Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Local and systemic effects of the multifaceted epicardial adipose tissue depot

Key Points

  • Epicardial adipose tissue is the fat depot between the myocardium and the visceral layer of the pericardium, and is anatomically and functionally contiguous with the myocardium

  • This tissue has the greatest rates of lipogenesis and fatty acid metabolism among visceral fat depots and displays metabolic, thermogenic (similar to brown fat) and mechanical (cardioprotective) properties

  • A transcriptome unique to epicardial adipose is enriched in genes associated with inflammation, endothelial function coagulation and regulation of potassium channels

  • The myocardium is modulated by cytokines, which are secreted by the epicardial fat depot

  • Epicardial fat is a marker of visceral adiposity and can be used to test the efficacy of interventions aimed at modulating adipose tissue characteristics

  • Coronary artery disease, the metabolic syndrome, insulin resistance, fatty liver disease and cardiac abnormalities are associated with increased amounts of epicardial fat

Abstract

Epicardial adipose tissue is a unique and multifaceted fat depot with local and systemic effects. This tissue is distinguished from other visceral fat depots by a number of anatomical and metabolic features, such as increased fatty acid metabolism and a unique transcriptome enriched in genes that are associated with inflammation and endothelial function. Epicardial fat and the heart share an unobstructed microcirculation, which suggests these tissues might interact. Under normal physiological conditions, epicardial fat has metabolic, thermogenic (similar to brown fat) and mechanical (cardioprotective) characteristics. Development of pathological conditions might drive the phenotype of epicardial fat such that it becomes harmful to the myocardium and the coronary arteries. The equilibrium between protective and detrimental effects of this tissue is fragile. Expression of the epicardial-fat-specific transcriptome is downregulated in the presence of severe and advanced coronary artery disease. Improved local vascularization, weight loss and targeted medications can restore the protective physiological functions of epicardial fat. Measurements of epicardial fat have several important applications in the clinical setting: accurate measurement of its thickness or volume is correlated with visceral adiposity, coronary artery disease, the metabolic syndrome, fatty liver disease and cardiac changes. On account of this simple clinical assessment, epicardial fat is a reliable marker of cardiovascular risk and an appealing surrogate for assessing the efficacy of drugs that modulate adipose tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of epicardial fat.
Figure 2: Transthoracic 2D echocardiographic longitudinal long-axis view of heart.

Similar content being viewed by others

References

  1. Iacobellis, G., Corradi, D. & Sharma, A. M. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2, 536–543 (2005).

    Article  PubMed  Google Scholar 

  2. Marchington, J. M. Mattacks, C. A. & Pond, C. M. Adipose tissue in the mammalian heart and pericardium; structure, foetal development and biochemical properties. Comp. Biochem. Physiol. B 94, 225–232 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Iacobellis, G. Epicardial and pericardial fat: close, but very different. Obesity 17, 625 (2009).

    Article  PubMed  Google Scholar 

  4. Corradi, D. et al. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc. Pathol. 13, 313–316 (2004).

    Article  PubMed  Google Scholar 

  5. Company, J. M. et al. Epicardial fat gene expression after aerobic exercise training in pigs with coronary atherosclerosis: relationship to visceral and subcutaneous fat. J. Appl. Physiol. 109, 1904–1912 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mazurek, T. et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108, 2460–2466 (2003).

    Article  PubMed  Google Scholar 

  7. Bambace, C. et al. Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc. Pathol. 20, e153–e156 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Sacks, H. S. et al. Human epicardial fat exhibits beige features. J. Clin. Endocrinol. Metab. 98, E1448–E1455 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Iacobellis, G., Malavazos, A. E. & Corsi, M. M. Epicardial fat: from the biomolecular aspects to the clinical practice. Int. J. Biochem. Cell Biol. 43, 1651–1654 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Iacobellis, G. & Bianco, A. C. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol. Metab. 22, 450–457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marchington, J. M. & Pond, C. M. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int. J. Obes. 14, 1013–1022 (1990).

    CAS  PubMed  Google Scholar 

  12. Pezeshkian, M. et al. Fatty acid composition of epicardial and subcutaneous human adipose tissue. Metab. Syndr. Relat. Disord. 7, 125–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Vural, B. et al. Presence of fatty-acid-binding protein 4 expression in human epicardial adipose tissue in metabolic syndrome, Cardiovasc. Pathol. 17, 392–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Sacks, H. S. et al. Uncoupling protein-1 and related mRNAs in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J. Clin. Endocrinol. Metab. 94, 3611–3615 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Chechi, K., Blanchard, P. G., Mathieu, P., Deshaies, Y. & Richard D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int. J. Cardiol. 167, 2264–2270 (2013).

    Article  PubMed  Google Scholar 

  16. Barclay, C. J. & Widén, C. Efficiency of cross-bridges and mitochondria in mouse cardiac muscle. Adv. Exp. Med. Biol. 682, 267–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Prati, F. et al. Eccentric atherosclerotic plaques with positive remodelling have a pericardial distribution: a permissive role of epicardial fat? A three-dimensional intravascular ultrasound study of left anterior descending artery lesions. Eur. Heart J. 24, 329–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Sacks, H. S. & Fain, J. N. Human epicardial adipose tissue: a review. Am. Heart J. 153, 907–917 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Judkin, J. S., Eringa, E. & Stehouwer C. D. A. “Vasocrine signalling” from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365, 1817–1820 (2005).

    Article  Google Scholar 

  20. Iacobellis, G. et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with CAD. Cytokine 29, 251–255 (2005).

    CAS  PubMed  Google Scholar 

  21. Silaghi, A. et al. Expression of adrenomedullin in human epicardial adipose tissue: role of coronary status. Am. J. Physiol. Endocrinol. Metab. 293, E1443–E1450 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Agra, R. M. et al. Adiponectin and p53 mRNA in epicardial and subcutaneous fat from heart failure patients. Eur. J. Clin. Invest. 44, 29–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Iacobellis, G. et al. Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin levels. Horm. Metab. Res. 41, 227–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Iacobellis, G. et al. Epicardial adipose tissue and intracoronary adrenomedullin levels in CAD. Horm. Metab. Res. 45, 855–860 (2009).

    Article  CAS  Google Scholar 

  25. Sacks, H. S. & Johnson, E. Adipokine concentrations are similar in femoral artery and coronary venous sinus blood: evidence against in vivo endocrine secretion by human epicardial fat. Adipobiology 1, 51–56 (2009).

    Article  Google Scholar 

  26. Iacobellis, G., Ribaudo, M. C., Zappaterreno, A., Iannucci, C. V. & Leonetti, F. Relation between epicardial adipose tissue and left ventricular mass. Am. J. Cardiol. 94, 1084–1087 (2004).

    Article  PubMed  Google Scholar 

  27. Iacobellis, G. Relation of epicardial fat thickness to right ventricular cavity size in obese subjects. Am. J. Cardiol. 104, 1601–1602 (2009).

    Article  PubMed  Google Scholar 

  28. Kankaanpää, M. et al. Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. J. Clin. Endocrinol. Metab. 91, 4689–4695 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Malavazos, A. E. et al. Relation of echocardiographic epicardial fat thickness and myocardial fat. Am. J. Cardiol. 105, 1831–1835 (2010).

    Article  PubMed  Google Scholar 

  30. Iacobellis, G., Leonetti, F., Singh, N. & Sharma, A. M. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int. J. Cardiol. 115, 272–223 (2007).

    Article  PubMed  Google Scholar 

  31. Iacobellis, G., Zaki, M. C., Garcia, D. & Willens, H. J. Epicardial fat in atrial fibrillation and heart failure. Horm. Metab. Res. 46, 587–590 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Thanassoulis, G. et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ. Arrhythm. Electrophysiol. 3, 345–350 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mazurek, T. et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am. J. Cardiol. 113, 1505–1508 (2014).

    Article  PubMed  Google Scholar 

  34. Lin, Y. K. et al. Heart failure epicardial fat increases atrial arrhythmogenesis. Int. J. Cardiol. 167, 1979–1983 (2013).

    Article  PubMed  Google Scholar 

  35. Shimabukuro, M. et al. Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 33, 1077–1084 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Hirata, Y. et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue J. Am. Coll. Cardiol. 58, 248–255 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Baker, A. R. et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc. Diabetol. 13, 1 (2006).

    Article  CAS  Google Scholar 

  38. Kremen, J. et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J. Clin. Endocrinol. Metab. 91, 4620–4627 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Cheng, K. H. et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with CAD. Int. J. Obes. (Lond.) 32, 268–274 (2008).

    Article  CAS  Google Scholar 

  40. Fain, J. N. et al. Human epicardial adipokine messenger RNAs: comparisons of their expression in substernal, subcutaneous, and omental fat. Metabolism 59, 1379–1386 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Salgado-Somoza, A, Teijeira-Fernández, E., Fernández, A. L., González-Juanatey, J. R. & Eiras, S. Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 299, H202–H209 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Karastergiou, K. et al. Epicardial adipokines in obesity and CAD induce atherogenic changes in monocytes and endothelial cells. Arterioscler. Thromb. Vasc. Biol. 30, 1340–1346 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Dutour, A. et al. Secretory type II phospholipase A2 is produced and secreted by epicardial adipose tissue and overexpressed in patients with CAD. J. Clin. Endocrinol. Metab. 95, 963–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Pezeshkian, M. & Mahtabipour, M. R. Epicardial and subcutaneous adipose tissue fatty acids profiles in diabetic and non-diabetic patients candidate for coronary artery bypass graft. Bioimpacts 3, 83–89 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Iacobellis, G., Diaz, S., Mendez, A. & Goldberg, R. Increased epicardial fat and plasma leptin in type 1 diabetes independently of obesity. Nutr. Metab. Cardiovasc. Dis. 24, 725–729 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Greulich, S. et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation 126, 2324–2334 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Iacobellis, G. & Willens, H. J. Echocardiographic epicardial fat: a review of research and clinical applications. J. Am. Soc. Echocardiogr. 22, 1311–1319 (2009).

    Article  PubMed  Google Scholar 

  48. Iacobellis, G. et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obesity Res. 11, 304–310 (2003).

    Article  Google Scholar 

  49. Iacobellis, G. et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 388, 5163–5168 (2003).

    Article  CAS  Google Scholar 

  50. Nelson, A. J. et al. Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. J. Cardiovasc. Magn. Reson. 11, 15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sarin, S. et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am. J. Cardiol. 102, 767–771 (2008).

    Article  PubMed  Google Scholar 

  52. Wang, T. D. et al. Association of epicardial adipose tissue with coronary atherosclerosis is region-specific and independent of conventional risk factors and intra-abdominal adiposity. Atherosclerosis 213, 279–287 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Maurovich-Horvat, P. et al. Influence of pericoronary adipose tissue on local coronary atherosclerosis as assessed by a novel MDCT volumetric method. Atherosclerosis. 219, 151–157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pierdomenico, S. D., Pierdomenico, A. M., Cuccurullo, F. & Iacobellis, G. Meta-analysis of the relation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am. J. Cardiol. 15, 1234–1236 (2012).

    Google Scholar 

  55. Willens, H. J. et al. Comparison of epicardial and pericardial fat thickness assessed by echocardiography in African American and non-Hispanic white men: a pilot study. Ethn. Dis. 18, 311–316 (2008).

    PubMed  Google Scholar 

  56. Salami, S. S. et al. Race and epicardial fat: the impact of anthropometric measurements, percent body fat and sex. Ethn. Dis. 23, 281–285 (2013).

    PubMed  Google Scholar 

  57. Iacobellis, G., Willens, H. J., Barbaro, G. & Sharma, A. M. Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity (Silver Spring) 16, 887–892 (2008).

    Article  Google Scholar 

  58. Mahabadi, A. A. et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf Recall Study. JACC Cardiovasc. Imaging 7, 909–916 (2014).

    Article  PubMed  Google Scholar 

  59. Mahabadi, A. A. et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J. Am. Coll. Cardiol. 61, 1388–1395 (2013).

    Article  PubMed  Google Scholar 

  60. Sade, LE. et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis 204, 580–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Eroglu, S. et al. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of CAD. Nutr. Metab. Cardiovasc. Dis. 19, 211–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Iacobellis, G. et al. Epicardial fat thickness and CAD correlate independently of obesity. Int. J. Cardiol. 146, 452–454 (2011).

    Article  PubMed  Google Scholar 

  63. Yerramasu, A. et al. Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 220, 223–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Nakanishi, K. et al. Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in non-obese subjects with coronary artery disease. Atherosclerosis 237, 353–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Ito, E. et al. Impact of epicardial fat volume on coronary artery disease in symptomatic patients with a zero calcium score. Int. J. Cardiol. 167, 2852–2858 (2013).

    Article  PubMed  Google Scholar 

  66. Kunita E. et al. Prognostic value of coronary artery calcium and epicardial adipose tissue assessed by non-contrast cardiac computed tomography. Atherosclerosis 233, 447–453 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Alexopoulos, N. et al. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210, 150–154 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Alam, M. S., Green R., de Kemp, R., Beanlands, R. S. & Chow, B. J. Epicardial adipose tissue thickness as a predictor of impaired microvascular function in patients with non-obstructive coronary artery disease. J. Nucl. Cardiol. 20, 804–812 (2013).

    Article  PubMed  Google Scholar 

  69. Ding, J. et al. The association of pericardial fat with calcified coronary plaque. Obesity 16, 1914–1919 (2008).

    Article  PubMed  Google Scholar 

  70. Rosito, G. A. et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117, 605–613 (2008).

    Article  PubMed  Google Scholar 

  71. McKenney, M. L. et al. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J. Cardiothorac. Surg. 9, 2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Iacobellis, G. et al. Relation of subepicardial adipose tissue to carotid intima-media thickness in patients with human immunodeficiency virus. Am. J. Cardiol. 99, 1470–1472 (2007).

    Article  PubMed  Google Scholar 

  73. Natale, F. et al. Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. Eur. J. Echocardiogr. 10, 549–555 (2009).

    Article  PubMed  Google Scholar 

  74. Manco, M. et al. Epicardial fat, abdominal adiposity and insulin resistance in obese pre-pubertal and early pubertal children. Atherosclerosis 226, 490–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Cabrera-Rego, J. O. et al. Epicardial fat thickness correlates with carotid intima-media thickness, arterial stiffness, and cardiac geometry in children and adolescents. Pediatr. Cardiol. 35, 450–456 (2014).

    Article  PubMed  Google Scholar 

  76. Doesch, C. et al. Bioimpedance analysis parameters and epicardial adipose tissue assessed by cardiac magnetic resonance imaging in patients with heart failure. Obesity (Silver Spring) 18, 2326–2332 (2010).

    Article  Google Scholar 

  77. Iacobellis, G., Zaki, M. C., Garcia, D. & Willens, H. J. Epicardial fat in atrial fibrillation and heart failure. Horm. Metab. Res. 46, 587–590 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Iozzo, P. Myocardial, perivascular, and epicardial fat. Diabetes Care. 34 (Suppl. 2), S371–S379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Iacobellis, G. et al. Relation of epicardial fat and alanine aminotransferase in subjects with increased visceral fat. Obesity (Silver Spring) 16, 179–183 (2008).

    Article  CAS  Google Scholar 

  80. Iacobellis, G., Barbarini, G., Letizia, C. & Barbaro, G. Epicardial fat thickness and nonalcoholic fatty liver disease in obese subjects. Obesity (Silver Spring) 22, 332–326 (2014).

    Article  Google Scholar 

  81. Cikim, A. S. et al. Epicardial adipose tissue, hepatic steatosis and obesity. J. Endocrinol. Invest. 30, 459–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Yilmaz, Y. et al. Circulating vaspin levels and epicardial adipose tissue thickness are associated with impaired coronary flow reserve in patients with nonalcoholic fatty liver disease. Atherosclerosis 217, 125–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Cetin, M. et al. Relation of epicardial fat thickness with carotid intima-media thickness in patients with type 2 diabetes mellitus. Int. J. Endocrinol. 2013, 769175 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Iacobellis, G., Barbaro, G. & Gerstein, H. C. Relationship of epicardial fat thickness and fasting glucose. Int. J. Cardiol. 128, 424–426 (2008).

    Article  PubMed  Google Scholar 

  85. Iacobellis, G. & Leonetti, F. Epicardial adipose tissue and insulin resistance in obese subjects. J. Clin. Endocrinol. Metab. 90, 6300–6302 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Fernández-Trasancos, A. et al., Impaired adipogenesis and insulin resistance in epicardial fat-mesenchymal cells from patients with cardiovascular disease. J. Cell. Physiol. 229, 1722–1730 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Yazıcı, D. et al. Epicardial adipose tissue thickness in type 1 diabetic patients. Endocrine 40, 250–255 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Momesso, D. P. et al. Increased epicardial adipose tissue in type 1 diabetes is associated with central obesity and metabolic syndrome. Diabetes Res. Clin. Pract. 91, 47–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Iacobellis, G. et al. Epicardial fat thickness and left ventricular mass in subjects with adrenal incidentaloma. Endocrine http://dx.doi.org/10.1007/s12020-013-9902-5.

  90. Borruel, S. et al. Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 98, 1254–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Cakir, E. et al. Subclinical atherosclerosis and hyperandrogenemia are independent risk factors for increased epicardial fat thickness in patients with PCOS and idiopathic hirsutism. Atherosclerosis 226, 291–295 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Iacobellis, G., Singh, N., Wharton, S. & Sharma, A. M. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity 16, 1693–1697 (2008).

    Article  PubMed  Google Scholar 

  93. Kim, M. K. et al. Aerobic exercise training reduces epicardial fat in obese men. J. Appl. Physiol. 106, 5–11 (2009).

    Article  PubMed  Google Scholar 

  94. Willens, H. J. et al. Effects of weight loss after bariatric surgery on epicardial fat measured using echocardiography. Am. J. Cardiol. 99, 1242–1245 (2007).

    Article  PubMed  Google Scholar 

  95. Gaborit, B. et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J. Am. Coll. Cardiol. 60, 1381–1389 (2012).

    Article  PubMed  Google Scholar 

  96. Vasques, A. C. et al. Epicardial and pericardial fat in type 2 diabetes: favourable effects of biliopancreatic diversion. Obes. Surg. http://dx.doi.org/10.1007/s11695-014-1400-1.

  97. Sacks, H. S. et al. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care 34, 730–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Distel, E. et al. Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie 94, 1660–1667 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Park, J. H. et al. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J. Cardiovasc. Ultrasound 18, 121–126 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Alexopoulos, N. et al. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning). J. Am. Coll. Cardiol. 61, 1956–1961 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Nasarre, L. et al. Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels. Acta Diabetol. 51, 23–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Lanes, R. et al. Endothelial function, carotid artery intima-media thickness, epicardial adipose tissue, and left ventricular mass and function in growth hormone-deficient adolescents: apparent effects of growth hormone treatment on these parameters. J. Clin. Endocrinol. Metab. 90, 3978–3982 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Ferrante, E. et al. Epicardial fat thickness significantly decreases after short-term growth hormone (GH) replacement therapy in adults with GH deficiency. Nutr. Metab. Cardiovasc. Dis. 23, 459–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Yazıcı, D. et al. Effects of restoration of the euthyroid state on epicardial adipose tissue and carotid intima media thickness in subclinical hypothyroid patients. Endocrine http://dx.doi.org/10.1007/s12020-014-0372-1.

  105. Kocyigit, I. et al. A low serum free triiodothyronine level is associated with epicardial adipose tissue in peritoneal dialysis patients. J. Atheroscler. Thromb. 21, 1066–1074 (2014).

    Article  PubMed  Google Scholar 

  106. Asik, M. et al. Evaluation of epicardial fat tissue thickness in patients with Hashimoto thyroiditis. Clin. Endocrinol. (Oxf.) 79, 571–576 (2013).

    Article  CAS  Google Scholar 

  107. Shimasaki, T. et al. The dipeptidyl peptidase-4 inhibitor des-fluoro-sitagliptin regulates brown adipose tissue uncoupling protein levels in mice with diet-induced obesity. PLoS ONE 8, e63626 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Iacobellis.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacobellis, G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol 11, 363–371 (2015). https://doi.org/10.1038/nrendo.2015.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.58

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research