Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bariatric and metabolic surgery: a shift in eligibility and success criteria

Key Points

  • Bariatric surgery has a proven role in achieving sustained weight loss, improving obesity-related comorbidities and reducing mortality

  • Bariatric surgery is considered to address mainly weight loss, whereas metabolic surgery focuses mainly on improving type 2 diabetes mellitus

  • Bariatric and metabolic surgery cannot be viewed as dichotomic procedures, as most of the clinical benefits of both approaches have a multifactorial origin derived from a combination of effects

  • Detailed patient phenotyping shows that the BMI cut-off points for determining eligibility for surgery are blurred when considering total adiposity and fat distribution, as BMI often does not tally with these factors

  • Changes in eligibility and follow-up criteria that move away from a merely BMI-centric view for indicating bariatric or metabolic surgery should be pursued

  • A more functional, individualized and holistic approach with extensive evaluation of comorbidities will yield improved patient selection that does not have a 'weight-centric' focus

Abstract

The obesity epidemic, combined with the lack of available and effective treatments for morbid obesity, is a scientific and public health priority. Worldwide, bariatric and metabolic surgeries are increasingly being performed to effectively aid weight loss in patients with severe obesity, as well as because of the favourable metabolic effects of the procedures. The positive effects of bariatric surgery, especially with respect to improvements in type 2 diabetes mellitus, have expanded the eligibility criteria for metabolic surgery to patients with diabetes mellitus and a BMI of 30–35 kg/m2. However, the limitations of BMI, both in the diagnosis and follow-up of patients, need to be considered, particularly for determining the actual adiposity and fat distribution of the patients following weight loss. Understanding the characteristics shared by bariatric and metabolic surgeries, as well as their differential aspects and outcomes, is required to enhance patient benefits and operative achievements. For a holistic approach that focuses on the multifactorial effects of bariatric and metabolic surgery to be possible, a paradigm shift that goes beyond the pure semantics is needed. Such a shift could lead to profound clinical implications for eligibility criteria and the definition of success of the surgical approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the effects (expressed as mean data for efficacy and 95% confidence intervals) of the main bariatric surgery procedures on weight loss (reported as excess and mean weight loss) and principal comorbidities (hypertension, hyperlipidaemia and T2DM) at 3–5 years.10,19,21,23,27,31,32,61,62
Figure 2: Short, medium and long-term trajectories of EWL, BMI and total adiposity following bariatric surgery.
Figure 3: The separation of bariatric and metabolic surgery.
Figure 4: Radial plot comparing the main clinical characteristics of patients undergoing bariatric and metabolic surgery.

Similar content being viewed by others

References

  1. Frühbeck, G. et al. Obesity: the gateway to ill health—an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes. Facts 6, 117–120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Grieve, E., Fenwick, E., Yang, H. C. & Lean, M. The disproportionate economic burden associated with severe and complicated obesity: a systematic review. Obes. Rev. 14, 883–894 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Scully, T. Public health: Society at large. Nature 508, S50–S51 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kitahara, C. M. et al. Association between class III obesity (BMI of 40–59 kg/m2) and mortality: a pooled analysis of 20 prospective studies. PLoS Med. 11, e1001673 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fried, M. et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes. Surg. 24, 42–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Tack, J. & Deloose, E. Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract. Res. Clin. Gastroenterol. 28, 741–749 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Kashyap, S. R. et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care 36, 2175–2182 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N. Engl. J. Med. 370, 2002–2013 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sjöström, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA 307, 56–65 (2012).

    Article  PubMed  Google Scholar 

  12. Rubino, F. & Cummings, D. E. Surgery: The coming of age of metabolic surgery. Nat. Rev. Endocrinol. 8, 702–704 (2012).

    Article  PubMed  Google Scholar 

  13. Rubino, F. et al. Bariatric, metabolic, and diabetes surgery: what's in a name? Ann. Surg. 259, 117–122 (2014).

    Article  PubMed  Google Scholar 

  14. Smyth, S. & Heron, A. Diabetes and obesity: the twin epidemics. Nat. Med. 12, 75–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990–2010. N. Engl. J. Med. 370, 1514–1523 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Gregg, E. W. et al. Trends in death rates among U.S. adults with and without diabetes between 1997 and 2006: findings from the National Health Interview Survey. Diabetes Care 35, 1252–1257 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Frühbeck, G. Obesity: Screening for the evident in obesity. Nat. Rev. Endocrinol. 8, 570–572 (2012).

    Article  PubMed  Google Scholar 

  18. Anthes, E. Treatment: Marginal gains. Nature 508, S54–S56 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366, 1567–1576 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Buchwald, H. et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122, 248–256 (2009).

    Article  PubMed  Google Scholar 

  21. Sjöström, L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J. Intern. Med. 273, 219–234 (2013).

    Article  PubMed  Google Scholar 

  22. Buchwald, H. & Oien, D. M. Metabolic/bariatric surgery worldwide 2011. Obes. Surg. 23, 427–436 (2013).

    Article  PubMed  Google Scholar 

  23. Neovius, M. et al. Health care use during 20 years following bariatric surgery. JAMA 308, 1132–1141 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Busetto, L. et al. Bariatric surgery in class I obesity: a Position Statement from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes. Surg. 24, 487–519 (2014).

    Article  PubMed  Google Scholar 

  25. Apovian, C. M. & Gokce, N. Obesity and cardiovascular disease. Circulation 125, 1178–1182 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chapman, J. L., Zechel, A., Carter, Y. H. & Abbott, S. Systematic review of recent innovations in service provision to improve access to primary care. Br. J. Gen. Pract. 54, 374–381 (2004).

    PubMed  PubMed Central  Google Scholar 

  27. Buchwald, H. et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 292, 1724–1737 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. O'Brien, P. E., McPhail, T., Chaston, T. B. & Dixon, J. B. Systematic review of medium-term weight loss after bariatric operations. Obes. Surg. 16, 1032–1040 (2006).

    Article  PubMed  Google Scholar 

  29. Dixon, J. B. et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299, 316–323 (2008).

    CAS  PubMed  Google Scholar 

  30. Flum, D. R. et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N. Engl. J. Med. 361, 445–454 (2009).

    Article  PubMed  Google Scholar 

  31. Rubino, F., Schauer, P. R., Kaplan, L. M. & Cummings, D. E. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu. Rev. Med. 61, 393–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Mingrone, G. et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med. 366, 1577–1585 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Romeo, S. et al. Cardiovascular events after bariatric surgery in obese subjects with type 2 diabetes. Diabetes Care 35, 2613–2617 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bal, B. S., Finelli, F. C., Shope, T. R. & Koch, T. R. Nutritional deficiencies after bariatric surgery. Nat. Rev. Endocrinol. 8, 544–556 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Stefater, M. A., Wilson-Perez, H. E., Chambers, A. P., Sandoval, D. A. & Seeley, R. J. All bariatric surgeries are not created equal: Insights from mechanistic comparisons. Endocr. Rev. 33, 595–622 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ikramuddin, S. et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA 309, 2240–2249 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Maggard-Gibbons, M. et al. Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA 309, 2250–2261 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Chang, S. H. et al. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003–2012. JAMA Surg. 149, 275–287 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miras, A. D. & le Roux, C. W. Metabolic surgery: shifting the focus from glycaemia and weight to end-organ health. Lancet Diabetes Endocrinol. 2, 141–151 (2014).

    Article  PubMed  Google Scholar 

  40. Arterburn, D. E. & Courcoulas, A. P. Bariatric surgery for obesity and metabolic conditions in adults. Br. Med. J. 349, g3961 (2014).

    Article  CAS  Google Scholar 

  41. Sjöström, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351, 2683–2693 (2004).

    Article  PubMed  Google Scholar 

  42. Sjöström, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  43. Sjöström, L. Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int. J. Obes. (Lond.) 32 (Suppl. 7), S93–S97 (2008).

    Article  Google Scholar 

  44. Sjöström, L. et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311, 2297–2304 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Courcoulas, A. P. et al. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA 310, 2416–2425 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Christou, N. V. et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann. Surg. 240, 416–423 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Adams, T. D. et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Pontiroli, A. E. & Morabito, A. Long-term prevention of mortality in morbid obesity through bariatric surgery. A systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann. Surg. 253, 484–487 (2011).

    Article  PubMed  Google Scholar 

  49. Kwok, C. S. et al. Bariatric surgery and its impact on cardiovascular disease and mortality: A systematic review and meta-analysis. Int. J. Cardiol. 173, 20–28 (2014).

    Article  PubMed  Google Scholar 

  50. Carlsson, L. M. et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N. Engl. J. Med. 367, 695–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Sjöholm, K. et al. Evaluation of current eligibility criteria for bariatric surgery: diabetes prevention and risk factor changes in the Swedish obese subjects (SOS) study. Diabetes Care 36, 1335–1340 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Ribeiro, R. et al. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue. BMC Med. 10, 108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Diehl, A. M. Hepatic complications of obesity. Gastroenterol. Clin. North Am. 39, 57–68 (2010).

    Article  PubMed  Google Scholar 

  55. Wluka, A. E., Lombard, C. B. & Cicuttini, F. M. Tackling obesity in knee osteoarthritis. Nat. Rev. Rheumatol. 9, 225–235 (2013).

    Article  PubMed  Google Scholar 

  56. Campo, A. et al. Hyperleptinaemia, respiratory drive and hypercapnic response in obese patients. Eur. Respir. J. 30, 223–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Jordan, A. S., McSharry, D. G. & Malhotra, A. Adult obstructive sleep apnoea. Lancet 383, 736–747 (2014).

    Article  PubMed  Google Scholar 

  58. Acosta, A. & Camilleri, M. Gastrointestinal morbidity in obesity. Ann. NY Acad. Sci. 1311, 42–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Stenvinkel, P., Zoccali, C. & Ikizler, T. A. Obesity in CKD—what should nephrologists know? J. Am. Soc. Nephrol. 24, 1727–1736 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jungheim, E. S., Travieso, J. L. & Hopeman, M. M. Weighing the impact of obesity on female reproductive function and fertility. Nutr. Rev. 71 (Suppl. 1), S3–S8 (2013).

    Article  PubMed  Google Scholar 

  61. Ashrafian, H., le Roux, C. W., Darzi, A. & Athanasiou, T. Effects of bariatric surgery on cardiovascular function. Circulation 118, 2091–2102 (2008).

    Article  PubMed  Google Scholar 

  62. Maciejewski, M. L. & Arterburn, D. E. Cost-effectiveness of bariatric surgery. JAMA 310, 742–743 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ashrafian, H. et al. Metabolic surgery and cancer: protective effects of bariatric procedures. Cancer 117, 1788–1799 (2011).

    Article  PubMed  Google Scholar 

  64. Pérez-Hernández, A. I., Catalán, V., Gómez-Ambrosi, J., Rodríguez, A. & Frühbeck, G. Mechanisms linking excess adiposity and carcinogenesis promotion. Front. Endocrinol. (Lausanne) 5, 65 (2014).

    Google Scholar 

  65. Park, J., Morley, T. S., Kim, M., Clegg, D. J. & Scherer, P. E. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. O'Brien P, E., Macdonald, L., Anderson, M., Brennan, L. & Brown, W. A. Long-term outcomes after bariatric surgery: fifteen-year follow-up of adjustable gastric banding and a systematic review of the bariatric surgical literature. Ann. Surg. 257, 87–94 (2013).

    Article  PubMed  Google Scholar 

  67. Pournaras, D. J. et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann. Surg. 252, 966–971 (2010).

    Article  PubMed  Google Scholar 

  68. Geloneze, B. et al. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal-jejunal exclusion. Obes. Surg. 19, 1077–1083 (2009).

    Article  PubMed  Google Scholar 

  69. Cohen, R. et al. Role of proximal gut exclusion from food on glucose homeostasis in patients with type 2 diabetes. Diabet. Med. 30, 1482–1486 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Cummings, B. P. Duodenal exclusion devices: promising tools in treating obesity and type 2 diabetes. Gut 63, 1201–1202 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Promintzer-Schifferl, M. et al. Effects of gastric bypass surgery on insulin resistance and insulin secretion in nondiabetic obese patients. Obesity (Silver Spring) 19, 1420–1426 (2011).

    Article  CAS  Google Scholar 

  72. Anderwald, C. H. et al. Alterations in gastrointestinal, endocrine, and metabolic processes after bariatric Roux-en-Y gastric bypass surgery. Diabetes Care 35, 2580–2587 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Papamargaritis, D. et al. Changes in gut hormone profile and glucose homeostasis after laparoscopic sleeve gastrectomy. Surg. Obes. Relat. Dis. 9, 192–201 (2013).

    Article  PubMed  Google Scholar 

  74. Sarkhosh, K., Birch, D. W., Shi, X., Gill, R. S. & Karmali, S. The impact of sleeve gastrectomy on hypertension: a systematic review. Obes. Surg. 22, 832–837 (2012).

    Article  PubMed  Google Scholar 

  75. Pournaras, D. J. et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 153, 3613–3619 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kral, J. G., Sjöström, L. V. & Sullivan, M. B. Assessment of quality of life before and after surgery for severe obesity. Am. J. Clin. Nutr. 55, 611S–614S (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Warkentin, L. M. et al. Predictors of health-related quality of life in 500 severely obese patients. Obesity (Silver Spring) 22, 1367–1372 (2014).

    Article  Google Scholar 

  78. Warkentin, L. M. et al. Weight loss required by the severely obese to achieve clinically important differences in health-related quality of life: two-year prospective cohort study. BMC Med. 12, 175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Karlsson, J., Taft, C., Ryden, A., Sjöström, L. & Sullivan, M. Ten-year trends in health-related quality of life after surgical and conventional treatment for severe obesity: the SOS intervention study. Int. J. Obes. (Lond.) 31, 1248–1261 (2007).

    Article  CAS  Google Scholar 

  80. O'Brien, P. E. Controversies in bariatric surgery. Br. J. Surg. 102, 611–618 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Karlsen, T. I. et al. Health related quality of life after gastric bypass or intensive lifestyle intervention: a controlled clinical study. Health Qual. Life Outcomes 11, 17 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Svensson, P. A. et al. Alcohol consumption and alcohol problems after bariatric surgery in the Swedish Obese Subjects study. Obesity (Silver Spring) 21, 2444–2451 (2013).

    Article  Google Scholar 

  83. Ostlund, M. P. et al. Increased admission for alcohol dependence after gastric bypass surgery compared with restrictive bariatric surgery. JAMA Surg. 148, 374–377 (2013).

    Article  PubMed  Google Scholar 

  84. Dirksen, C. et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia 55, 1890–1901 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Madsbad, S., Dirksen, C. & Holst, J. J. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2, 152–164 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Rubino, F. Bariatric surgery: effects on glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 9, 497–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Muñoz, R., Carmody, J. S., Stylopoulos, N., Davis, P. & Kaplan, L. M. Isolated duodenal exclusion increases energy expenditure and improves glucose homeostasis in diet-induced obese rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R985–R993 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jiao, J. et al. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats. Diabetes 62, 1074–1083 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Habegger, K. M. et al. Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia. Gut 63, 1238–1246 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Rubino, F. & Marescaux, J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann. Surg. 239, 1–11 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rubino, F. et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann. Surg. 244, 741–749 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ke, J. & Wang, Y. Duodenum exclusion alone is sufficient to reduce fasting blood glucose in non-obese diabetic Goto-Kakizaki rats. Obes. Surg. 24, 433–434 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Argyropoulos, G. Bariatric surgery: prevalence, predictors, and mechanisms of diabetes remission. Curr. Diab. Rep. 15, 590 (2015).

    Article  Google Scholar 

  94. Ashrafian, H. et al. Metabolic surgery and obstructive sleep apnoea: the protective effects of bariatric procedures. Thorax 67, 442–449 (2012).

    Article  PubMed  Google Scholar 

  95. Wu, Y. W. et al. Association of esophageal inflammation, obesity and gastroesophageal reflux disease: from FDG PET/CT perspective. PLoS ONE 9, e92001 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Pallati, P. K. et al. Improvement in gastroesophageal reflux disease symptoms after various bariatric procedures: review of the Bariatric Outcomes Longitudinal Database. Surg. Obes. Relat. Dis. 10, 502–507 (2014).

    Article  PubMed  Google Scholar 

  97. Kardassis, D., Grote, L., Sjostrom, L., Hedner, J. & Karason, K. Sleep apnea modifies the long-term impact of surgically induced weight loss on cardiac function and inflammation. Obesity (Silver Spring) 21, 698–704 (2013).

    Article  CAS  Google Scholar 

  98. Huettner, F. et al. Body composition analysis in bariatric surgery: use of air displacement plethysmograph. Am. Surg. 78, 698–701 (2012).

    PubMed  Google Scholar 

  99. Kardassis, D., Bech-Hanssen, O., Schonander, M., Sjöström, L. & Karason, K. The influence of body composition, fat distribution, and sustained weight loss on left ventricular mass and geometry in obesity. Obesity (Silver Spring) 20, 605–611 (2012).

    Article  Google Scholar 

  100. Kardassis, D. et al. Impact of body composition, fat distribution and sustained weight loss on cardiac function in obesity. Int. J. Cardiol. 159, 128–133 (2012).

    Article  PubMed  Google Scholar 

  101. Kardassis, D., Schonander, M., Sjöström, L. & Karason, K. Carotid artery remodelling in relation to body fat distribution, inflammation and sustained weight loss in obesity. J. Intern. Med. 275, 534–543 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Frühbeck, G. & Gómez-Ambrosi, J. Control of body weight: a physiologic and transgenic perspective. Diabetologia 46, 143–172 (2003).

    Article  PubMed  Google Scholar 

  103. Dulloo, A. G., Jacquet, J., Solinas, G., Montani, J. P. & Schutz, Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int. J. Obes. (Lond.) 34 (Suppl. 2), S4–S17 (2010).

    Article  Google Scholar 

  104. Coen, P. M. et al. Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity. J. Clin. Invest. 125, 248–257 (2015).

    Article  PubMed  Google Scholar 

  105. Blundell, J. E. et al. Body composition and appetite: fat-free mass (but not fat mass or BMI) is positively associated with self-determined meal size and daily energy intake in humans. Br. J. Nutr. 107, 445–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Caudwell, P. et al. Resting metabolic rate is associated with hunger, self-determined meal size, and daily energy intake and may represent a marker for appetite. Am. J. Clin. Nutr. 97, 7–14 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Knuth, N. D. et al. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin. Obesity (Silver Spring) 22, 2563–2569 (2014).

    Google Scholar 

  108. Garciacaballero, M. et al. Changes of body composition in patients with BMI 23–50 after tailored one anastomosis gastric bypass (BAGUA): influence of diabetes and metabolic syndrome. Obes. Surg. 24, 2040–2047 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Gómez-Ambrosi, J. et al. Involvement of leptin in the association between percentage of body fat and cardiovascular risk factors. Clin. Biochem. 35, 315–320 (2002).

    Article  PubMed  Google Scholar 

  110. Frühbeck, G. Obesity: Aquaporin enters the picture. Nature 438, 436–437 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Gómez-Ambrosi, J. et al. Increased serum amyloid A concentrations in morbid obesity decrease after gastric bypass. Obes. Surg. 16, 262–269 (2006).

    Article  PubMed  Google Scholar 

  112. Catalán, V. et al. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes. Surg. 17, 1464–1474 (2007).

    Article  PubMed  Google Scholar 

  113. Catalán, V. et al. Up-regulation of the novel proinflammatory adipokines lipocalin-2, chitinase-3 like-1 and osteopontin as well as angiogenic-related factors in visceral adipose tissue of patients with colon cancer. J. Nutr. Biochem. 22, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Khandekar, M. J., Cohen, P. & Spiegelman, B. M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 11, 886–895 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Rubino, F. From bariatric to metabolic surgery: definition of a new discipline and implications for clinical practice. Curr. Atheroscler. Rep. 15, 369 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Rubino, F., R'Bibo, S. L., del Genio, F., Mazumdar, M. & McGraw, T. E. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat. Rev. Endocrinol. 6, 102–109 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gomez-Ambrosi, J. et al. Cardiometabolic profile related to body adiposity identifies patients eligible for bariatric surgery more accurately than BMI. Obes. Surg. http://dx.doi.org/10.1007/s11695-014-1566-6.

  118. Gómez-Ambrosi, J. et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. J. Obes. 36, 286–294 (2012).

    Article  CAS  Google Scholar 

  119. Fried, M. et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes. Facts 6, 449–468 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sjöström, L. et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 10, 653–662 (2009).

    Article  PubMed  Google Scholar 

  121. Serrot, F. J. et al. Comparative effectiveness of bariatric surgery and nonsurgical therapy in adults with type 2 diabetes mellitus and body mass index <35 kg/m2. Surgery 150, 684–691 (2011).

    Article  PubMed  Google Scholar 

  122. Cummings, D. E. & Cohen, R. V. Beyond BMI: the need for new guidelines governing the use of bariatric and metabolic surgery. Lancet Diabetes Endocrinol. 2, 175–181 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gómez-Ambrosi, J. et al. Body adiposity and type 2 diabetes: Increased risk with a high body fat percentage even having a normal BMI. Obesity 19, 1439–1444 (2011).

    Article  PubMed  Google Scholar 

  124. Lutz, T. A. & Bueter, M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1275–R1291 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Ahima, R. S. & Lazar, M. A. Physiology. The health risk of obesity-—better metrics imperative. Science 341, 856–858 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. World Health Organization. Obesity and Overweight. Fact Sheet No.311 [online], (2015).

  127. Blundell, J. E. et al. Beyond BMI—phenotyping the obesities. Obes. Facts 7, 322–328 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Heuckmann, J. M. & Thomas, R. K. A new generation of cancer genome diagnostics for routine clinical use: overcoming the roadblocks to personalized cancer medicine. Ann. Oncol. http://dx.doi.org/10.1093/annonc/mdv184.

  129. Neff, K. J., Olbers, T. & le Roux, C. W. Bariatric surgery: the challenges with candidate selection, individualizing treatment and clinical outcomes. BMC Med. 11, 8 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kuk, J. L. et al. Edmonton Obesity Staging System: association with weight history and mortality risk. Appl. Physiol. Nutr. Metab. 36, 570–576 (2011).

    Article  PubMed  Google Scholar 

  131. Padwal, R. S., Pajewski, N. M., Allison, D. B. & Sharma, A. M. Using the Edmonton obesity staging system to predict mortality in a population-representative cohort of people with overweight and obesity. CMAJ 183, E1059–E1066 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gill, R. S., Karmali, S. & Sharma, A. M. The potential role of the Edmonton obesity staging system in determining indications for bariatric surgery. Obes. Surg. 21, 1947–1949 (2011).

    Article  PubMed  Google Scholar 

  133. Klenov, V. E. & Jungheim, E. S. Obesity and reproductive function: a review of the evidence. Curr. Opin. Obstet. Gynecol. 26, 455–460 (2014).

    Article  PubMed  Google Scholar 

  134. Chor, J., Chico, P., Ayloo, S., Roston, A. & Kominiarek, M. A. Reproductive health counseling and practices: A cross-sectional survey of bariatric surgeons. Surg. Obes. Relat. Dis. 11, 187–192 (2015).

    Article  PubMed  Google Scholar 

  135. Sharma, A., Bahadursingh, S., Ramsewak, S. & Teelucksingh, S. Medical and surgical interventions to improve outcomes in obese women planning for pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 29, 565–576 (2015).

    Article  PubMed  Google Scholar 

  136. Jauch-Chara, K. & Oltmanns, K. M. Obesity-—a neuropsychological disease? Systematic review and neuropsychological model. Prog. Neurobiol. 114, 84–101 (2014).

    Article  PubMed  Google Scholar 

  137. Bray, G. A. et al. Is it time to change the way we report and discuss weight loss? Obesity (Silver Spring) 17, 619–621 (2009).

    Article  Google Scholar 

  138. [No authors listed] 1983 metropolitan height and weight tables. Stat. Bull. Metrop. Life Found. 64, 2–9 (1983).

  139. Ulrich-Lai, Y. M. & Ryan, K. K. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications. Cell Metab. 19, 910–925 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Reverchon, M., Rame, C., Bertoldo, M. & Dupont, J. Adipokines and the female reproductive tract. Int. J. Endocrinol. 2014, 232454 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support of Fondo de Investigación Sanitaria-FEDER (FIS PI12/00515) from the Spanish Instituto de Salud Carlos III. CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) is an initiative of the Instituto de Salud Carlos III, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Frühbeck.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frühbeck, G. Bariatric and metabolic surgery: a shift in eligibility and success criteria. Nat Rev Endocrinol 11, 465–477 (2015). https://doi.org/10.1038/nrendo.2015.84

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.84

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing