Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Selenium, selenoproteins and the thyroid gland: interactions in health and disease

Abstract

The trace element selenium is an essential micronutrient that is required for the biosynthesis of selenocysteine-containing selenoproteins. Most of the known selenoproteins are expressed in the thyroid gland, including some with still unknown functions. Among the well-characterized selenoproteins are the iodothyronine deiodinases, glutathione peroxidases and thioredoxin reductases, enzymes involved in thyroid hormone metabolism, regulation of redox state and protection from oxidative damage. Selenium content in selenium-sensitive tissues such as the liver, kidney or muscle and expression of nonessential selenoproteins, such as the glutathione peroxidases GPx1 and GPx3, is controlled by nutritional supply. The thyroid gland is, however, largely independent from dietary selenium intake and thyroid selenoproteins are preferentially expressed. As a consequence, no explicit effects on thyroid hormone profiles are observed in healthy individuals undergoing selenium supplementation. However, low selenium status correlates with risk of goiter and multiple nodules in European women. Some clinical studies have demonstrated that selenium-deficient patients with autoimmune thyroid disease benefit from selenium supplementation, although the data are conflicting and many parameters must still be defined. The baseline selenium status of an individual could constitute the most important parameter modifying the outcome of selenium supplementation, which might primarily disrupt self-amplifying cycles of the endocrine–immune system interface rectifying the interaction of lymphocytes with thyroid autoantigens. Selenium deficiency is likely to constitute a risk factor for a feedforward derangement of the immune system–thyroid interaction, while selenium supplementation appears to dampen the self-amplifying nature of this derailed interaction.

Key Points

  • Selenium is needed for biosynthesis of selenoproteins, including thyroid hormone metabolizing enzymes (iodothyronine deiodinases), hydrogen peroxide degrading enzymes (glutathione peroxidases) and enzymes affecting endoplasmic reticulum function

  • Endogenous pathways ensure that the thyroid gland and thyroid selenoproteins are exceptionally well supplied with selenium and largely resistant to selenium deficiency

  • Selenium status declines and selenoprotein biosynthesis is impaired in inflammatory diseases, which potentially necessitates supplementation with this trace element

  • Selenium supplementation trials in patients with Hashimoto thyroiditis successfully reduced autoantibody concentrations and improved selenium status and quality of life

  • However, not all selenium supplementation trials have been successful and the underlying mechanisms of the selenium effects and the major parameters controlling trial outcome are unknown

  • Selenium supplementation is hypothesized to improve functioning of both thyrocytes and immune cells, thereby rectifying the derailed interaction of lymphocytes with thyroid autoantigens in selenium-deficient patients

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways involved in thyroid peroxide generation (left) and selenium-dependent cell protection (right).

Similar content being viewed by others

References

  1. Kryukov, G. V. et al. Characterization of mammalian selenoproteomes. Science 300, 1439–1443 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Small-Howard, A. et al. Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol. Cell Biol. 26, 2337–2346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allmang, C., Wurth, L. & Krol, A. The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim. Biophys. Acta 1790, 1415–1423 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Xu, X. M. et al. Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol. 5, e4 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Aeby, E. et al. The canonical pathway for selenocysteine insertion is dispensable in Trypanosomes. Proc. Natl Acad. Sci. USA 106, 5088–5092 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Duntas, L. H. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm. Metab. Res. 41, 443–447 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Gärtner, R. Selenium and thyroid hormone axis in critical ill states: an overview of conflicting view points. J. Trace Elem. Med. Biol. 23, 71–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Papp, L. V., Lu, J., Holmgren, A. & Khanna, K. K. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox Signal 9, 775–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Shchedrina, V. A., Zhang, Y., Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid. Redox Signal 12, 839–849 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schomburg, L. Genetics and phenomics of selenoenzymes—how to identify an impaired biosynthesis? Mol. Cell Endocrinol. 322, 114–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Dumitrescu, A. M., Di Cosmo, C., Liao, X. H., Weiss, R. E. & Refetoff, S. The syndrome of inherited partial SBP2 deficiency in humans. Antioxid. Redox Signal 12, 905–920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McCann, J. C. & Ames, B. N. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. Faseb J. 25, 1793–1814 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Rayman, M. P. The importance of selenium to human health. Lancet 356, 233–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Fairweather-Tait, S. J. et al. Selenium in human health and disease. Antioxid. Redox Signal 14, 1337–1383 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Toulis, K. A., Anastasilakis, A. D., Tzellos, T. G., Goulis, D. G. & Kouvelas, D. Selenium supplementation in the treatment of Hashimoto's thyroiditis: a systematic review and a meta-analysis. Thyroid 20, 1163–1173 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Rosai, J., Kuhn, E. & Carcangiu, M. L. Pitfalls in thyroid tumour pathology. Histopathology 49, 107–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Klonisch, T., Hoang-Vu, C. & Hombach-Klonisch, S. Thyroid stem cells and cancer. Thyroid 19, 1303–1315 (2009).

    Article  PubMed  Google Scholar 

  18. Fagman, H. & Nilsson, M. Morphogenetics of early thyroid development. J. Mol. Endocrinol. 46, R33–R42 (2010).

    Article  CAS  Google Scholar 

  19. Song, Y. et al. Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J. Clin. Endocrinol. Metab. 95, 375–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Senou, M. et al. A coherent organization of differentiation proteins is required to maintain an appropriate thyroid function in the Pendred thyroid. J. Clin. Endocrinol. Metab. 95, 4021–4030 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Laurberg, P., Bülow Pedersen, I., Knudsen, N., Ovesen, L. & Andersen, S. Environmental iodine intake affects the type of nonmalignant thyroid disease. Thyroid 11, 457–469 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Linke, M., Jordans, S., Mach, L., Herzog, V. & Brix, K. Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol. Chem. 383, 773–784 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Vassart,, G. & Dumont, J. E. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr. Rev. 13, 596–611 (1992).

    CAS  Google Scholar 

  24. Levy, O. et al. Characterization of the thyroid Na+/I– symporter with an anti-COOH terminus antibody. Proc. Natl Acad. Sci. USA 94, 5568–5573 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kero, J. et al. Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J. Clin. Invest. 117, 2399–2407 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herzog, V., Berndorfer, U. & Saber, Y. Isolation of insoluble secretory product from bovine thyroid: extracellular storage of thyroglobulin in covalently cross-linked form. J. Cell Biol. 118, 1071–1083 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Friedrichs, B. et al. Thyroid functions of mouse cathepsins B, K, and L. J. Clin. Invest. 111, 1733–1745 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Björkman, U. & Ekholm, R. Generation of H2O2 in isolated porcine thyroid follicles. Endocrinology 115, 392–398 (1984).

    Article  PubMed  Google Scholar 

  29. Corvilain, B., van Sande, J., Laurent, E. & Dumont, J. E. The H2O2-generating system modulates protein iodination and the activity of the pentose phosphate pathway in dog thyroid. Endocrinology 128, 779–785 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Chan, E. C., Jiang, F., Peshavariya, H. M. & Dusting, G. J. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol. Ther. 122, 97–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Rada, B. et al. Role of Nox2 in elimination of microorganisms. Semin. Immunopathol. 30, 237–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Hultqvist, M., Olsson, L. M., Gelderman, K. A. & Holmdahl, R. The protective role of ROS in autoimmune disease. Trends Immunol. 30, 201–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Leto, T. L., Morand, S., Hurt, D. & Ueyama, T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox Signal 11, 2607–2619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grasberger, H. & Refetoff, S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J. Biol. Chem. 281, 18269–18272 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Fortunato, R. S. et al. Functional consequences of dual oxidase-thyroperoxidase interaction at the plasma membrane. J. Clin. Endocrinol. Metab. 95, 5403–5411 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Pachucki, J., Wang, D., Christophe, D. & Miot, F. Structural and functional characterization of the two human ThOX/Duox genes and their 5′-flanking regions. Mol. Cell Endocrinol. 214, 53–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Grasberger, H. Defects of thyroidal hydrogen peroxide generation in congenital hypothyroidism. Mol. Cell Endocrinol. 322, 99–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Maruo, Y. et al. Transient congenital hypothyroidism caused by biallelic mutations of the dual oxidase 2 gene in Japanese patients detected by a neonatal screening program. J. Clin. Endocrinol. Metab. 93, 4261–4267 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Weyemi, U. et al. Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocr. Relat Cancer 17, 27–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Filomeni, G., Rotilio, G. & Ciriolo, M. R. Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways. Cell Death Differ. 12, 1555–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Schweizer, U., Chiu, J. & Köhrle, J. Peroxides and peroxide-degrading enzymes in the thyroid. Antioxid. Redox Signal 10, 1577–1592 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Ekholm, R. & Bjorkman, U. Glutathione peroxidase degrades intracellular hydrogen peroxide and thereby inhibits intracellular protein iodination in thyroid epithelium. Endocrinology 138, 2871–2878 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Weetman, A. P. Autoimmune thyroid disease. Autoimmunity 37, 337–340 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. McCombe, P. A., Greer, J. M. & Mackay, I. R. Sexual dimorphism in autoimmune disease. Curr. Mol. Med. 9, 1058–1079 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Vanderpump, M. P. & Tunbridge, W. M. Epidemiology and prevention of clinical and subclinical hypothyroidism. Thyroid 12, 839–847 (2002).

    Article  PubMed  Google Scholar 

  47. Weetman, A. P. The genetics of autoimmune thyroid disease. Horm. Metab. Res. 41, 421–425 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Prummel, M. F., Strieder, T. & Wiersinga, W. M. The environment and autoimmune thyroid diseases. Eur. J. Endocrinol. 150, 605–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, C. R. et al. Antibodies to thyroid peroxidase arise spontaneously with age in NOD.H-2h4 mice and appear after thyroglobulin antibodies. Endocrinology 151, 4583–4593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pearce, E. N., Farwell, A. P. & Braverman, L. E. Thyroiditis. N. Engl. J. Med. 348, 2646–2655 (2003).

    Article  PubMed  Google Scholar 

  51. Teng, W. et al. Effect of iodine intake on thyroid diseases in China. N. Engl. J. Med. 354, 2783–2793 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Zois, C. et al. High prevalence of autoimmune thyroiditis in schoolchildren after elimination of iodine deficiency in northwestern Greece. Thyroid 13, 485–489 (2003).

    Article  PubMed  Google Scholar 

  53. Ban, Y. & Tomer, Y. Genetic susceptibility in thyroid autoimmunity. Pediatr. Endocrinol. Rev. 3, 20–32 (2005).

    PubMed  Google Scholar 

  54. Duthoit, C. et al. Hydrogen peroxide-induced production of a 40 kDa immunoreactive thyroglobulin fragment in human thyroid cells: the onset of thyroid autoimmunity? Biochem. J. 360, 557–562 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burek, C. L. & Rose, N. R. Autoimmune thyroiditis and ROS. Autoimmun. Rev. 7, 530–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hartikainen, H. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol. 18, 309–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Combs, G. F. Jr. Selenium in global food systems. Br. J. Nutr. 85, 517–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Hurst, R. et al. Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 91, 923–931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xia, Y. et al. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: a placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am. J. Clin. Nutr. 92, 525–531 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Forceville, X. et al. Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit. Care Med. 26, 1536–1544 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Seiler, W. O. Clinical pictures of malnutrition in ill elderly subjects. Nutrition 17, 496–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Rannem, T., Ladefoged, K., Hylander, E., Hegnhøj, J. & Staun, M. Selenium depletion in patients with gastrointestinal diseases: are there any predictive factors? Scand. J. Gastroenterol. 33, 1057–1061 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Schomburg, L. & Köhrle, J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res. 52, 1235–1246 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Tonelli, M. et al. Trace elements in hemodialysis patients: a systematic review and meta-analysis. BMC Med. 7, 25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vanderpas, J. Nutritional epidemiology and thyroid hormone metabolism. Annu. Rev. Nutr. 26, 293–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Contempre, B., Le Moine, O., Dumont, J. E., Denef, J. F. & Many, M. C. Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor beta (TGF-beta). Mol. Cell Endocrinol. 124, 7–15 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Köhrle, J., Jakob, F., Contempré, B. & Dumont, J. E. Selenium, the thyroid, and the endocrine system. Endocr. Rev. 26, 944–984 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Arthur, J. R. The glutathione peroxidases. Cell. Mol. Life Sci. 57, 1825–1835 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Bianco, A. C. & Larsen, P. R. Cellular and structural biology of the deiodinases. Thyroid 15, 777–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Kuiper, G. G., Kester, M. H., Peeters, R. P. & Visser, T. J. Biochemical mechanisms of thyroid hormone deiodination. Thyroid 15, 787–798 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Schweizer, U., Weitzel, J. M. & Schomburg, L. Think globally: act locally. New insights into the local regulation of thyroid hormone availability challenge long accepted dogmas. Mol. Cell Endocrinol. 289, 1–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Galton, V. A., Schneider, M. J., Clark, A. S. & St. Germain, D. L. Life without thyroxine to 3, 5, 3′-triiodothyronine conversion: studies in mice devoid of the 5′-deiodinases. Endocrinology 150, 2957–2963 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schneider, M. J. et al. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147, 580–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Streckfuss, F. et al. Hepatic deiodinase activity is dispensable for the maintenance of normal circulating thyroid hormone levels in mice. Biochem. Biophys. Res. Commun. 337, 739–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Ng, L. et al. A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150, 1952–1960 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Ng, L. et al. Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J. Neurosci. 30, 3347–3357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dayan, C. M. & Panicker, V. Novel insights into thyroid hormones from the study of common genetic variation. Nat. Rev. Endocrinol. 5, 211–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Hall, J. A. & Bianco, A. C. Triumphs of the thyroid despite lesser conversion. Endocrinology 150, 2502–2504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bates, J. M., Spate, V. L., Morris, J. S., St. Germain, D. L. & Galton, V. A. Effects of selenium deficiency on tissue selenium content, deiodinase activity, and thyroid hormone economy in the rat during development. Endocrinology 141, 2490–2500 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Behne, D., Hilmert, H., Scheid, S., Gessner, H. & Elger, W. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim. Biophys. Acta 966, 12–21 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Wingler, K., Böcher, M., Flohé, L., Kollmus, H. & Brigelius-Flohé, R. mRNA stability and selenocysteine insertion sequence efficiency rank gastrointestinal glutathione peroxidase high in the hierarchy of selenoproteins. Eur. J. Biochem. 259, 149–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Schomburg, L. & Schweizer, U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim. Biophys. Acta 1790, 1453–1462 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Hill, K. E., Lyons, P. R. & Burk, R. F. Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem. Biophys. Res. Commun. 185, 260–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Bermano, G. et al. Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem. J. 311 (Pt 2), 425–430 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gross, M., Oertel, M. & Köhrle, J. Differential selenium-dependent expression of type I 5′-deiodinase and glutathione peroxidase in the porcine epithelial kidney cell line LLC-PK1. Biochem. J. 306 (Pt 3), 851–856 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beckett, G. J. & Arthur, J. R. Selenium and endocrine systems. J. Endocrinol. 184, 455–465 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Brigelius-Flohé, R. et al. Functions of GI-GPx: lessons from selenium-dependent expression and intracellular localization. Biofactors 14, 101–106 (2001).

    Article  PubMed  Google Scholar 

  89. Dittrich, A. M. et al. Glutathione peroxidase-2 protects from allergen-induced airway inflammation in mice. Eur. Respir. J. 35, 1148–1154 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Howie, A. F., Walker, S. W., Akesson, B., Arthur, J. R. & Beckett, G. J. Thyroidal extracellular glutathione peroxidase: a potential regulator of thyroid-hormone synthesis. Biochem. J. 308 (Pt 3), 713–717 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmutzler, C. et al. Selenoproteins of the thyroid gland: expression, localization and possible function of glutathione peroxidase 3. Biol. Chem. 388, 1053–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Conrad, M., Schneider, M., Seiler, A. & Bornkamm, G. W. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol. Chem. 388, 1019–1025 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Burk, R. F. & Hill, K. E. Regulation of selenoproteins. Annu. Rev. Nutr. 13, 65–81 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Allan, C. B., Lacourciere, G. M. & Stadtman, T. C. Responsiveness of selenoproteins to dietary selenium. Annu. Rev. Nutr. 19, 1–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Brigelius-Flohé, R. Glutathione peroxidases and redox-regulated transcription factors. Biol. Chem. 387, 1329–1335 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Krohn, K., Maier, J. & Paschke, R. Mechanisms of disease: hydrogen peroxide, DNA damage and mutagenesis in the development of thyroid tumors. Nat. Clin. Pract Endocrinol. Metab. 3, 713–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Poncin, S. et al. Oxidative stress in the thyroid gland: from harmlessness to hazard depending on the iodine content. Endocrinology 149, 424–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Ashton, K. et al. Methods of assessment of selenium status in humans: a systematic review. Am. J. Clin. Nutr. 89, 2025S–2039S (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Schomburg, L. et al. Synthesis and metabolism of thyroid hormones is preferentially maintained in selenium-deficient transgenic mice. Endocrinology 147, 1306–1313 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Ban, Y. et al. Linkage analysis of thyroid antibody production: evidence for shared susceptibility to clinical autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 93, 3589–3596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wiebolt, J., Koeleman, B. P. & van Haeften, T. W. Endocrine autoimmune disease: genetics become complex. Eur. J. Clin. Invest. 40, 1144–1155 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Ioannidis, J. P., Castaldi, P. & Evangelou, E. A compendium of genome-wide associations for cancer: critical synopsis and reappraisal. J. Natl Cancer Inst. 102, 846–858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gudmundsson, J. et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat. Genet. 41, 460–464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lescure, A., Rederstorff, M., Krol, A., Guicheney, P. & Allamand, V. Selenoprotein function and muscle disease. Biochim. Biophys. Acta 1790, 1569–1574 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Schweizer, U., Dehina, N. & Schomburg, L. Disorders of selenium metabolism and selenoprotein function. Curr. Opin. Pediatr. 23, 429–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Petit, N. et al. Selenoprotein N.: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum. Mol. Genet. 12, 1045–1053 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Castets, P. et al. Satellite cell loss and impaired muscle regeneration in selenoprotein N. deficiency. Hum. Mol. Genet. 20, 694–704 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Agamy, O. et al. Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am. J. Hum. Genet. 87, 538–544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wirth, E. K. et al. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J. 24, 844–852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Copeland, P. R., Fletcher, J. E., Carlson, B. A., Hatfield, D. L. & Driscoll, D. M. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 19, 306–314 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Papp, L. V. et al. SECIS-binding protein 2 promotes cell survival by protecting against oxidative stress. Antioxid Redox Signal 12, 797–808 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Dumitrescu, A. M. et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat. Genet. 37, 1247–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Di Cosmo, C. et al. Clinical and molecular characterization of a novel selenocysteine insertion sequence-binding protein 2 (SBP2) gene mutation (R128X). J. Clin. Endocrinol. Metab. 94, 4003–4009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schomburg, L. et al. Selenium supplementation fails to correct the selenoprotein synthesis defect in subjects with SBP2 gene mutations. Thyroid 19, 277–281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ferreira Azevedo, M. et al. Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J. Clin. Endocrinol. Metab. 95, 4066–4071 (2010).

    Article  CAS  Google Scholar 

  116. Schoenmakers, E. et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J. Clin. Invest. 120, 4220–4235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Steinnes, E. Soils and geomedicine. Environ. Geochem. Health 31, 523–535 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Arthur, J. R. Selenium supplementation: does soil supplementation help and why? Proc. Nutr. Soc. 62, 393–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Rayman, M. P. et al. Randomized controlled trial of the effect of selenium supplementation on thyroid function in the elderly in the United Kingdom. Am. J. Clin. Nutr. 87, 370–378 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Thomson, C. D., Campbell, J. M., Miller, J., Skeaff, S. A. & Livingstone, V. Selenium and iodine supplementation: effect on thyroid function of older New Zealanders. Am. J. Clin. Nutr. 90, 1038–1046 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Hawkes, W. C. et al. High-selenium yeast supplementation in free-living North American men: no effect on thyroid hormone metabolism or body composition. J. Trace Elem. Med. Biol. 22, 131–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Combs, G. F. Jr. et al. Effects of selenomethionine supplementation on selenium status and thyroid hormone concentrations in healthy adults. Am. J. Clin. Nutr. 89, 1808–1814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Moreno-Reyes, R. et al. Selenium and iodine supplementation of rural Tibetan children affected by Kashin-Beck osteoarthropathy. Am. J. Clin. Nutr. 78, 137–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Angstwurm, M. W., Schopohl, J. & Gaertner, R. Selenium substitution has no direct effect on thyroid hormone metabolism in critically ill patients. Eur. J. Endocrinol. 151, 47–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Berger, M. M. et al. Influence of selenium supplements on the post-traumatic alterations of the thyroid axis: a placebo-controlled trial. Intensive Care Med. 27, 91–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. McKenzie, R. C., Rafferty, T. S. & Beckett, G. J. Selenium: an essential element for immune function. Immunol. Today 19, 342–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Arthur, J. R., McKenzie, R. C. & Beckett, G. J. Selenium in the immune system. J. Nutr. 133, 1457S–1459S (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Hoffmann, P. R. & Berry, M. J. The influence of selenium on immune responses. Mol. Nutr. Food Res. 52, 1273–1280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Duntas, L. H. Selenium and the thyroid: a close-knit connection. J. Clin. Endocrinol. Metab. 95, 5180–5188 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Angstwurm, M. W., Schottdorf, J., Schopohl, J. & Gärtner, R. Selenium replacement in patients with severe systemic inflammatory response syndrome improves clinical outcome. Crit. Care Med. 27, 1807–1813 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Sakr, Y. et al. Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br. J. Anaesth. 98, 775–784 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Renko, K. et al. Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J. 23, 1758–1765 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Angstwurm, M. W. et al. Selenium in Intensive Care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit. Care Med. 35, 118–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Forceville, X. X. et al. Effects of high doses of selenium, as sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit. Care 11, R73 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wang, Z. et al. A large-bolus injection, but not continuous infusion of sodium selenite improves outcome in peritonitis. Shock 32, 140–146 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Schomburg, L. A large-bolus injection, but not continuous infusion of sodium selenite improves outcome in peritonitis. Shock 33, 554–555; author reply 555–556 (2010).

    PubMed  Google Scholar 

  137. Schomburg, L. Selenium in intensive care (SIC) study: the XX files are still unresolved. Crit. Care Med. 35, 995–996; author reply 996–997 (2007).

    Article  PubMed  Google Scholar 

  138. Mittag, J., Behrends, T., Hoefig, C., Vennström, B. & Schomburg, L. Thyroid hormones regulate selenoprotein expression and selenium status in mice. PLOS ONE 5, e12931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Look, M. P. et al. Serum selenium versus lymphocyte subsets and markers of disease progression and inflammatory response in human immunodeficiency virus-1 infection. Biol. Trace Elem. Res. 56, 31–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Misso, N. L., Powers, K. A., Gillon, R. L., Stewart, G. A. & Thompson, P. J. Reduced platelet glutathione peroxidase activity and serum selenium concentration in atopic asthmatic patients. Clin. Exp. Allergy 26, 838–847 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Sammalkorpi, K., Valtonen, V., Alfthan, G., Aro, A. & Huttunen, J. Serum selenium in acute infections. Infection 16, 222–224 (1988).

    Article  CAS  PubMed  Google Scholar 

  142. Nichol, C. et al. Changes in the concentrations of plasma selenium and selenoproteins after minor elective surgery: further evidence for a negative acute phase response? Clin. Chem. 44, 1764–1766 (1998).

    CAS  PubMed  Google Scholar 

  143. Beck, M. A., Levander, O. A. & Handy, J. Selenium deficiency and viral infection. J. Nutr. 133, 1463S–1467S (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Mizock, B. A. Immunonutrition and critical illness: an update. Nutrition 26, 701–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Joffe, A. et al. Nutritional support for critically ill children. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD005144 doi:10.1002/14651858.CD005144.pub2 (2009).

  146. Carcillo, J. et al. Rationale and design of the pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial. JPEN J. Parenter. Enteral Nutr. 33, 368–374 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hardy, G., Menendez, A. M. & Manzanares, W. Trace element supplementation in parenteral nutrition: pharmacy, posology, and monitoring guidance. Nutrition 25, 1073–1084 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Beckett, G. J. et al. Inter-relationships between selenium and thyroid hormone metabolism in the rat and man. J. Trace Elem. Electrolytes Health Dis. 5, 265–267 (1991).

    CAS  PubMed  Google Scholar 

  149. Kucharzewski, M., Braziewicz, J., Majewska, U. & Gozdz, S. Concentration of selenium in the whole blood and the thyroid tissue of patients with various thyroid diseases. Biol. Trace Elem. Res. 88, 25–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Gärtner, R., Gasnier, B. C., Dietrich, J. W., Krebs, B. & Angstwurm, M. W. Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J. Clin. Endocrinol. Metab. 87, 1687–1691 (2002).

    Article  PubMed  Google Scholar 

  151. Duntas, L. H., Mantzou, E. & Koutras, D. A. Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis. Eur. J. Endocrinol. 148, 389–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Turker, O., Kumanlioglu, K., Karapolat, I. & Dogan, I. Selenium treatment in autoimmune thyroiditis: 9-month follow-up with variable doses. J. Endocrinol. 190, 151–156 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Karanikas, G. et al. No immunological benefit of selenium in consecutive patients with autoimmune thyroiditis. Thyroid 18, 7–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Nacamulli, D. et al. Influence of physiological dietary selenium supplementation on the natural course of autoimmune thyroiditis. Clin. Endocrinol. (Oxf.) 73, 535–539 (2010).

    CAS  Google Scholar 

  155. Negro, R. et al. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J. Clin. Endocrinol. Metab. 92, 1263–1268 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Bahn, R. S. Graves' ophthalmopathy. N. Engl. J. Med. 362, 726–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bartalena, L. et al. Consensus statement of the European group on Graves' orbitopathy (EUGOGO) on management of Graves' orbitopathy. Thyroid 18, 333–346 (2008).

    Article  PubMed  Google Scholar 

  158. Marcocci, C. et al. Selenium and the course of mild Graves' orbitopathy. N. Engl. J. Med. 364, 1920–1931 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Xia, Y., Hill, K. E., Byrne, D. W., Xu, J. & Burk, R. F. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr. 81, 829–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Burk, R. F., Norsworthy, B. K., Hill, K. E., Motley, A. K. & Byrne, D. W. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol. Biomarkers Prev. 15, 804–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Bleys, J., Navas-Acien, A. & Guallar, E. Serum selenium and diabetes in U. S. adults. Diabetes Care 30, 829–834 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Stranges, S. et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann. Intern. Med. 147, 217–223 (2007).

    Article  PubMed  Google Scholar 

  163. Stranges, S. et al. Higher selenium status is associated with adverse blood lipid profile in British adults. J. Nutr. 140, 81–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rayman, M. P., Stranges, S., Griffin, B. A., Pastor-Barriuso, R. & Guallar, E. Effect of supplementation with high-selenium yeast on plasma lipids: a randomized trial. Ann. Intern. Med. 154, 656–665 (2011).

    Article  PubMed  Google Scholar 

  165. Broome, C. S. et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am. J. Clin. Nutr. 80, 154–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Hoffmann, F. W. et al. Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J. Nutr. 140, 1155–1161 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Xue, H. et al. Selenium upregulates CD4(+)CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice. Endocr. J. 57, 595–601 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Vunta, H. et al. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Delta12, 14-prostaglandin J2 in macrophages. J. Biol. Chem. 282, 17964–17973 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Arner, E. S. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim. Biophys. Acta 1790, 495–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Lee, B. C. & Gladyshev, V. N. The biological significance of methionine sulfoxide stereochemistry. Free Radic Biol. Med. 50, 221–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Lee, B. C., Dikiy, A., Kim, H. Y. & Gladyshev, V. N. Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim. Biophys. Acta (2009).

  172. Weiskopf, D. et al. Oxidative stress can alter the antigenicity of immunodominant peptides. J. Leukoc. Biol. 87, 165–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Curran, J. E. et al. Genetic variation in selenoprotein S. influences inflammatory response. Nat. Genet. 37, 1234–1241 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Sutherland, A., Kim, D. H., Relton, C., Ahn, Y. O. & Hesketh, J. Polymorphisms in the selenoprotein S. and 15-kDa selenoprotein genes are associated with altered susceptibility to colorectal cancer. Genes Nutr. 5, 215–223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ribeiro dos Santos, L., Neves, C., Lima, J., Canedo, P. & Soares, P. Study of a polymorphism in the promoter region of the SEPS1 gene and risk of hashimoto thyroiditis. abstract P016 [online], (2009).

  177. Verma, S. et al. Selenoprotein k knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J. Immunol. 186, 2127–2137 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Vunta, H. et al. Selenium attenuates pro-inflammatory gene expression in macrophages. Mol. Nutr. Food Res. 52, 1316–1323 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Stoedter, M., Renko, K., Hög, A. & Schomburg, L. Selenium controls the sex-specific immune response and selenoprotein expression during the acute-phase response in mice. Biochem. J. 429, 43–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Tsai, S. J. et al. Crystal structure of the human lymphoid tyrosine phosphatase catalytic domain: insights into redox regulation. Biochemistry 48, 4838–4845 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Mazokopakis, E. E. et al. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO levels in patients with Hashimoto's thyroiditis. Thyroid 17, 609–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Kvicala, J. et al. Effect of selenium supplementation on thyroid antibodies. Journal of Radioanalytical and Nuclear Chemistry 280, 275–279 (2009).

    Article  CAS  Google Scholar 

  183. Bonfig, W., Gartner, R. & Schmidt, H. Selenium supplementation does not decrease thyroid peroxidase antibody concentration in children and adolescents with autoimmune thyroiditis. Scientific World Journal 10, 990–996 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude to Drs Josef Köhrle, Ulrich Schweizer, Peter J. Hofmann, Birgit Hollenbach, Axel Schomburg and Jazmin Chiu-Ugalde for helpful discussions and critical remarks on the manuscript. Research in the author's laboratory is supported by the German Cancer Aid (Deutsche Krebshilfe, 10-1792 Scho2), Berlin-Brandenburg School for Regenerative Therapies (BSRT) and the Deutsche Forschungsgemeinschaft DFG (GraKo 1208/2, Scho 849/2-2).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schomburg, L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol 8, 160–171 (2012). https://doi.org/10.1038/nrendo.2011.174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing