Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Medical treatment of prolactinomas

Abstract

Prolactinomas, the most prevalent type of neuroendocrine disease, account for approximately 40% of all pituitary adenomas. The most important clinical problems associated with prolactinomas are hypogonadism, infertility and hyposexuality. In patients with macroprolactinomas, mass effects, including visual field defects, headaches and neurological disturbances, can also occur. The objectives of therapy are normalization of prolactin levels, to restore eugonadism, and reduction of tumor mass, both of which can be achieved in the majority of patients by treatment with dopamine agonists. Given their association with minimal morbidity, these drugs currently represent the mainstay of treatment for prolactinomas. Novel data indicate that these agents can be successfully withdrawn in a subset of patients after normalization of prolactin levels and tumor disappearance, which suggests the possibility that medical therapy may not be required throughout life. Nevertheless, multimodal therapy that involves surgery, radiotherapy or both may be necessary in some cases, such as patients who are resistant to the effects of dopamine agonists or for those with atypical prolactinomas. This Review reports on efficacy and safety of pharmacotherapy in patients with prolactinomas.

Key Points

  • Medical treatment of prolactinomas with cabergoline, quinagolide or bromocriptine is very efficacious; cabergoline has demonstrated superiority in efficacy to other drugs in many studies

  • Cardiac valve disease induced by cabergoline treatment in patients with hyperprolactinemia is still a matter of debate

  • In the absence of unequivocal proof excluding a negative effect of cabergoline in patients with hyperprolactinemia, all patients who receive long-term cabergoline treatment should undergo regular echocardiographic follow-up

  • Long-term discontinuation of cabergoline or bromocriptine in patients with hyperprolactinemia of any cause has shown a variable rate of tumor recurrence; predictors of recurrence before cabergoline withdrawal are tumor diameter and prolactin levels

  • Resistance to dopamine agonists is a rare phenomenon that characterizes a group of tumors that generally manifest with a more aggressive behavior than usual

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of normal prolactin levels and of tumor shrinkage >80% compared to basal volume in patients with macroprolactinomas grouped according to previous treatment with bromocriptine or quinagolide and then treated with cabergoline (0.25–3.5 mg weekly) for 1–3 years.
Figure 2: Prevalence of valve regurgitation in patients with hyperprolactinemia treated with cabergoline for a median period of 74 months.
Figure 3: Kaplan-Meier estimation of recurrence of hyperprolactinemia after 10 years of cabergoline withdrawal.
Figure 4: Correlation analysis of data obtained by 227 patients included in the study by Colao and colleagues80

Similar content being viewed by others

References

  1. Colao, A. & Lombardi, G. Growth-hormone and prolactin excess. Lancet 352, 1455–1461 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Ciccarelli, A., Daly, A. F. & Beckers, A. The epidemiology of prolactinomas. Pituitary 8, 3–6 (2005).

    Article  PubMed  Google Scholar 

  3. Colao, A. et al. Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia. Eur. J. Endocrinol. 148, 325–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Mindermann, T. & Wilson, C. B. Age-related and gender-related occurrence of pituitary adenomas. Clin. Endocrinol. (Oxf.) 41, 359–364 (1994).

    Article  CAS  Google Scholar 

  5. Colao, A. M. Pituitary adenomas in childhood [online], (2006).

    Google Scholar 

  6. Gillam, M. P., Molitch, M. E., Lombardi, G. & Colao, A. Advances in the treatment of prolactinomas. Endocr. Rev. 27, 485–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Colao, A. Pituitary tumours: the prolactinoma. Best Pract. Res. Clin. Endocrinol. Metab. 23, 575–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. George, L. D., Nicolau, N., Scanlon, M. F. & Davies, J. S. Recovery of growth hormone secretion following cabergoline treatment of macroprolactinomas. Clin. Endocrinol. (Oxf.) 53, 595–599 (2000).

    Article  CAS  Google Scholar 

  9. Bevan, J. S., Webster, J., Burke, C. W. & Scanlon, M. F. Dopamine agonists and pituitary tumor shrinkage. Endocr. Rev. 13, 220–240 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Colao, A., Annunziato, L. & Lombardi, G. Treatment of prolactinomas. Ann. Med. 30, 452–459 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Colao, A., di Sarno, A., Pivonello, R., di Somma, C. & Lombardi, G. Dopamine receptor agonists for treating prolactinomas. Expert Opin. Investig. Drugs 11, 787–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Vilar, L. et al. Management of prolactinomas in Brazil: an electronic survey. Pituitary 13, 199–206 (2010).

    Article  PubMed  Google Scholar 

  13. Klibanski, A. & Greenspan, S. L. Increase in bone mass after treatment of hyperprolactinemic amenorrhea. N. Engl. J. Med. 315, 542–546 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Colao, A. et al. Comparison among different dopamine-agonists of new formulation in the clinical management of macroprolactinomas. Horm. Res. 44, 222–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Di Somma, C. et al. Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J. Clin. Endocrinol. Metab. 83, 807–813 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Sabuncu, T., Arikan, E., Tasan, E. & Hatemi, H. Comparison of the effects of cabergoline and bromocriptine on prolactin levels in hyperprolactinemic patients. Intern. Med. 40, 857–861 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Di Sarno, A. et al. Resistance to cabergoline as compared with bromocriptine in hyperprolactinemia: prevalence, clinical definition, and therapeutic strategy. J. Clin. Endocrinol. Metab. 86, 5256–5261 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Passos, V. Q., Souza, J. J., Musolino, N. R. & Bronstein, M. D. Long-term follow-up of prolactinomas: normoprolactinemia after bromocriptine withdrawal. J. Clin. Endocrinol. Metab. 87, 3578–3582 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Chattopadhyay, A., Bhansali, A. & Masoodi, S. R. Long-term efficacy of bromocriptine in macroprolactinomas and giant prolactinomas in men. Pituitary 8, 147–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. De Rosa, M. et al. Cabergoline treatment rapidly improves gonadal function in hyperprolactinemic males: a comparison with bromocriptine. Eur. J. Endocrinol. 138, 286–293 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Schettini, G. et al. Rapid and long-lasting suppression of prolactin secretion and shrinkage of prolactinomas after injection of long-acting repeatable form of bromocriptine (Parlodel LAR). Clin. Endocrinol. (Oxf.) 33, 161–169 (1990).

    Article  CAS  Google Scholar 

  22. Beckers, A. et al. Treatment of macroprolactinomas with the long-acting and repeatable form of bromocriptine: a report on 29 cases. J. Clin. Endocrinol. Metab. 75, 275–280 (1992).

    CAS  PubMed  Google Scholar 

  23. Colao, A., Lombardi, G. & Annunziato, L. Cabergoline. Expert Opin. Pharmacother. 1, 555–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Webster, J. et al. A comparison of cabergoline and bromocriptine in the treatment of hyperprolactinemic amenorrhea. Cabergoline Comparative Study Group. N. Engl. J. Med. 331, 904–909 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Verhelst, J. et al. Cabergoline in the treatment of hyperprolactinemia: a study in 455 patients. J. Clin. Endocrinol. Metab. 84, 2518–2522 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Di Sarno, A. et al. The effect of quinagolide and cabergoline, two selective dopamine receptor type 2 agonists, in the treatment of prolactinomas. Clin. Endocrinol. (Oxf.) 53, 53–60 (2000).

    Article  CAS  Google Scholar 

  27. Biller, B. M. et al. Treatment of prolactin-secreting macroadenomas with the once-weekly dopamine agonist cabergoline. J. Clin. Endocrinol. Metab. 81, 2338–2343 (1996).

    CAS  PubMed  Google Scholar 

  28. Colao, A. et al. Long-term and low-dose treatment with cabergoline induces macroprolactinoma shrinkage. J. Clin. Endocrinol. Metab. 82, 3574–3579 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Colao, A. et al. Macroprolactinoma shrinkage during cabergoline treatment is greater in naive patients than in patients pretreated with other dopamine agonists: a prospective study in 110 patients. J. Clin. Endocrinol. Metab. 85, 2247–2252 (2000).

    CAS  PubMed  Google Scholar 

  30. De Rosa, M. et al. Hyperprolactinemia in men: clinical and biochemical features and response to treatment. Endocrine 20, 75–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Colao, A. et al. Outcome of cabergoline treatment in men with prolactinoma: effects of a 24-month treatment on prolactin levels, tumor mass, recovery of pituitary function, and semen analysis. J. Clin. Endocrinol. Metab. 89, 1704–1711 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. De Rosa, M. et al. Six months of treatment with cabergoline restores sexual potency in hyperprolactinemic males: an open longitudinal study monitoring nocturnal penile tumescence. J. Clin. Endocrinol. Metab. 89, 621–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Colao, A. et al. Prolactinomas resistant to standard dopamine agonists respond to chronic cabergoline treatment. J. Clin. Endocrinol. Metab. 82, 876–883 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Delgrange, E., Duprez, T. & Maiter, D. Influence of parasellar extension of macroprolactinomas defined by magnetic resonance imaging on their responsiveness to dopamine agonist therapy. Clin. Endocrinol. (Oxf.) 64, 456–462 (2006).

    Article  Google Scholar 

  35. Ono, M. et al. Prospective study of high-dose cabergoline treatment of prolactinomas in 150 patients. J. Clin. Endocrinol. Metab. 93, 4721–4727 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Delgrange, E., Daems, T., Verhelst, J., Abs, R. & Maiter, D. Characterization of resistance to the prolactin-lowering effects of cabergoline in macroprolactinomas: a study in 122 patients. Eur. J. Endocrinol. 160, 747–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Barlier, A. & Jaquet, P. Quinagolide—a valuable treatment option for hyperprolactinaemia. Eur. J. Endocrinol. 154, 187–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Colao, A. et al. Chronic treatment with CV 205–502 restores the gonadal function in hyperprolactinemic males. Eur. J. Endocrinol. 135, 548–552 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Vance, M. L. et al. Treatment of prolactin-secreting pituitary macroadenomas with the long-acting non-ergot dopamine agonist CV 205–502. Ann. Intern. Med. 112, 668–673 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Homburg, R., West, C., Brownell, J. & Jacobs, H. S. A double-blind study comparing a new non-ergot, long-acting dopamine agonist, CV 205–502, with bromocriptine in women with hyperprolactinaemia. Clin. Endocrinol. (Oxf.) 32, 565–571 (1990).

    Article  CAS  Google Scholar 

  41. De Luis, D. A. et al. A randomized cross-over study comparing cabergoline and quinagolide in the treatment of hyperprolactinemic patients. J. Endocrinol. Invest. 23, 428–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Giusti, M. et al. A cross-over study with the two novel dopaminergic drugs cabergoline and quinagolide in hyperprolactinemic patients. J. Endocrinol. Invest. 17, 51–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Andersohn, F. & Garbe, E. Cardiac and noncardiac fibrotic reactions caused by ergot-and nonergot-derived dopamine agonists. Mov. Disord. 24, 129–133 (2009).

    Article  PubMed  Google Scholar 

  44. Freda, P. U. et al. Long-term treatment of prolactin-secreting macroadenomas with pergolide. J. Clin. Endocrinol. Metab. 85, 8–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Orrego, J. J., Chandler, W. F. & Barkan, A. L. Pergolide as primary therapy for macroprolactinomas. Pituitary 3, 251–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Gräf, K. J., Neumann, F. & Horowski, R. Effect of the ergot derivative lisuride hydrogen maleate on serum prolactin concentrations in female rats. Endocrinology 98, 598–605 (1976).

    Article  PubMed  Google Scholar 

  47. Liuzzi, A. et al. Lisuride hydrogen maleate: evidence for a long lasting dopaminergic activity in humans. J. Clin. Endocrinol. Metab. 46, 196–202 (1978).

    Article  CAS  PubMed  Google Scholar 

  48. Dallabonzana, D. et al. Chronic treatment of pathological hyperprolactinemia and acromegaly with the new ergot derivative terguride. J. Clin. Endocrinol. Metab. 63, 1002–1007 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Schade, R., Andersohn, F., Suissa, S., Haverkamp, W. & Garbe, E. Dopamine agonists and the risk of cardiac-valve regurgitation. N. Engl. J. Med. 356, 29–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Zanettini, R. et al. Valve heart disease and the use of dopamine agonists for Parkinson's disease. N. Engl. J. Med. 356, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Rothman, R. B. et al. Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102, 2836–2841 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Singh, J. P. et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am. J. Cardiol. 83, 897–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Choong, C. Y. et al. Prevalence of valvular regurgitation by Doppler echocardiography in patients with structurally normal hearts by two-dimensional echocardiography. Am. Heart J. 117, 636–642 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Kars, M., Pereira, A. M., Bax, J. J. & Romijn, J. A. Cabergoline and cardiac valve disease in prolactinoma patients: additional studies during long-term treatment are required. Eur. J. Endocrinol. 159, 363–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Colao, A. et al. Increased prevalence of tricuspid regurgitation in patients with prolactinomas chronically treated with cabergoline. J. Clin. Endocrinol. Metab. 93, 3777–3784 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Bogazzi, F. et al. Treatment with low doses of cabergoline is not associated with increased prevalence of cardiac valve regurgitation in patients with hyperprolactinaemia. Int. J. Clin. Pract. 62, 1864–1869 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Bogazzi, F. et al. Cabergoline therapy and the risk of cardiac valve regurgitation in patients with hyperprolactinemia: a meta-analysis from clinical studies. J. Endocrinol. Invest. 31, 1119–1123 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Cheung, D. & Heaney, A. Dopamine agonists and valvular heart disease. Curr. Opin. Endocrinol. Diabetes Obes. 16, 316–320 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Valassi, E., Klibanski, A. & Biller, B. M. Potential cardiac valve effects of dopamine agonists in hyperprolactinemia. J. Clin. Endocrinol. Metab. 95, 1025–1033 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Tan, L. C. et al. Bromocriptine use and the risk of valvular heart disease. Mov. Disord. 24, 344–349 (2009).

    Article  PubMed  Google Scholar 

  61. Steiger, M., Jost, W., Grandas, F. & Van Camp, G. Risk of valvular heart disease associated with the use of dopamine agonists in Parkinson's disease: a systematic review. J. Neural Transm. 116, 179–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Zanettini, R. et al. Regression of cardiac valvulopathy related to ergot-derived dopamine agonists. Cardiovasc. Ther. doi:10.1111/j.1755-5922.2010.00169.x.

  63. Rasmussen, V. G. et al. Heart abnormalities in Parkinson patients after discontinuation or continuation of ergot-derived dopamine agonists: a treatment-blinded echocardiographic study. J. Heart Valve Dis. 18, 463–469 (2009).

    PubMed  Google Scholar 

  64. Gu, H., Luck, S., Carroll, P. V., Powrie, J. & Chambers, J. Cardiac valve disease and low-dose dopamine agonist therapy: an artefact of reporting bias? Clin. Endocrinol. (Oxf.) doi: 10.1111/j.1365–2265.2010.03973.x.

  65. Johnston, D. G. et al. Hyperprolactinemia. Long-term effects of bromocriptine. Am. J. Med. 75, 868–874 (1983).

    Article  CAS  PubMed  Google Scholar 

  66. Zárate, A., Canales, E. S., Cano, C. & Pilonieta, C. J. Follow-up of patients with prolactinomas after discontinuation of long-term therapy with bromocriptine. Acta Endocrinol. (Copenh.) 104, 139–142 (1983).

    Article  Google Scholar 

  67. Moriondo, P., Travaglini, P., Nissim, M., Conti, A. & Faglia, G. Bromocriptine treatment of microprolactinomas: evidence of stable prolactin decrease after drug withdrawal. J. Clin. Endocrinol. Metab. 60, 764–772 (1985).

    Article  CAS  PubMed  Google Scholar 

  68. Johnston, D. G. et al. Effect of dopamine agonist withdrawal after long-term therapy in prolactinomas. Studies with high-definition computerised tomography. Lancet 2, 187–192 (1984).

    Article  CAS  PubMed  Google Scholar 

  69. Maxson, W. S., Dudzinski, M., Handwerger, S. H. & Hammond, C. B. Hyperprolactinemic response after bromocriptine withdrawal in women with prolactin-secreting pituitary tumors. Fertil. Steril. 41, 218–223 (1984).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, C. et al. Long-term treatment of hyperprolactinaemia with bromocriptine: effect of drug withdrawal. Clin. Endocrinol. (Oxf.) 27, 363–371 (1987).

    Article  CAS  Google Scholar 

  71. Winkelmann, W., Allolio, B., Deuss, U., Heesen, D. & Kaulen, D. in Prolactin. Basic and Clinical Correlates (eds MacLeod, R. M., Thorner, M. O. & Scapagnini, U.) 817–822 (Liviana Press, Padova, 1985).

    Google Scholar 

  72. Rasmussen, C., Brownell, J. & Bergh, T. Clinical response and prolactin concentration in hyperprolactinemic women during and after treatment for 24 months with the new dopamine agonist, CV 205–502. Acta Endocrinol. (Copenh.) 125, 170–176 (1991).

    Article  CAS  Google Scholar 

  73. van't Verlaat, J. W. & Croughs, R. J. Withdrawal of bromocriptine after long-term therapy for macroprolactinomas; effect on plasma prolactin and tumour size. Clin. Endocrinol. (Oxf.) 34, 175–178 (1991).

    Article  Google Scholar 

  74. Ferrari, C. et al. Cabergoline in the long-term therapy of hyperprolactinemic disorders. Acta Endocrinol. (Copenh.) 126, 489–494 (1992).

    Article  CAS  Google Scholar 

  75. Muratori, M. et al. Use of cabergoline in the long-term treatment of hyperprolactinemic and acromegalic patients. J. Endocrinol. Invest. 20, 537–546 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Cannavò, S. et al. Cabergoline: a first-choice treatment in patients with previously untreated prolactin-secreting pituitary adenoma. J. Endocrinol. Invest. 22, 354–359 (1999).

    Article  PubMed  Google Scholar 

  77. Colao, A. et al. Withdrawal of long-term cabergoline therapy for tumoral and nontumoral hyperprolactinemia. N. Engl. J. Med. 349, 2023–2033 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Biswas, M. et al. Long-term remission following withdrawal of dopamine agonist therapy in subjects with microprolactinomas. Clin. Endocrinol. (Oxf.) 63, 26–31 (2005).

    Article  CAS  Google Scholar 

  79. Kharlip, J., Salvatori, R., Yenokyan, G. & Wand, G. S. Recurrence of hyperprolactinemia after withdrawal of long-term cabergoline therapy. J. Clin. Endocrinol. Metab. 94, 2428–2436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Colao, A. et al. Predictors of remission of hyperprolactinaemia after long-term withdrawal of cabergoline therapy. Clin. Endocrinol. (Oxf.) 67, 426–433 (2007).

    Article  CAS  Google Scholar 

  81. Huda, M. S., Athauda, N. B., Teh, M. M., Carroll, P. V. & Powrie, J. K. Factors determining the remission of microprolactinomas after dopamine agonist withdrawal. Clin. Endocrinol. (Oxf.) 72, 507–511 (2010).

    Article  CAS  Google Scholar 

  82. Crosignani, P. G. et al. Long-term effects of time, medical treatment and pregnancy in 176 hyperprolactinemic women. Eur. J. Obstet. Gynecol. Reprod. Biol. 44, 175–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Karunakaran, S., Page, R. C. & Wass, J. A. The effect of the menopause on prolactin levels in patients with hyperprolactinaemia. Clin. Endocrinol. (Oxf.) 54, 295–300 (2001).

    Article  CAS  Google Scholar 

  84. Koppelman, M. C., Jaffe, M. J., Rieth, K. G., Caruso, R. C. & Louriaux, D. L. Hyperprolactinemia, amenorrhea, and galactorrhea. A retrospective assessment of twenty-five cases. Ann. Intern. Med. 100, 115–121 (1984).

    Article  CAS  PubMed  Google Scholar 

  85. Jeffcoate, W. J., Pound, N., Sturrock, N. D. & Lambourne, J. Long-term follow-up of patients with hyperprolactinaemia. Clin. Endocrinol. (Oxf.) 45, 299–303 (1996).

    Article  CAS  Google Scholar 

  86. Schlechte, J., Dolan, K., Sherman, B., Chapler, F. & Luciano, A. The natural history of untreated hyperprolactinemia: a prospective analysis. J. Clin. Endocrinol. Metab. 68, 412–418 (1989).

    Article  CAS  PubMed  Google Scholar 

  87. Sisam, D. A., Sheehan, J. P. & Sheeler, L. R. The natural history of untreated microprolactinomas. Fertil. Steril. 48, 67–71 (1987).

    Article  CAS  PubMed  Google Scholar 

  88. Dekkers, O. M. et al. Recurrence of hyperprolactinemia after withdrawal of dopamine agonists: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 95, 43–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Casanueva, F. F. et al. Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin. Endocrinol. (Oxf.) 65, 265–273 (2006).

    Article  Google Scholar 

  90. Kaltsas, G. A., Nomikos, P., Kontogeorgos, G., Buchfelder, M. & Grossman, A. B. Clinical review: Diagnosis and management of pituitary carcinomas. J. Clin. Endocrinol. Metab. 90, 3089–3099 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Colao, A. et al. Pituitary carcinomas. Front. Horm. Res. 38, 94–108 (2010).

    Article  PubMed  Google Scholar 

  92. Zada, G. et al. Atypical pituitary adenomas: incidence, clinical characteristics, and implications. J. Neurosurg. 114, 336–344 (2011).

    Article  PubMed  Google Scholar 

  93. Fainstein Day, P. et al. Gender differences in macroprolactinomas: study of clinical features, outcome of patients and ki-67 expression in tumor tissue. Front. Horm. Res. 38, 50–58 (2010).

    Article  PubMed  Google Scholar 

  94. Shimon, I., Benbassat, C. & Hadani, M. Effectiveness of long-term cabergoline treatment for giant prolactinoma: study of 12 men. Eur. J. Endocrinol. 156, 225–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Thapar, K. et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38, 99–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Thapar, K., Scheithauer, B. W., Kovacs, K., Pernicone, P. J. & Laws, E. R. Jr. p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery 38, 765–770 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Turner, H. E., Harris, A. L., Melmed, S. & Wass, J. A. Angiogenesis in endocrine tumors. Endocr. Rev. 24, 600–632 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Molitch, M. E. Dopamine resistance of prolactinomas. Pituitary 6, 19–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Delgrange, E., Crabbé, J. & Donckier, J. Late development of resistance to bromocriptine in a patient with macroprolactinoma. Horm. Res. 49, 250–253 (1998).

    CAS  PubMed  Google Scholar 

  100. McCall, D. et al. Unusual late development of dopamine agonist resistance in two women with hyperprolactinaemia associated with transition from micro to macroadenoma. Clin. Endocrinol. (Oxf.) 66, 149–150 (2007).

    CAS  Google Scholar 

  101. Behan, L. A. et al. Secondary resistance to cabergoline therapy in a macroprolactinoma: a case report and literature review. Pituitary doi: 10.1007/s11102-009-0168-0.

  102. Lania, A. G. et al. Evolution of an aggressive prolactinoma into a growth hormone secreting pituitary tumor coincident with GNAS gene mutation. J. Clin. Endocrinol. Metab. 95, 13–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Gillam, M. P., Middler, S., Freed, D. J. & Molitch, M. E. The novel use of very high doses of cabergoline and a combination of testosterone and an aromatase inhibitor in the treatment of a giant prolactinoma. J. Clin. Endocrinol. Metab. 87, 4447–4451 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Colao, A., Faggiano, A. & Pivonello, R. Somatostatin analogues: treatment of pituitary and neuroendocrine tumors. Prog. Brain Res. 182, 281–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Shimon, I. et al. Somatostatin receptor (SSTR) subtype-selective analogues differentially suppress in vitro growth hormone and prolactin in human pituitary adenomas. Novel potential therapy for functional pituitary tumors. J. Clin. Invest. 100, 2386–2392 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bronstein, M. D. et al. Absence of suppressive effect of somatostatin on prolactin levels in patients with hyperprolactinemia. Horm. Metab. Res. 19, 271–274 (1987).

    Article  CAS  PubMed  Google Scholar 

  107. Lamberts, S. W. et al. The sensitivity of growth hormone and prolactin secretion to the somatostatin analogue SMS 201–995 in patients with prolactinomas and acromegaly. Clin. Endocrinol. (Oxf.) 25, 201–212 (1986).

    Article  CAS  Google Scholar 

  108. Greenman, Y. & Melmed, S. Expression of three somatostatin receptor subtypes in pituitary adenomas: evidence for preferential SSTR5 expression in the mammosomatotroph lineage. J. Clin. Endocrinol. Metab. 79, 724–729 (1994).

    CAS  PubMed  Google Scholar 

  109. Hofland, L. J. & Lamberts, S. W. J. in Molecular Pathology of the Pituitary (eds Kontogeorgos, G. & Kovacs, K.) 235–252 (Karger, Basel, 2004).

    Book  Google Scholar 

  110. Rocheville, M. et al. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Ren, S. G. et al. Suppression of rat and human growth hormone and prolactin secretion by a novel somatostatin/dopaminergic chimeric ligand. J. Clin. Endocrinol. Metab. 88, 5414–5421 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Saveanu, A. et al. Demonstration of enhanced potency of a chimeric somatostatin-dopamine molecule, BIM-23A387, in suppressing growth hormone and prolactin secretion from human pituitary somatotroph adenoma cells. J. Clin. Endocrinol. Metab. 87, 5545–5552 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Gorski, J., Wendell, D., Gregg, D. & Chun, T. Y. Estrogens and the genetic control of tumor growth. Prog. Clin. Biol. Res. 396, 233–243 (1997).

    CAS  PubMed  Google Scholar 

  114. Heaney, A. P., Fernando, M. & Melmed, S. Functional role of estrogen in pituitary tumor pathogenesis. J. Clin. Invest. 109, 277–283 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lamberts, S. W., Verleun, T. & Oosterom, R. Effect of tamoxifen administration on prolactin release by invasive prolactin-secreting pituitary adenomas. Neuroendocrinology 34, 339–342 (1982).

    Article  CAS  PubMed  Google Scholar 

  116. Goffin, V., Bernichtein, S., Touraine, P. & Kelly, P. A. Development and potential clinical uses of human prolactin receptor antagonists. Endocr. Rev. 26, 400–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Ekeblad, S. et al. Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin. Cancer Res. 13, 2986–2991 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Raverot, G. et al. Temozolomide treatment in aggressive pituitary tumors and pituitary carcinomas: a French multicenter experience. J. Clin. Endocrinol. Metab. 95, 4592–4599 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. McCormack, A. I. et al. Low O6-methylguanine-DNA methyltransferase (MGMT) expression and response to temozolomide in aggressive pituitary tumours. Clin. Endocrinol. (Oxf.) 71, 226–233 (2009).

    Article  CAS  Google Scholar 

  121. Mohammed, S., Kovacs, K., Mason, W., Smyth, H. & Cusimano, M. D. Use of temozolomide in aggressive pituitary tumors: case report. Neurosurgery 64, E773–E774; discussion E774 2009.

    Article  PubMed  Google Scholar 

  122. Thearle, M. et al. Temozolomide (Temodar®) and capecitabine (Xeloda®) treatment of an aggressive corticotroph pituitary tumor. Pituitary doi: 10.1007/s11102-009-0211-1.

  123. Wilson, J. M. Adenoviruses as gene-delivery vehicles. N. Engl. J. Med. 334, 1185–1187 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Lee, E. J. & Jameson, J. L. Gene therapy of pituitary diseases. J. Endocrinol. 185, 353–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Williams, J. C. et al. Regulated, adenovirus-mediated delivery of tyrosine hydroxylase suppresses growth of estrogen-induced pituitary prolactinomas. Mol. Ther. 4, 593–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Vallette, S. et al. Long-term cabergoline therapy is not associated with valvular heart disease in patients with prolactinomas. Pituitary 12, 153–157 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Devin, J. K., Lakhani, V. T., Byrd, B. F. 3rd & Blevins, L. S. Jr. Prevalence of valvular heart disease in a cohort of patients taking cabergoline for management of hyperprolactinemia. Endocr. Pract. 14, 672–677 (2008).

    Article  PubMed  Google Scholar 

  128. Lancellotti, P. et al. Cabergoline and the risk of valvular lesions in endocrine disease. Eur. J. Endocrinol. 159, 1–5 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Kars, M. et al. Aortic valve calcification and mild tricuspid regurgitation but no clinical heart disease after 8 years of dopamine agonist therapy for prolactinoma. J. Clin. Endocrinol. Metab. 93, 3348–3356 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Wakil, A., Rigby, A. S., Clark, A. L., Kallvikbacka-Bennett, A. & Atkin, S. L. Low dose cabergoline for hyperprolactinaemia is not associated with clinically significant valvular heart disease. Eur. J. Endocrinol. 159, R11–R14 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Herring, N., Szmigielski, C., Becher, H., Karavitaki, N. & Wass, J. A. Valvular heart disease and the use of cabergoline for the treatment of prolactinoma. Clin. Endocrinol. (Oxf.) 70, 104–108 (2009).

    Article  Google Scholar 

  132. Nachtigall, L. B. et al. Gender effects on cardiac valvular function in hyperprolactinaemic patients receiving cabergoline: a retrospective study. Clin. Endocrinol. (Oxf.) 72, 53–58 (2010).

    Article  CAS  Google Scholar 

  133. Lafeber, M. et al. Absence of major fibrotic adverse events in hyperprolactinemic patients treated with cabergoline. Eur. J. Endocrinol. 162, 667–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Tan, T. et al. Assessment of cardiac valve dysfunction in patients receiving cabergoline treatment for hyperprolactinaemia. Clin. Endocrinol. (Oxf.) 73, 369–374 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Savastano researched the data for the article and provided substantial contributions to discussions of the content. A. Colao wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Annamaria Colao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colao, A., Savastano, S. Medical treatment of prolactinomas. Nat Rev Endocrinol 7, 267–278 (2011). https://doi.org/10.1038/nrendo.2011.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing