Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gonadal steroids and humoral immunity

Abstract

Humoral immune responses are sexually dimorphic. Female individuals generally exhibit more-robust antibody responses to vaccines and, in the clinical setting as well as in experimental models, are more likely than male individuals to produce autoreactive antibodies of pathogenic potential. A number of differences between the sexes might account for these observations, including differences in the dosage of specific X-chromosome and Y-chromosomal genes, increased exposure of female individuals to antigenic stimulation in childbearing, and differences in circulating concentrations of gonadal steroid hormones. The role of gonadal steroids in modulating such humoral immune responses has been studied for nearly a century, but advances in our knowledge of B-lymphocyte development and function, the mechanisms of immune tolerance, and the molecular basis of gonadal steroid hormone action are now yielding new understanding of the influence of gonadal steroid hormones on the humoral immune system. This Review examines how oestrogens and androgens modulate B-lymphocyte development and function, focusing on the areas of B-cell production in the bone marrow, the maintenance of immune tolerance for self antigens, and the processes of immunoglobulin heavy chain gene somatic hypermutation and class switch recombination during maturation of cells involved in humoral immune responses.

Key Points

  • Humoral immune responses are sexually dimorphic: female individuals exhibit more-exuberant antibody responses to vaccines and have a greater propensity for autoantibody production than do male individuals

  • Gonadal steroids exert effects on the immune system that could account, at least in part, for the observed sex differences in immunity and the incidence of autoimmune diseases

  • Androgens and oestrogens attenuate global B-cell production; their effects are mediated both directly (by actions on lymphoid cell precursors) and indirectly (through actions on bone marrow stromal cells)

  • Oestrogens modulate clonal deletion, the process through which autoreactive clones of B cells are eliminated

  • Gonadal steroids exert effects on immunoglobulin heavy chain gene somatic hypermutation and class switch recombination by modulating expression of activation-induced cytidine deaminase, the key regulator of these processes

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B lymphopoiesis.
Figure 2: Elimination of autoreactive B lymphocytes.
Figure 3: B lymphocytes switch the class of the immunoglobulin that they express as a result of recombination events in IGH@.

Similar content being viewed by others

References

  1. Baumgartner, L. The relationship of age to immunological reactions. Yale J. Biol. Med. 6, 403–434 (1934).

    CAS  Google Scholar 

  2. Glusman, M. Einfluss die Entfernung von Drüsen mit innerer Sekretion auf die Antikörperbildung [German]. Ztschr. f. Hyg. u. Infektionskr. 102, 428–437 (1924).

    Article  Google Scholar 

  3. Dingle, J. H., Meyer, R. K. & Gustus, E. L. Effect of gonadotropic and oestrogenic hormones on agglutinin response to B. pertussis in immature animals. J. Immunol. 30, 139–147 (1936).

    Google Scholar 

  4. von Haam, E. & Rosenfeld, I. The effect of estrone on antibody production. J. Immunol. 43, 109–117 (1942).

    CAS  Google Scholar 

  5. Weinstein, L. The effect of oestrogenic hormone & ovariectomy on the normal antibody content of the serum of mature rabbits. Yale J. Biol. Med. 11, 169–178 (1939).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stern, K. & Davidsohn, I. Effect of oestrogen and cortisone on immune haemoantibodies in mice of inbred strains. J. Immunol. 74, 479–484 (1955).

    CAS  PubMed  Google Scholar 

  7. Butterworth, M., McClellan, B. & Allansmith, M. Influence of sex in immunoglobulin levels. Nature 214, 1224–1225 (1967).

    Article  CAS  PubMed  Google Scholar 

  8. Ainbender, E., Weisinger, R. B., Hevizy, M. & Hodes, H. L. Difference in the immunoglobulin class of polioantibody in the serum of men and women. J. Immunol. 101, 92–98 (1968).

    CAS  PubMed  Google Scholar 

  9. Rowley, M. J. & Mackay, I. R. Measurement of antibody-producing capacity in man. I. The normal response to flagellin from Salmonella adelaide. Clin. Exp. Immunol. 5, 407–418 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Batchelor, J. R. Hormonal control of atibody formation. In Regulation of the Antibody Response (ed. Cinader, B.), 276–293 (Charles C. Thomas, Springfield, 1968).

    Google Scholar 

  11. Eidinger, D. & Garrett, T. J. Studies of the regulatory effects of the sex hormones on antibody formation and stem cell differentiation. J. Exp. Med. 136, 1098–1116 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roubinian, J. R., Papoian, R. & Talal, N. Androgenic hormones modulate autoantibody responses and improve survival in murine lupus. J. Clin. Invest. 59, 1066–1070 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hardy, R. R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Welinder, E., Ahsberg, J. & Sigvardsson, M. B-lymphocyte commitment: identifying the point of no return. Semin. Immunol. 23, 335–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. von Boehmer, H. & Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nat. Immunol. 11, 14–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Wardemann, H. & Nussenzweig, M. C. B-cell self-tolerance in humans. Adv. Immunol. 95, 83–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Tsuiji, M. et al. A checkpoint for autoreactivity in human IgM+ memory B cell development. J. Exp. Med. 203, 393–400 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scheid, J. F. et al. Differential regulation of self-reactivity discriminates between IgG+ human circulating memory B cells and bone marrow plasma cells. Proc. Natl Acad. Sci. USA 108, 18044–18048 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nemazee, D. A. & Bürki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337, 562–566 (1989).

    CAS  PubMed  Google Scholar 

  21. Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, H., Kearney, J. F., Grusby, M. J., Benoist, C. & Mathis, D. Induction of tolerance in arthritogenic B cells with receptors of differing affinity for self-antigen. Proc. Natl Acad. Sci. USA 103, 3734–3739 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peled, J. U. et al. The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 26, 481–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Stavnezer, J., Guikema, J. E. J. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kinoshita, K. & Honjo, T. Linking class-switch recombination with somatic hypermutation. Nat. Rev. Mol. Cell Biol. 2, 493–503 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Roubinian, J. R., Talal, N., Greenspan, J. S., Goodman, J. R. & Siiteri, P. K. Effect of castration and sex hormone treatment on survival, anti-nucleic acid antibodies, and glomerulonephritis in NZB/NZW F1 mice. J. Exp. Med. 147, 1568–1583 (1978).

    Article  CAS  PubMed  Google Scholar 

  31. Roubinian, J., Talal, N., Siiteri, P. K. & Sadakian, J. A. Sex hormone modulation of autoimmunity in NZB/NZW mice. Arthritis Rheum. 22, 1162–1169 (1979).

    CAS  PubMed  Google Scholar 

  32. Liu, S., Cerutti, A., Casali, P. & Crow, M. K. Ongoing immunoglobulin class switch DNA recombination in lupus B cells: analysis of switch regulatory regions. Autoimmunity 37, 431–443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zan, H. et al. Lupus-prone MRL/Faslpr/lpr mice display increased AID expression and extensive DNA lesions, comprising deletions and insertions, in the immunoglobulin locus: concurrent upregulation of somatic hypermutation and class switch DNA recombination. Autoimmunity 42, 89–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. White, C. A. et al. AID dysregulation in lupus-prone MRL/Faslpr/lpr mice increases class switch DNA recombination and promotes interchromosomal c-Myc/IgH loci translocations: modulation by HoxC4. Autoimmunity 44, 585–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, Q.-Z. et al. Protein array autoantibody profiles for insights into systemic lupus erythematosus and incomplete lupus syndromes. Clin. Exp. Immunol. 147, 60–70 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, C. et al. Abrogation of lupus nephritis in activation-induced deaminase-deficient MRL/lpr mice. J. Immunol. 178, 7422–7431 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, C., Zhao, M. L. & Diaz, M. Activation-induced deaminase heterozygous MRL/lpr mice are delayed in the production of high-affinity pathogenic antibodies and in the development of lupus nephritis. Immunology 126, 102–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pau, E., Chang, N.-H., Loh, C., Lajoie, G. & Wither, J. E. Abrogation of pathogenic IgG autoantibody production in CD40L gene-deleted lupus-prone New Zealand Black mice. Clin. Immunol. 139, 215–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Medina, K. L., Smithson, G. & Kincade, P. W. Suppression of B lymphopoiesis during normal pregnancy. J. Exp. Med. 178, 1507–1515 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Medina, K. L. & Kincade, P. W. Pregnancy-related steroids are potential negative regulators of B lymphopoiesis. Proc. Natl Acad. Sci. USA 91, 5382–5386 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smithson, G. et al. Increased B lymphopoiesis in genetically sex steroid-deficient hypogonadal (hpg) mice. J. Exp. Med. 180, 717–720 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Masuzawa, T. et al. Oestrogen deficiency stimulates B lymphopoiesis in mouse bone marrow. J. Clin. Invest. 94, 1090–1097 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Erlandsson, M. C., Jonsson, C. A., Islander, U., Ohlsson, C. & Carlsten, H. Oestrogen receptor specificity in oestradiol-mediated effects on B lymphopoiesis and immunoglobulin production in male mice. Immunology 108, 346–351 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smithson, G., Couse, J. F., Lubahn, D. B., Korach, K. S. & Kincade, P. W. The role of oestrogen receptors and androgen receptors in sex steroid regulation of B lymphopoiesis. J. Immunol. 161, 27–34 (1998).

    CAS  PubMed  Google Scholar 

  45. Medina, K. L., Strasser, A. & Kincade, P. W. Oestrogen influences the differentiation, proliferation, and survival of early B-lineage precursors. Blood 95, 2059–2067 (2000).

    CAS  PubMed  Google Scholar 

  46. Kincade, P. W. et al. Early B-lymphocyte precursors and their regulation by sex steroids. Immunol. Rev. 175, 128–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Medina, K. L. et al. Identification of very early lymphoid precursors in bone marrow and their regulation by oestrogen. Nat. Immunol. 2, 718–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kouro, T., Medina, K. L., Oritani, K. & Kincade, P. W. Characteristics of early murine B-lymphocyte precursors and their direct sensitivity to negative regulators. Blood 97, 2708–2715 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Thurmond, T. S. et al. Role of oestrogen receptor-α in haematopoietic stem cell development and B lymphocyte maturation in the male mouse. Endocrinology 141, 2309–2318 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Yokota, T. et al. Soluble Frizzled-related protein 1 is oestrogen inducible in bone marrow stromal cells and suppresses the earliest events in lymphopoiesis. J. Immunol. 181, 6061–6072 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Viselli, S. M., Reese, K. R., Fan, J., Kovacs, W. J. & Olsen, N. J. Androgens alter B cell development in normal male mice. Cell. Immunol. 182, 99–104 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Altuwaijri, S. et al. Susceptibility to autoimmunity and B cell resistance to apoptosis in mice lacking androgen receptor in B cells. Mol. Endocrinol. 23, 444–453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Olsen, N. J., Gu, X. & Kovacs, W. J. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. J. Clin. Invest. 108, 1697–1704 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bynoe, M. S., Grimaldi, C. M. & Diamond, B. Oestrogen upregulates Bcl-2 and blocks tolerance induction of naive B cells. Proc. Natl Acad. Sci. USA 97, 2703–2708 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grimaldi, C. M., Cleary, J., Dagtas, A. S., Moussai, D. & Diamond, B. Oestrogen alters thresholds for B cell apoptosis and activation. J. Clin. Invest. 109, 1625–1633 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grimaldi, C. M., Jeganathan, V. & Diamond, B. Hormonal regulation of B cell development: 17β-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. J. Immunol. 176, 2703–2710 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Grimaldi, C. M., Michael, D. J. & Diamond, B. Cutting edge: expansion and activation of a population of autoreactive marginal zone B cells in a model of oestrogen-induced lupus. J. Immunol. 167, 1886–1890 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 14, 603–615 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Casola, S. et al. B cell receptor signal strength determines B cell fate. Nat. Immunol. 5, 317–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Grimaldi, C. M., Hill, L., Xu, X., Peeva, E. & Diamond, B. Hormonal modulation of B cell development and repertoire selection. Mol. Immunol. 42, 811–820 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Venkatesh, J., Peeva, E., Xu, X. & Diamond, B. Cutting edge: hormonal milieu, not antigenic specificity, determines the mature phenotype of autoreactive B cells. J. Immunol. 176, 3311–3314 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Hill, L., Jeganathan, V., Chinnasamy, P., Grimaldi, C. & Diamond, B. Differential roles of oestrogen receptors -α and -β in control of B-cell maturation and selection. Mol. Med. 17, 211–220 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Tessnow, A. H., Olsen, N. J. & Kovacs, W. J. Expression of humoral autoimmunity is related to androgen receptor CAG repeat length in men with systemic lupus erythematosus. J. Clin. Immunol. 31, 567–573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pauklin, S., Sernández, I. V., Bachmann, G., Ramiro, A. R. & Petersen-Mahrt, S. K. Oestrogen directly activates AID transcription and function. J. Exp. Med. 206, 99–111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mai, T. et al. Oestrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation. J. Biol. Chem. 285, 37797–37810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park, S.-R. et al. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat. Immunol. 10, 540–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pauklin, S. & Petersen-Mahrt, S. K. Progesterone inhibits activation-induced deaminase by binding to the promoter. J. Immunol. 183, 1238–1244 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to Dr Ann L. Benko for critical reading of the manuscript. The authors acknowledge research grant support (to W. J. Kovacs as principal investigator) from the Lupus Research Institute, New York, USA.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to William J. Kovacs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakiani, S., Olsen, N. & Kovacs, W. Gonadal steroids and humoral immunity. Nat Rev Endocrinol 9, 56–62 (2013). https://doi.org/10.1038/nrendo.2012.206

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing