015).

    Article  PubMed  Google Scholar 

  8. Larrañaga, A., Docet, M. F. & García-Mayor, R. V. High prevalence of eating disorders not otherwise specified in northwestern Spain: population-based study. Soc. Psychiatry Psychiatr. Epidemiol. 47, 1669–1673 (2012).

    Article  PubMed  Google Scholar 

  9. Lucas, A. R., Beard, C. M., O'Fallon, W. M. & Kurland, L. T. 50-year trends in the incidence of anorexia nervosa in Rochester, Minn.: a population-based study. Am. J. Psychiatry 148, 917–922 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Miller, K. K. Endocrine dysregulation in anorexia nervosa update. J. Clin. Endocrinol. Metab. 96, 2939–2949 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Löwe, B. et al. Long-term outcome of anorexia nervosa in a prospective 21-year follow-up study. Psychol. Med. 31, 881–890 (2001).

    Article  PubMed  Google Scholar 

  12. Fichter, M. M., Quadflieg, N. & Hedlund, S. Twelve-year course and outcome predictors of anorexia nervosa. Int. J. Eat. Disord. 39, 87–100 (2006).

    Article  PubMed  Google Scholar 

  13. Steinhausen, H.-C. The outcome of anorexia nervosa in the 20th century. Am. J. Psychiatry 159, 1284–1293 (2002).

    Article  PubMed  Google Scholar 

  14. Miller, K. et al. Medical findings in outpatients with anorexia nerovsa. Arch. Intern. Med. 165, 561–566 (2005).

    Article  PubMed  Google Scholar 

  15. Vanderschueren, S., Geens, E., Knockaert, D. & Bobbaers, H. The diagnostic spectrum of unintentional weight loss. Eur. J. Intern. Med. 16, 160–164 (2005).

    Article  PubMed  Google Scholar 

  16. Boyar, R. M. et al. Anorexia nervosa — immaturity of the 24-hour luteinizing hormone secretory pattern. N. Engl. J. Med. 291, 861–865 (1974).

    Article  CAS  PubMed  Google Scholar 

  17. Katz, J. L., Boyar, R., Roffwarg, H., Hellman, L. & Weiner, H. Weight and circadian luteinizing hormone secretory pattern in anorexia nervosa. Psychosom. Med. 40, 549–567 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Grinspoon, S. et al. Serum leptin levels in women with anorexia nervosa. J. Clin. Endocrinol. Metab. 81, 3861–3863 (1996).

    CAS  PubMed  Google Scholar 

  20. Welt, C. K. et al. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Gottsch, M. L. et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145, 4073–4077 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. De Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA 100, 10972–10976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jayasena, C. N. et al. Subcutaneous injection of kisspeptin-54 acutely stimulates gonadotropin secretion in women with hypothalamic amenorrhea, but chronic administration causes tachyphylaxis. J. Clin. Endocrinol. Metab. 94, 4315–4323 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Caronia, L. M. et al. A genetic basis for functional hypothalamic amenorrhea. N. Engl. J. Med. 364, 215–225 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Miller, K. K. et al. Androgens in women with anorexia nervosa and normal-weight women with hypothalamic amenorrhea. J. Clin. Endocrinol. Metab. 92, 1334–1339 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Golden, N. H. et al. Resumption of menses in anorexia nervosa. Arch. Pediatr. Adolesc. Med. 151, 16–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Jacoangeli, F. et al. Amenorrhea after weight recover in anorexia nervosa: role of body composition and endocrine abnormalities. Eat. Weight Disord. 11, e20–e26 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Misra, M. et al. Alterations in growth hormone secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J. Clin. Endocrinol. Metab. 88, 5615–5623 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Støving, R. K. et al. Jointly amplified basal and pulsatile growth hormone (GH) secretion and increased process irregularity in women with anorexia nervosa: indirect evidence for disruption of feedback regulation within the GH-insulin-like growth factor I axis. J. Clin. Endocrinol. Metab. 84, 2056–2063 (1999).

    PubMed  Google Scholar 

  30. Roth, J., Glick, S. M., Yalow, R. S. & Berson, S. A. Hypoglycemia: a potent stimulus to secretion of growth hormone. Science 140, 987–988 (1963).

    Article  CAS  PubMed  Google Scholar 

  31. Counts, D. R., Gwirtsman, H., Carlsson, L. M., Lesem, M. & Cutler, G. B. The effect of anorexia nervosa and refeeding on growth hormone-binding protein, the insulin-like growth factors (IGFs), and the IGF-binding proteins. J. Clin. Endocrinol. Metab. 75, 762–767 (1992).

    CAS  PubMed  Google Scholar 

  32. Støving, R. K. et al. Bioactive insulin-like growth factor (IGF) I and IGF-binding protein-1 in anorexia nervosa. J. Clin. Endocrinol. Metab. 92, 2323–2329 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Golden, N. H. et al. Disturbances in growth hormone secretion and action in adolescents with anorexia nervosa. J. Pediatr. 125, 655–660 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Modan-Moses, D. et al. Stunting of growth as a major feature of anorexia nervosa in male adolescents. Pediatrics 111, 270–276 (2003).

    Article  PubMed  Google Scholar 

  35. Modan-Moses, D. et al. Linear growth and final height characteristics in adolescent females with anorexia nervosa. PLoS ONE 7, e45504 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Prabhakaran, R. et al. Determinants of height in adolescent girls with anorexia nervosa. Pediatrics 121, e1517–e1523 (2008).

    Article  PubMed  Google Scholar 

  37. Zhao, T.-J. et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc. Natl Acad. Sci. USA 107, 7467–7472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gahete, M. D., Córdoba- Chacón, J., Luque, R. M. & Kineman, R. D. The rise in growth hormone during starvation does not serve to maintain glucose levels or lean mass but is required for appropriate adipose tissue response in female mice. Endocrinology 154, 263–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Nishimura, T., Nakatake, Y., Konishi, M. & Itoh, N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 1492, 203–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X. et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57, 1246–1253 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Inagaki, T. et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Inagaki, T. et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 8, 77–83 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Fazeli, P. K., Misra, M., Goldstein, M., Miller, K. K. & Klibanski, A. Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa. J. Clin. Endocrinol. Metab. 95, 369–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Leung, K.-C. Insulin regulation of human hepatic growth hormone receptors: divergent effects on biosynthesis and surface translocation. J. Clin. Endocrinol. Metab. 85, 4712–4720 (2000).

    CAS  PubMed  Google Scholar 

  45. Gianotti, L. et al. Effects of recombinant human insulin-like growth factor I administration on spontaneous and growth hormone (GH)-releasing hormone-stimulated GH secretion in anorexia nervosa. J. Clin. Endocrinol. Metab. 85, 2805–2809 (2000).

    CAS  PubMed  Google Scholar 

  46. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Misra, M. et al. Secretory dynamics of ghrelin in adolescent girls with anorexia nervosa and healthy adolescents. Am. J. Physiol. Endocrinol. Metab. 289, E347–E356 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Hotta, M. et al. The relationship between bone turnover and body weight, serum insulin-like growth factor (IGF) I, and serum IGF-binding protein levels in patients with anorexia nervosa. J. Clin. Endocrinol. Metab. 85, 200–206 (2000).

    CAS  PubMed  Google Scholar 

  49. Argente, J. et al. Multiple endocrine abnormalities of the growth hormone and insulin-like growth factor axis in patients with anorexia nervosa: effect of short- and long-term weight recuperation. J. Clin. Endocrinol. Metab. 82, 2084–2092 (1997).

    CAS  PubMed  Google Scholar 

  50. Fazeli, P. K. et al. Effects of recombinant human growth hormone in anorexia nervosa: a randomized, placebo-controlled study. J. Clin. Endocrinol. Metab. 95, 4889–4897 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Boyar, R. et al. Cortisol secretion and metabolism in anorexia nervosa. N. Engl. J. Med. 296, 190–193 (1977).

    Article  CAS  PubMed  Google Scholar 

  52. Doerr, P., Fichter, M., Pirke, K. & Lund, R. Relationship between weight gain and hypothalamic pituitary adrenal function in patients with anorexia nervosa. J. Steroid Biochem. 13, 529–537 (1980).

    Article  CAS  PubMed  Google Scholar 

  53. Misra, M. et al. Role of cortisol in menstrual recovery in adolescent girls with anorexia nervosa. Pediatr. Res. 59, 598–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Biller, B. M., Federoff, H. J., Koenig, J. I. & Klibanski, A. Abnormal cortisol secretion and responses to corticotropin-releasing hormone in women with hypothalamic amenorrhea. J. Clin. Endocrinol. Metab. 70, 311–317 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Misra, M. et al. Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J. Clin. Endocrinol. Metab. 89, 4972–4980 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Lawson, E. et al. Hypercortisolemia is associated with severity of bone loss and depression in hypothalamic amenorrhea and anorexia nervosa. J. Clin. Endocrinol. Metab. 94, 4710–4716 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Misra, M. & Klibanski, A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology 93, 65–73 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Arvat, E. et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J. Clin. Endocrinol. Metab. 86, 1169–1174 (2001).

    CAS  PubMed  Google Scholar 

  59. Mozid, A. M. et al. Ghrelin is released from rat hypothalamic explants and stimulates corticotrophin-releasing hormone and arginine-vasopressin. Horm. Metab. Res. 35, 455–459 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Misra, M. et al. Hormonal determinants of regional body composition in adolescent girls with anorexia nervosa and controls. J. Clin. Endocrinol. Metab. 90, 2580–2587 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Grinspoon, S. et al. Changes in regional fat distribution and the effects of estrogen during spontaneous weight gain in women with anorexia nervosa. Am. J. Clin. Nutr. 73, 865–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Lawson, E. A. et al. Increased hypothalamic–pituitary–adrenal drive is associated with decreased appetite and hypoactivation of food-motivation neurocircuitry in anorexia nervosa. Eur. J. Endocrinol. 169, 639–647 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mayer, L. et al. Body fat redistribution after weight gain in women with anorexia nervosa. Am. J. Clin. Nutr. 81, 1286–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Connan, F. et al. An investigation of hypothalamic–pituitary–adrenal axis hyperactivity in anorexia nervosa: the role of CRH and AVP. J. Psychiatr. Res. 41, 131–143 (2007).

    Article  PubMed  Google Scholar 

  65. Lawson, E. A. et al. Adrenal glucocorticoid and androgen precursor dissociation in anorexia nervosa. J. Clin. Endocrinol. Metab. 94, 1367–1371 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gordon, C. M. et al. Changes in bone turnover markers and menstrual function after short-term oral DHEA in young women with anorexia nervosa. J. Bone Miner. Res. 14, 136–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Zumoff, B. et al. Subnormal plasma dehydroisoandrosterone to cortisol ratio in anorexia nervosa: a second hormonal parameter of ontogenic regression. J. Clin. Endocrinol. Metab. 56, 668–672 (1983).

    Article  CAS  PubMed  Google Scholar 

  68. Estour, B. et al. Hormonal profile heterogeneity and short-term physical risk in restrictive anorexia nervosa. J. Clin. Endocrinol. Metab. 95, 2203–2210 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Chopra, I. J. Clinical review 86: euthyroid sick syndrome: is it a misnomer? J. Clin. Endocrinol. Metab. 82, 329–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Kaplan, R. Thyroxine abuse. Aust. N. Z. J. Psychiatry 32, 464–465 (1998).

    CAS  PubMed  Google Scholar 

  71. Leslie, R. D., Isaacs, A. J., Gomez, J., Raggatt, P. R. & Bayliss, R. Hypothalamo–pituitary–thyroid function in anorexia nervosa: influence of weight gain. Br. Med. J. 2, 526–528 (1978).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ma, X. M. & Lightman, S. L. The arginine vasopressin and corticotrophin-releasing hormone gene transcription responses to varied frequencies of repeated stress in rats. J. Physiol. (Lond.) 510, 605–614 (1998).

    Article  CAS  Google Scholar 

  73. Rubin, R. T., O'Toole, S. M., Rhodes, M. E., Sekula, L. K. & Czambel, R. K. Hypothalamo–pituitary–adrenal cortical responses to low-dose physostigmine and arginine vasopressin administration: sex differences between major depressives and matched control subjects. Psychiatry Res. 89, 1–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Gold, P. W., Kaye, W., Robertson, G. L. & Ebert, M. Abnormalities in plasma and cerebrospinal-fluid arginine vasopressin in patients with anorexia nervosa. N. Engl. J. Med. 308, 1117–1123 (1983).

    Article  CAS  PubMed  Google Scholar 

  75. Caregaro, L., Di Pascoli, L., Favaro, A., Nardi, M. & Santonastaso, P. Sodium depletion and hemoconcentration: overlooked complications in patients with anorexia nervosa? Nutrition 21, 438–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Bahia, A., Chu, E. S. & Mehler, P. S. Polydipsia and hyponatremia in a woman with anorexia nervosa. Int. J. Eat. Disord. 44, 186–188 (2011).

    PubMed  Google Scholar 

  77. Evrard, F., da Cunha, M. P., Lambert, M. & Devuyst, O. Impaired osmoregulation in anorexia nervosa: a case-control study. Nephrol. Dial. Transplant. 19, 3034–3039 (2004).

    Article  PubMed  Google Scholar 

  78. Spasovski, G. et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur. J. Endocrinol. 170, G1–G47 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Mecklenburg, R. S., Loriaux, D. L., Thompson, R. H., Andersen, A. E. & Lipsett, M. B. Hypothalamic dysfunction in patients with anorexia nervosa. Medicine (Baltimore) 53, 147–159 (1974).

    Article  CAS  Google Scholar 

  80. Kjeldsen, K. Hypokalemia and sudden cardiac death. Exp. Clin. Cardiol. 15, e96–e99 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. American Psychiatric Association. Treatment of patients with eating disorders, third edition. American Psychiatric Association. Am. J. Psychiatry 163 (Suppl.), 4–54 (2006).

  82. Fuentebella, J. & Kerner, J. A. Refeeding syndrome. Pediatr. Clin. North Am. 56, 1201–1210 (2009).

    Article  PubMed  Google Scholar 

  83. NHS Foundation Trust. Guideline for the management of refeeding syndrome (adults). NHShttp://www.formulary.cht.nhs.uk/pdf,_doc_files_etc/MMC/089_Refeeding_Syndrome_-_3rd_Edition.pdf (2011).

  84. Lawson, E. et al. Decreased nocturnal oxytocin levels in anorexa nervosa are associated with low bone mineral density and fat mass. J. Clin. Psychiatry 72, 1546–1551 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lawson, E. A. et al. Postprandial oxytocin secretion is associated with severity of anxiety and depressive symptoms in anorexia nervosa. J. Clin. Psychiatry 74, e451–e457 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sabatier, N. et al. α-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J. Neurosci. 23, 10351–10358 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Misra, M. et al. Secretory dynamics of leptin in adolescent girls with anorexia nervosa and healthy adolescents. Am. J. Physiol. Endocrinol. Metab. 289, E373–E381 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Exner, C. et al. Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa. Mol. Psychiatry 5, 476–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Hebebrand, J. et al. Leptin levels in patients with anorexia nervosa are reduced in the acute stage and elevated upon short-term weight restoration. Mol. Psychiatry 2, 330–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Holtkamp, K. et al. The effect of therapeutically induced weight gain on plasma leptin levels in patients with anorexia nervosa. J. Psychiatr. Res. 37, 165–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Misra, M. et al. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J. Clin. Endocrinol. Metab. 92, 2046–2052 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Pannacciulli, N. et al. Anorexia nervosa is characterized by increased adiponectin plasma levels and reduced nonoxidative glucose metabolism. J. Clin. Endocrinol. Metab. 88, 1748–1752 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Housova, J. et al. Serum adiponectin and resistin concentrations in patients with restrictive and binge/purge form of anorexia nervosa and bulimia nervosa. J. Clin. Endocrinol. Metab. 90, 1366–1370 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Tagami, T. et al. Adiponectin in anorexia nervosa and bulimia nervosa. J. Clin. Endocrinol. Metab. 89, 1833–1837 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Amitani, H. et al. The role of adiponectin multimers in anorexia nervosa. Nutrition 29, 203–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Kluge, M., Schüssler, P., Uhr, M., Yassouridis, A. & Steiger, A. Ghrelin suppresses secretion of luteinizing hormone in humans. J. Clin. Endocrinol. Metab. 92, 3202–3205 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Kluge, M., Uhr, M., Bleninger, P., Yassouridis, A. & Steiger, A. Ghrelin suppresses secretion of FSH in males. Clin. Endocrinol. (Oxf.) 70, 920–923 (2009).

    Article  CAS  Google Scholar 

  99. Otto, B. et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur. J. Endocrinol. 145, 669–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Hotta, M., Ohwada, R., Akamizu, T., Shibasaki, T. & Kangawa, K. Therapeutic potential of ghrelin in restricting-type anorexia nervosa. Meth. Enzymol. 514, 381–398 (2012).

    Article  CAS  Google Scholar 

  101. Karczewska-Kupczewska, M. et al. Increased suppression of serum ghrelin concentration by hyperinsulinemia in women with anorexia nervosa. Eur. J. Endocrinol. 162, 235–239 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Misra, M. et al. Elevated peptide YY levels in adolescent girls with anorexia nervosa. J. Clin. Endocrinol. Metab. 91, 1027–1033 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Utz, A. L. et al. Peptide YY (PYY) levels and bone mineral density (BMD) in women with anorexia nervosa. Bone 43, 135–139 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lawson, E. et al. Appetite-regulating hormones cortisol and peptide YY are associated with disordered eating psychopathology, independent of body mass index. Eur. J. Endocrinol. 164, 253–261 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Nakahara, T. et al. Incomplete restoration of the secretion of ghrelin and PYY compared to insulin after food ingestion following weight gain in anorexia nervosa. J. Psychiatr. Res. 41, 814–820 (2007).

    Article  PubMed  Google Scholar 

  106. Misra, M. et al. Effects of anorexia nervosa on clinical, hematologic, biochemical, and bone density parameters in community-dwelling adolescent girls. Pediatrics 114, 1574–1583 (2004).

    Article  PubMed  Google Scholar 

  107. Faje, A. T. et al. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J. Clin. Endocrinol. Metab. 98, 1923–1929 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lawson, E. A. et al. Hormone predictors of abnormal bone microarchitecture in women with anorexia nervosa. Bone 46, 458–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Walsh, C. J. et al. Women with anorexia nervosa: finite element and trabecular structure analysis by using flat-panel volume CT. Radiology 257, 167–174 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rigotti, N. A., Neer, R. M., Skates, S. J., Herzog, D. B. & Nussbaum, S. R. The clinical course of osteoporosis in anorexia nervosa. A longitudinal study of cortical bone mass. JAMA 265, 1133–1138 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Solmi, M. et al. Bone mineral density, osteoporosis, and fractures among people with eating disorders: a systematic review and meta-analysis. Acta Psychiatr. Scand. 133, 341–351 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Faje, A. T. et al. Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa. Int. J. Eat. Disord. 47, 458–466 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bredella, M. A., Misra, M., Miller, K. K., Klibanski, A. & Gupta, R. Trabecular structure analysis of the distal radius in adolescent patients with anorexia nervosa using ultra high resolution flat panel based volume CT. J. Musculoskelet. Neuronal Interact. 8, 315 (2008).

    CAS  PubMed  Google Scholar 

  114. Van Coeverden, S. C. et al. Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin. Endocrinol. (Oxf.) 57, 107–116 (2002).

    Article  CAS  Google Scholar 

  115. Soyka, L. A. et al. Abnormal bone mineral accrual in adolescent girls with anorexia nervosa. J. Clin. Endocrinol. Metab. 87, 4177–4185 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Westmoreland, P., Krantz, M. J. & Mehler, P. S. Medical complications of anorexia nervosa and bulimia. Am. J. Med. 129, 30–37 (2016).

    Article  PubMed  Google Scholar 

  117. Schneider, M., Fisher, M., Weinerman, S. & Lesser, M. Correlates of low bone density in females with anorexia nervosa. Int. J. Adolesc. Med. Health 14, 297–306 (2002).

    Article  PubMed  Google Scholar 

  118. Grinspoon, S. et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann. Intern. Med. 133, 790–794 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Miller, K. K. et al. Determinants of skeletal loss and recovery in anorexia nervosa. J. Clin. Endocrinol. Metab. 91, 2931–2937 (2006).

    Article  PubMed  CAS  Google Scholar 

  120. Abella, E. et al. Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings. Am. J. Clin. Pathol. 118, 582–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Bredella, M. A. et al. Increased bone marrow fat in anorexia nervosa. J. Clin. Endocrinol. Metab. 94, 2129–2136 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Fazeli, P. K. et al. Preadipocyte factor-1 is associated with marrow adiposity and bone mineral density in women with anorexia nervosa. J. Clin. Endocrinol. Metab. 95, 407–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Fazeli, P. K. et al. Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J. Bone Miner. Res. 27, 1864–1871 (2012).

    Article  PubMed  CAS  Google Scholar 

  124. Ohlsson, C., Bengtsson, B. A., Isaksson, O. G., Andreassen, T. T. & Slootweg, M. C. Growth hormone and bone. Endocr. Rev. 19, 55–79 (1998).

    CAS  PubMed  Google Scholar 

  125. Jia, D., O'Brien, C. A., Stewart, S. A., Manolagas, S. C. & Weinstein, R. S. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 147, 5592–5599 (2006).

    Article  PubMed  CAS  Google Scholar 

  126. Riggs, B. L. The mechanisms of estrogen regulation of bone resorption. J. Clin. Invest. 106, 1203–1204 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Mödder, U. I. et al. Regulation of circulating sclerostin levels by sex steroids in women and in men. J. Bone Miner. Res. 26, 27–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Clarke, B. L. & Khosla, S. Androgens and bone. Steroids 74, 296–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Biller, B. et al. Mechanisms of osteoporosis in adult and adolescent women with anorexia nervosa. J. Clin. Endocrinol. Metab. 68, 548–554 (1989).

    Article  CAS  PubMed  Google Scholar 

  130. Lawson, E. A. et al. Plasma sodium level is associated with bone loss severity in women with anorexia nervosa: a cross-sectional study. J. Clin. Psychiatry 73, e1379–e1383 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Verbalis, J. G. et al. Hyponatremia-induced osteoporosis. J. Bone Miner. Res. 25, 554–563 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Sun, L. et al. Functions of vasopressin and oxytocin in bone mass regulation. Proc. Natl Acad. Sci. USA 113, 164–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Cornish, J. et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol. 175, 405–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Hamrick, M. W., Pennington, C., Newton, D., Xie, D. & Isales, C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34, 376–383 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Oshima, K. et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 331, 520–526 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Shinoda, Y. et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J. Cell. Biochem. 99, 196–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Wong, I. P. L. et al. Peptide YY regulates bone remodeling in mice: a link between gut and skeletal biology. PLoS ONE 7, e40038 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Klibanski, A., Biller, B. M., Schoenfeld, D. A., Herzog, D. B. & Saxe, V. C. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J. Clin. Endocrinol. Metab. 80, 898–904 (1995).

    CAS  PubMed  Google Scholar 

  140. Strokosch, G. R., Friedman, A. J., Wu, S.-C. & Kamin, M. Effects of an oral contraceptive (norgestimate/ethinyl estradiol) on bone mineral density in adolescent females with anorexia nervosa: a double-blind, placebo-controlled study. J. Adolesc. Health 39, 819–827 (2006).

    Article  PubMed  Google Scholar 

  141. Golden, N. H. et al. The effect of estrogen-progestin treatment on bone mineral density in anorexia nervosa. J. Pediatr. Adolesc. Gynecol. 15, 135–143 (2002).

    Article  PubMed  Google Scholar 

  142. Weissberger, A. J., Ho, K. K. & Lazarus, L. Contrasting effects of oral and transdermal routes of estrogen replacement therapy on 24-hour growth hormone (GH) secretion, insulin-like growth factor I, and GH-binding protein in postmenopausal women. J. Clin. Endocrinol. Metab. 72, 374–381 (1991).

    Article  CAS  PubMed  Google Scholar 

  143. Misra, M. et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J. Bone Miner. Res. 26, 2430–2438 (2011).

    Article  PubMed  CAS  Google Scholar 

  144. Miller, K. K. et al. Effects of risedronate and low-dose transdermal testosterone on bone mineral density in women with anorexia nervosa: a randomized, placebo-controlled study. J. Clin. Endocrinol. Metab. 96, 2081–2088 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Gordon, C. M. et al. Effects of oral dehydroepiandrosterone on bone density in young women with anorexia nervosa: a randomized trial. J. Clin. Endocrinol. Metab. 87, 4935–4941 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Divasta, A. D. et al. The effect of gonadal and adrenal steroid therapy on skeletal health in adolescents and young women with anorexia nervosa. Metab. Clin. Exp. 61, 1010–1020 (2012).

    Article  PubMed  CAS  Google Scholar 

  147. Grinspoon, S., Thomas, L., Miller, K., Herzog, D. & Klibanski, A. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J. Clin. Endocrinol. Metab. 87, 2883–2891 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Misra, M. et al. Effects of rhIGF-1 administration on surrogate markers of bone turnover in adolescents with anorexia nervosa. Bone 45, 493–498 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Golden, N. H. et al. Alendronate for the treatment of osteopenia in anorexia nervosa: a randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 90, 3179–3185 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Stathopoulos, I. P. et al. The use of bisphosphonates in women prior to or during pregnancy and lactation. Hormones (Athens) 10, 280–291 (2011).

    Article  Google Scholar 

  151. Fazeli, P. K. et al. Teriparatide increases bone formation and bone mineral density in adult women with anorexia nervosa. J. Clin. Endocrinol. Metab. 99, 1322–1329 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Vahle, J. L. et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol. Pathol. 30, 312–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. US Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research (CDER). Guidance for industry. Development of parathyroid hormone for the prevention and treatment of osteoporosis. Draft guidance. FDAhttp://www.fda.gov/OHRMS/DOCKETS/98fr/001307gd.pdf (2000).

  154. Herzog, W. et al. Outcome of bone mineral density in anorexia nervosa patients 11.7 years after first admission. J. Bone Miner. Res. 8, 597–605 (1993).

    Article  CAS  PubMed  Google Scholar 

  155. Hartman, D. et al. Bone density of women who have recovered from anorexia nervosa. Int. J. Eat. Disord. 28, 107–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Mueller, S. M. et al. Reduced bone strength and muscle force in women 27 years after anorexia nervosa. J. Clin. Endocrinol. Metab. 100, 2927–2933 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Misra, M. et al. Nutrient intake in community-dwelling adolescent girls with anorexia nervosa and in healthy adolescents. Am. J. Clin. Nutr. 84, 698–706 (2006).

    Article  PubMed  CAS  Google Scholar 

  158. Haagensen, A. L., Feldman, H. A., Ringelheim, J. & Gordon, C. M. Low prevalence of vitamin D deficiency among adolescents with anorexia nervosa. Osteoporos. Int. 19, 289–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Herzog, D. B., Nussbaum, K. M. & Marmor, A. K. Comorbidity and outcome in eating disorders. Psychiatr. Clin. North Am. 19, 843–859 (1996).

    Article  CAS  PubMed  Google Scholar 

  160. Miller, K. K. et al. Androgen deficiency: association with increased anxiety and depression symptom severity in anorexia nervosa. J. Clin. Psychiatry 68, 959–965 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Lund, T. D., Rovis, T., Chung, W. C. J. & Handa, R. J. Novel actions of estrogen receptor-β on anxiety-related behaviors. Endocrinology 146, 797–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Lawson, E. et al. Leptin levels are associated with decreased depressive symptoms in women across the weight spectrum, independent of body fat. Clin. Endocrinol. (Oxf.) 76, 520–525 (2012).

    Article  CAS  Google Scholar 

  163. Gong, E. J., Garrel, D. & Calloway, D. H. Menstrual cycle and voluntary food intake. Am. J. Clin. Nutr. 49, 252–258 (1989).

    Article  CAS  PubMed  Google Scholar 

  164. Diz-Chaves, Y. et al. Behavioral effects of estradiol therapy in ovariectomized rats depend on the age when the treatment is initiated. Exp. Gerontol. 47, 93–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Milad, M. R., Igoe, S. A., Lebron-Milad, K. & Novales, J. E. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience 164, 887–895 (2009).

    Article  PubMed  CAS  Google Scholar 

  166. Shores, M. M. et al. Increased incidence of diagnosed depressive illness in hypogonadal older men. Arch. Gen. Psychiatry 61, 162–167 (2004).

    Article  PubMed  Google Scholar 

  167. Lawson, E. A. et al. Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J. Clin. Endocrinol. Metab. 97, E1898–E1908 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Chui, H. T. et al. Cognitive function and brain structure in females with a history of adolescent-onset anorexia nervosa. Pediatrics 122, e426–e437 (2008).

    Article  PubMed  Google Scholar 

  169. Misra, M. et al. Impact of physiologic estrogen replacement on anxiety symptoms, body shape perception, and eating attitudes in adolescent girls with anorexia nervosa: data from a randomized controlled trial. J. Clin. Psychiatry 74, e765–e771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Miller, K. K. et al. Effects of testosterone replacement in androgen-deficient women with hypopituitarism: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 91, 1683–1690 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Miller, K. K. et al. Low-dose transdermal testosterone augmentation therapy improves depression severity in women. CNS Spectr. 14, 688–694 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Shifren, J. L. et al. Transdermal testosterone treatment in women with impaired sexual function after oophorectomy. N. Engl. J. Med. 343, 682–688 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Misra, M. et al. Bone metabolism in adolescent boys with anorexia nervosa. J. Clin. Endocrinol. Metab. 93, 3029–3036 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Misra, M. et al. Percentage extremity fat, but not percentage trunk fat, is lower in adolescent boys with anorexia nervosa than in healthy adolescents. Am. J. Clin. Nutr. 88, 1478–1484 (2008).

    Article  PubMed  CAS  Google Scholar 

  175. Kapoor, D., Goodwin, E., Channer, K. S. & Jones, T. H. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol. 154, 899–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Katznelson, L. et al. Using quantitative CT to assess adipose distribution in adult men with acquired hypogonadism. AJR Am. J. Roentgenol. 170, 423–427 (1998).

    Article  CAS  PubMed  Google Scholar 

  177. Katznelson, L. et al. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J. Clin. Endocrinol. Metab. 81, 4358–4365 (1996).

    CAS  PubMed  Google Scholar 

  178. Wabitsch, M. et al. Serum leptin, gonadotropin, and testosterone concentrations in male patients with anorexia nervosa during weight gain. J. Clin. Endocrinol. Metab. 86, 2982–2988 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Rigotti, N. A., Neer, R. M. & Jameson, L. Osteopenia and bone fractures in a man with anorexia nervosa and hypogonadism. JAMA 256, 385–388 (1986).

    Article  CAS  PubMed  Google Scholar 

  180. Thienpont, E., Bellemans, J., Samson, I. & Fabry, G. Stress fracture of the inferior and superior pubic ramus in a man with anorexia nervosa and hypogonadism. Acta Orthop. Belg. 66, 297–301 (2000).

    CAS  PubMed  Google Scholar 

  181. Sundgot-Borgen, J., Bahr, R., Falch, J. A. & Schneider, L. S. Normal bone mass in bulimic women. J. Clin. Endocrinol. Metab. 83, 3144–3149 (1998).

    Article  CAS  PubMed  Google Scholar 

  182. Naessén, S., Carlström, K., Glant, R., Jacobsson, H. & Hirschberg, A. L. Bone mineral density in bulimic women — influence of endocrine factors and previous anorexia. Eur. J. Endocrinol. 155, 245–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Schorr, M. et al. Bone density, body composition, and psychopathology of anorexia nervosa spectrum disorders in DSM-IV versus DSM-5. Int. J. Eat. Dis. http://dx.doi.org/10.1002/eat.22603 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen K. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schorr, M., Miller, K. The endocrine manifestations of anorexia nervosa: mechanisms and management. Nat Rev Endocrinol 13, 174–186 (2017). https://doi.org/10.1038/nrendo.2016.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing