Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aromatase inhibitors in pediatrics

Abstract

Aromatase, an enzyme located in the endoplasmic reticulum of estrogen-producing cells, catalyzes the rate-limiting step in the conversion of androgens to estrogens in many tissues. The clinical features of patients with defects in CYP19A1, the gene encoding aromatase, have revealed a major role for this enzyme in epiphyseal plate closure, which has promoted interest in the use of inhibitors of aromatase to improve adult height. The availability of the selective aromatase inhibitors letrozole and anastrozole—currently approved as adjuvant therapy for breast cancer—have stimulated off-label use of aromatase inhibitors in pediatrics for the following conditions: hyperestrogenism, such as aromatase excess syndrome, Peutz–Jeghers syndrome, McCune–Albright syndrome and functional follicular ovarian cysts; hyperandrogenism, for example, testotoxicosis (also known as familial male-limited precocious puberty) and congenital adrenal hyperplasia; pubertal gynecomastia; and short stature and/or pubertal delay in boys. Current data suggest that aromatase inhibitors are probably effective in the treatment of patients with aromatase excess syndrome or testotoxicosis, partially effective in Peutz–Jeghers and McCune–Albright syndrome, but probably ineffective in gynecomastia. Insufficient data are available in patients with congenital adrenal hyperplasia or functional ovarian cysts. Although aromatase inhibitors appear effective in increasing adult height of boys with short stature and/or pubertal delay, safety concerns, including vertebral deformities, a decrease in serum HDL cholesterol levels and increase of erythrocytosis, are reasons for caution.

Key Points

  • Aromatase is expressed in many tissues and converts androgens to estrogens in a tissue-specific fashion

  • The third-generation aromatase inhibitors anastrozole and letrozole suppress estrogen production by 97–99% and are highly selective

  • Animal experiments have shown that the role of estrogen in growth regulation is different from that in humans, but have highlighted possible adverse effects of aromatase inhibitor use

  • Contrary to theoretical expectations, aromatase inhibitors appear ineffective in the treatment of pubertal gynecomastia

  • Evidence from controlled and uncontrolled studies in boys with short stature and/or pubertal delay suggests a positive effect of aromatase inhibitors on adult height, but more follow-up data are needed

  • The use of aromatase inhibitors in prepubertal boys is not advised because of an association with vertebral deformities

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Santen, R. J., Brodie, H., Simpson, E. R., Siiteri, P. K. & Brodie, A. History of aromatase: Saga of an important biological mediator and therapeutic target. Endocr. Rev. 30, 343–375 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Conte, F. A., Grumbach, M. M., Ito, Y., Fisher, C. R. & Simpson, E. R. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom). J. Clin. Endocrinol. Metab. 78, 1287–1292 (1994).

    CAS  PubMed  Google Scholar 

  4. Morishima, A., Grumbach, M. M., Simpson, E. R., Fisher, C. & Qin, K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80, 3689–3698 (1995).

    CAS  PubMed  Google Scholar 

  5. Carani, C. et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 337, 91–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Bilezikian, J. P., Morishima, A., Bell, J. & Grumbach, M. M. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N. Engl. J. Med. 339, 599–603 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Herrmann, B. L. et al. Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. J. Clin. Endocrinol. Metab. 87, 5476–5484 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Wickman, S., Sipilä, I., Ankarberg-Lindgren, C., Norjavaara, E. & Dunkel, L. A specific aromatase inhibitor and potential increase in adult height in boys with delayed puberty: a randomised controlled trial. Lancet 357, 1743–1748 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Hero, M., Norjavaara, E. & Dunkel, L. Inhibition of estrogen biosynthesis with a potent aromatase inhibitor increases predicted adult height in boys with idiopathic short stature: a randomized controlled trial. J. Clin. Endocrinol. Metab. 90, 6396–6402 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Mauras, N. et al. Anastrozole increases predicted adult height of short adolescent males treated with growth hormone: a randomized, placebo-controlled, multicenter trial for one to three years. J. Clin. Endocrinol. Metab. 93, 823–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Salehpour, S. et al. A double-blind, placebo-controlled comparison of letrozole to oxandrolone effects upon growth and puberty of children with constitutional delay of puberty and idiopathic short stature. Horm. Res. Paediatr. 74, 428–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Cernich, J., Jacobson, J. D., Moore, W. V. & Popovic, J. Use of aromatase inhibitors in children with short stature. Pediatr. Endocrinol. Rev. 2, 2–7 (2004).

    PubMed  Google Scholar 

  13. Dunkel, L. Use of aromatase inhibitors to increase final height. Mol. Cell Endocrinol. 254–255, 207–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Shulman, D. I., Francis, G. L., Palmert, M. R. & Eugster, E. A. Use of aromatase inhibitors in children and adolescents with disorders of growth and adolescent development. Pediatrics 121, e975–e983 (2008).

    Article  PubMed  Google Scholar 

  15. Geffner, M. E. For debate: Aromatase inhibitors to augment height: have we lost our inhibitions? Pediatr. Endocrinol. Rev. 5, 756–759 (2008).

    PubMed  Google Scholar 

  16. Dunkel, L. Update on the role of aromatase inhibitors in growth disorders. Horm. Res. 71 (Suppl. 1), 57–63 (2009).

    CAS  PubMed  Google Scholar 

  17. Geffner, M. E. Aromatase inhibitors to augment height: continued caution and study required. J. Clin. Res. Pediatr. Endocrinol. 1, 256–261 (2009).

    Article  PubMed  Google Scholar 

  18. Diaz-Thomas, A. & Shulman, D. Use of aromatase inhibitors in children and adolescents: what's new? Curr. Opin. Pediatr. 22, 501–507 (2010).

    Article  PubMed  Google Scholar 

  19. Kish, M. A. Guide to development of practice guidelines. Clin. Infect. Dis. 32, 851–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. AGREE Collaboration. Development and validation of an international appraisal instrument for assessing the quality of clinical practice guidelines: the AGREE project. Qual. Saf. Health Care 12, 18–23 (2003).

  21. Cavalli, A. et al. Enantioselective nonsteroidal aromatase inhibitors identified through a multidisciplinary medicinal chemistry approach. J. Med. Chem. 48, 7282–7289 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Sebastian, S., Takayama, K., Shozu, M. & Bulun, S. E. Cloning and characterization of a novel endothelial promoter of the human CYP19 (aromatase P450) gene that is upregulated in breast cancer tissue. Mol. Endocrinol. 16, 2243–2254 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Bulun, S. E. et al. The human CYP19 (aromatase P450) gene: update on physiologic roles and genomic organization of promoters. J. Steroid Biochem. Mol. Biol. 86, 219–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Labrie, F., Bélanger, A., Cusan, L. & Candas, B. Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. J. Clin. Endocrinol. Metab. 82, 2403–2409 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Corbin, C. J. et al. Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P-450 and its expression in nonsteroidogenic cells. Proc. Natl Acad. Sci. USA 85, 8948–8952 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grumbach, M. M. & Auchus, R. J. Estrogen: consequences and implications of human mutations in synthesis and action. J. Clin. Endocrinol. Metab. 84, 4677–4694 (1999).

    CAS  PubMed  Google Scholar 

  27. Drop, S. L., De Waal, W. J. & De Muinck Keizer-Schrama, S. M. Sex steroid treatment of constitutionally tall stature. Endocr. Rev. 19, 540–558 (1998).

    CAS  PubMed  Google Scholar 

  28. Juul, A. et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J. Clin. Endocrinol. Metab. 78, 744–752 (1994).

    CAS  PubMed  Google Scholar 

  29. Mauras, N. et al. Pharmacokinetics and dose finding of a potent aromatase inhibitor, aromasin (exemestane), in young males. J. Clin. Endocrinol. Metab. 88, 5951–5956 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Bisagni, G. et al. Letrozole, a new oral non-steroidal aromastase inhibitor in treating postmenopausal patients with advanced breast cancer. A pilot study. Ann. Oncol. 7, 99–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Bajetta, E. et al. Double-blind, randomised, multicentre endocrine trial comparing two letrozole doses, in postmenopausal breast cancer patients. Eur. J. Cancer 35, 208–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Karmazin, A., Moore, W. V., Popovic, J. & Jacobson, J. D. The effect of letrozole on bone age progression, predicted adult height, and adrenal gland function. J. Pediatr. Endocrinol. Metab. 18, 285–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Mauras, N. et al. Pharmacokinetics and pharmacodynamics of anastrozole in pubertal boys with recent-onset gynecomastia. J. Clin. Endocrinol. Metab. 94, 2975–2978 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Mauras, N., O'Brien, K. O., Klein, K. O. & Hayes, V. Estrogen suppression in males: metabolic effects. J. Clin. Endocrinol. Metab. 85, 2370–2377 (2000).

    CAS  PubMed  Google Scholar 

  35. Geisler, J., Haynes, B., Anker, G., Dowsett, M. & Lønning, P. E. Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. J. Clin. Oncol. 20, 751–757 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Chagin, A. S. & Sävendahl, L. Oestrogen receptors and linear bone growth. Acta Pædiatr. 96, 1275–1279 (2007).

    Article  PubMed  Google Scholar 

  37. Fisher, C. R., Graves, K. H., Parlow, A. F. & Simpson, E. R. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the Cyp19 gene. Proc. Natl Acad. Sci. USA 95, 6965–6970 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oz, O. K. et al. Bone has a sexually dimorphic response to aromatase deficiency. J. Bone Miner. Res. 15, 507–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Oz, O. K. et al. Bone phenotype of the aromatase deficient mouse. J. Steroid Biochem. Mol. Biol. 79, 49–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Britt, K. L. et al. The ovarian phenotype of the aromatase knockout (ArKO) mouse. J. Steroid Biochem. Mol. Biol. 79, 181–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Jones, M. E., McInnes, K. J., Boon, W. C. & Simpson, E. R. Estrogen and adiposity—utilizing models of aromatase deficiency to explore the relationship. J. Steroid Biochem. Mol. Biol. 106, 3–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Gevers, E. F., Wit, J. M. & Robinson, I. C. Effects of long-term gonadotrophin-releasing hormone analog treatment on growth, growth hormone (GH) secretion, GH receptors, and GH-binding protein in the rat. Pediatr. Res. 43, 111–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Vanderschueren, D. et al. Aromatase inhibition impairs skeletal modeling and decreases bone mineral density in growing male rats. Endocrinology 138, 2301–2307 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. van Gool, S. A. et al. Impaired body weight and tail length gain and altered bone quality after treatment with the aromatase inhibitor exemestane in male rats. Horm. Res. Paediatr. 73, 376–385 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Bajpai, A. et al. Peripubertal aromatase inhibition in male rats has adverse long-term effects on bone strength and growth and induces prostatic hyperplasia. J. Endocrinol. 207, 27–34 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Eshet, R. et al. The aromatase inhibitor letrozole increases epiphyseal growth plate height and tibial length in peripubertal male mice. J. Endocrinol. 182, 165–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Turner, K. J., Morley, M., Atanassova, N., Swanston, I. D. & Sharpe, R. M. Effect of chronic administration of an aromatase inhibitor to adult male rats on pituitary and testicular function and fertility. J. Endocrinol. 164, 225–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. van Gool, S. A. et al. Marginal growth increase, altered bone quality and polycystic ovaries in female prepubertal rats after treatment with the aromatase inhibitor exemestane. Horm. Res. Paediatr. 73, 49–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Mouridsen, H. et al. Letrozole therapy alone or in sequence with tamoxifen in women with breast cancer. N. Engl. J. Med. 361, 766–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Gibson, L., Lawrence, D., Dawson, C. & Bliss, J. Aromatase inhibitors for treatment of advanced breast cancer in postmenopausal women. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD003370 doi:10.1002/14651858.CD003370.pub3 (2009).

  51. Casper, R. F. & Mitwally, M. F. Review: aromatase inhibitors for ovulation induction. J. Clin. Endocrinol. Metab. 91, 760–771 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bohlmann, M. K. et al. Off-label use of aromatase inhibitors: an alternative in reproductive medicine and in other nonmammary diseases? [German]. Gynäkologische Endokrinologie 6, 221–228 (2008).

    Article  CAS  Google Scholar 

  53. Raman, J. D. & Schlegel, P. N. Aromatase inhibitors for male infertility. J. Urol. 167, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Shozu, M. et al. Estrogen excess associated with novel gain-of-function mutations affecting the aromatase gene. N. Engl. J. Med. 348, 1855–1865 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Demura, M. et al. Regional rearrangements in chromosome 15q21 cause formation of cryptic promoters for the CYP19 (aromatase) gene. Hum. Mol. Genet. 16, 2529–2541 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Stratakis, C. A. et al. The aromatase excess syndrome is associated with feminization of both sexes and autosomal dominant transmission of aberrant P450 aromatase gene transcription. J. Clin. Endocrinol. Metab. 83, 1348–1357 (1998).

    CAS  PubMed  Google Scholar 

  57. Martin, R. M. et al. Familial hyperestrogenism in both sexes: clinical, hormonal, and molecular studies of two siblings. J. Clin. Endocrinol. Metab. 88, 3027–3034 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Binder, G. et al. Dominant transmission of prepubertal gynecomastia Binder, G. et al. Dominant transmission of prepubertal gynecomastia due to serum estrone excess: hormonal, biochemical, and genetic analysis in a large kindred. J. Clin. Endocrinol. Metab. 90, 484–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Kara, C., Kutlu, A. O., Tosun, M. S., Apaydin, S. & Senel, F. Sertoli cell tumor causing prepubertal gynecomastia in a boy with Peutz–Jeghers syndrome: the outcome of 1-year treatment with the aromatase inhibitor testolactone. Horm. Res. 63, 252–256 (2005).

    CAS  PubMed  Google Scholar 

  60. Lefevre, H. et al. Prepubertal gynecomastia in Peutz–Jeghers syndrome: incomplete penetrance in a familial case and management with an aromatase inhibitor. Eur. J. Endocrinol. 154, 221–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Grandone, A. et al. Prepubertal gynecomastia in two monozygotic twins with Peutz–Jeghers syndrome: two years' treatment with anastrozole and genetic study. Horm. Res. Paediatr. 75, 374–379 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Shenker, A. et al. Severe endocrine and nonendocrine manifestations of the McCune–Albright syndrome associated with activating mutations of stimulatory G protein GS. J. Pediatr. 123, 509–518 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Foster, C. M. et al. Ovarian function in girls with McCune–Albright syndrome. Pediatr. Res. 20, 859–863 (1986).

    Article  CAS  PubMed  Google Scholar 

  65. Feuillan, P. P. McCune–Albright syndrome. Curr. Ther. Endocrinol. Metab. 6, 235–239 (1997).

    CAS  PubMed  Google Scholar 

  66. Feuillan, P. P. et al. Treatment of precocious puberty in the McCune–Albright syndrome with the aromatase inhibitor testolactone. N. Engl. J. Med. 315, 1115–1119 (1986).

    Article  CAS  PubMed  Google Scholar 

  67. Feuillan, P. P., Jones, J. & Cutler, G. B. Jr. Long-term testolactone therapy for precocious puberty in girls with the McCune–Albright syndrome. J. Clin. Endocrinol. Metab. 77, 647–651 (1993).

    CAS  PubMed  Google Scholar 

  68. Nunez, S. B., Calis, K., Cutler, G. B. Jr, Jones, J. & Feuillan, P. P. Lack of efficacy of fadrozole in treating precocious puberty in girls with the McCune–Albright syndrome. J. Clin. Endocrinol. Metab. 88, 5730–5733 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Feuillan, P. et al. Letrozole treatment of precocious puberty in girls with the McCune–Albright syndrome: a pilot study. J. Clin. Endocrinol. Metab. 92, 2100–2106 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Mieszczak, J., Lowe, E. S., Plourde, P. & Eugster, E. A. The aromatase inhibitor anastrozole is ineffective in the treatment of precocious puberty in girls with McCune–Albright syndrome. J. Clin. Endocrinol. Metab. 93, 2751–2754 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Engiz, O., Berberoglu, M., Siklar, Z., Bilir, P. & Ocal, G. Treatment of autonomous ovarian follicular cyst with long-term anastrozole therapy. Indian J. Pediatr. 76, 950–951 (2009).

    Article  PubMed  Google Scholar 

  72. Eugster, E. A. Peripheral precocious puberty: causes and current management. Horm. Res. 71, 64–67 (2009).

    CAS  PubMed  Google Scholar 

  73. Laue, L. et al. Treatment of familial male precocious puberty with spironolactone and testolactone. N. Engl. J. Med. 320, 496–502 (1989).

    Article  CAS  PubMed  Google Scholar 

  74. Laue, L., Jones, J., Barnes, K. M. & Cutler, G. B. Jr. Treatment of familial male precocious puberty with spironolactone, testolactone, and deslorelin. J. Clin. Endocrinol. Metab. 76, 151–155 (1993).

    CAS  PubMed  Google Scholar 

  75. Leschek, E. W., Jones, J., Barnes, K. M., Hill, S. C. & Cutler, G. B. Jr. Six-year results of spironolactone and testolactone treatment of familial male-limited precocious puberty with addition of deslorelin after central puberty onset. J. Clin. Endocrinol. Metab. 84, 175–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Kreher, N. C., Pescovitz, O. H., Delameter, P., Tiulpakov, A. & Hochberg, Z. Treatment of familial male-limited precocious puberty with bicalutamide and anastrozole. J. Pediatr. 149, 416–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Lenz, A. M. et al. Bicalutamide and third-generation aromatase inhibitors in testotoxicosis. Pediatrics 126, e728–e733 (2010).

    Article  PubMed  Google Scholar 

  78. Eyssette-Guerreau, S. et al. Effectiveness of anastrozole and cyproterone acetate in two brothers with familial male precocious puberty. J. Pediatr. Endocrinol. Metab. 21, 995–1002 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Reiter, E. O. et al. Bicalutamide plus anastrozole for the treatment of gonadotropin-independent precocious puberty in boys with testotoxicosis: a phase II, open-label pilot study (BATT). J. Pediatr. Endocrinol. Metab. 23, 999–1009 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Eugster, E. A. et al. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: a meta-analysis. J. Pediatr. 138, 26–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Van der Kamp, H. J. et al. Longitudinal analysis of growth and puberty in 21-hydroxylase deficiency patients. Arch. Dis. Child. 87, 139–144 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bonfig, W., Bechtold, S., Schmidt, H., Knorr, D. & Schwarz, H. P. Reduced final height outcome in congenital adrenal hyperplasia under prednisone treatment: deceleration of growth velocity during puberty. J. Clin. Endocrinol. Metab. 92, 1635–1639 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Merke, D. P. et al. Flutamide, testolactone, and reduced hydrocortisone dose maintain normal growth velocity and bone maturation despite elevated androgen levels in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 85, 1114–1120 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Warne, G. L., Grover, S. & Zajac, J. D. Hormonal therapies for individuals with intersex conditions: protocol for use. Treat. Endocrinology 4, 19–29 (2005).

    Article  CAS  Google Scholar 

  85. Braunstein, G. D. Gynecomastia. N. Engl. J. Med. 328, 490–495 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Ma, N. S. & Geffner, M. E. Gynecomastia in prepubertal and pubertal men. Curr. Opin. Pediatr. 20, 465–470 (2008).

    Article  PubMed  Google Scholar 

  87. Nydick, M., Bustos, J., Dale, J. H. Jr & Rawson, R. W. Gynecomastia in adolescent boys. JAMA 178, 449–454 (1961).

    Article  CAS  PubMed  Google Scholar 

  88. Plourde, P. V. et al. Safety and efficacy of anastrozole for the treatment of pubertal gynecomastia: a randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 89, 4428–4433 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Lawrence, S. E., Faught, K. A., Vethamuthu, J. & Lawson, M. L. Beneficial effects of raloxifene and tamoxifen in the treatment of pubertal gynecomastia. J. Pediatr. 145, 71–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Grumbach, M. M. Estrogen, bone, growth and sex: a sea change in conventional wisdom. J. Pediatr. Endocrinol. Metab. 13 (Suppl. 6), 1439–1455 (2000).

    PubMed  Google Scholar 

  91. Mauras, N. Strategies for maximizing growth in puberty in children with short stature. Endocrinol. Metab. Clin. North Am. 38, 613–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Carel, J. C. et al. Consensus statement on the use of gonadotropin-releasing hormone analogs in children. Pediatrics 123, e752–e762 (2009).

    Article  PubMed  Google Scholar 

  93. Carel, J. C. Management of short stature with GnRH agonist and co-treatment with growth hormone: a controversial issue. Mol. Cell Endocrinol. 254–255, 226–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. van Gool, S. A. et al. Final height outcome after three years of growth hormone and gonadotropin-releasing hormone agonist treatment in short adolescents with relatively early puberty. J. Clin. Endocrinol. Metab. 92, 1402–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Yanovski, J. A. et al. Treatment with a luteinizing hormone-releasing hormone agonist in adolescents with short stature. N. Engl. J. Med. 348, 908–917 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Kreher, N. C., Eugster, E. A. & Shankar, R. R. The use of tamoxifen to improve height potential in short pubertal boys. Pediatrics 116, 1513–1515 (2005).

    Article  PubMed  Google Scholar 

  97. Hero, M., Wickman, S. & Dunkel, L. Treatment with the aromatase inhibitor letrozole during adolescence increases near-final height in boys with constitutional delay of puberty. Clin. Endocrinol. (Oxf.) 64, 510–513 (2006).

    Article  CAS  Google Scholar 

  98. Martin, M. M., Martin, A. L. A. & Mossman, K. L. Testosterone treatment of constitutional delay in growth and development: effect of dose on predicted versus definitive height. Acta Endocrinol. Suppl. (Copenh.) 279, 147–152 (1986).

    Article  CAS  Google Scholar 

  99. Crowne, E. C., Shalet, S. M., Wallace, W. H., Eminson, D. M. & Price, D. A. Final height in boys with untreated constitutional delay in growth and puberty. Arch. Dis. Child. 65, 1109–1112 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. LaFranchi, S., Hanna, C. E. & Mandel, S. H. Constitutional delay of growth: expected versus final adult height. Pediatrics 87, 82–87 (1991).

    CAS  PubMed  Google Scholar 

  101. Albanese, A. & Stanhope, R. Does constitutional delayed puberty cause segmental disproportion and short stature. Eur. J. Pediatr. 152, 293–296 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Albanese, A. & Stanhope, R. Predictive factors in the determination of final height in boys with constitutional delay of growth and puberty. J. Pediatr. 126, 545–550 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Rekers-Mombarg, L. T. et al. Spontaneous growth in idiopathic short stature. European Study Group. Arch. Dis. Child. 75, 175–180 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hero, M., Toiviainen-Salo, S., Wickman, S., Mäkitie, O. & Dunkel, L. Vertebral morphology in aromatase inhibitor-treated males with idiopathic short stature or constitutional delay of puberty. J. Bone Miner. Res. 25, 1536–1543 (2010).

    Article  PubMed  Google Scholar 

  105. Mauras, N., Welch, S., Rini, A. & Klein, K. O. An open label 12-month pilot trial on the effects of the aromatase inhibitor anastrozole in growth hormone (GH)-treated GH deficient adolescent boys. J. Pediatr. Endocrinol. Metab. 17, 1597–1606 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Hagenas, L. Growth rate can be manipulated. Estrogen production in pubertal boys can be blocked by an aromatase inhibitor [Swedish]. Lakartidningen. 99, 165–168 (2002).

    PubMed  Google Scholar 

  107. Faglia, G., Arosio, M. & Porretti, S. Delayed closure of epiphyseal cartilages induced by the aromatase inhibitor anastrozole. Would it help short children grow up? J. Endocrinol. Invest. 23, 721–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Balestrieri, A., Faustini-Fustini, M., Rochira, V. & Carani, C. Clinical implications and management of oestrogen deficiency in the male. Clin. Endocrinol. (Oxf.) 54, 431–432 (2001).

    Article  CAS  Google Scholar 

  109. Maffei, L. et al. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J. Clin. Endocrinol. Metab. 89, 61–70 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Jones, M. E., Boon, W. C., Proietto, J. & Simpson, E. R. Of mice and men: the evolving phenotype of aromatase deficiency. Trends Endocrinol. Metab. 17, 55–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Rochira, V., Zirilli, L., Madeo, B., Maffei, L. & Carani, C. Testosterone action on erythropoiesis does not require its aromatization to estrogen: Insights from the testosterone and estrogen treatment of two aromatase-deficient men. J. Steroid Biochem. Mol. Biol. 113, 189–194 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Rochira, V. et al. Tall stature without growth hormone: four male patients with aromatase deficiency. J. Clin. Endocrinol. Metab. 95, 1626–1633 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Gerardin, D. C. & Pereira, O. C. Reproductive changes in male rats treated perinatally with an aromatase inhibitor. Pharmacol. Biochem. Behav. 71, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Wickman, S. & Dunkel, L. Inhibition of P450 aromatase enhances gonadotropin secretion in early and midpubertal boys: evidence for a pituitary site of action of endogenous E. J. Clin. Endocrinol. Metab. 86, 4887–4894 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Haynes, B. P., Dowsett, M., Miller, W. R., Dixon, J. M. & Bhatnagar, A. S. The pharmacology of letrozole. J. Steroid Biochem. Mol. Biol. 87, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Seftel, A. Testosterone replacement therapy for male hypogonadism: part III. Pharmacologic and clinical profiles, monitoring, safety issues, and potential future agents. Int. J. Impot. Res. 19, 2–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Hero, M., Wickman, S., Hanhijärvi, R., Siimes, M. A. & Dunkel, L. Pubertal upregulation of erythropoiesis in boys is determined primarily by androgen. J. Pediatr. 146, 245–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Hero, M., Ankarberg-Lindgren, C., Taskinen, M. R. & Dunkel, L. Blockade of oestrogen biosynthesis in peripubertal boys: effects on lipid metabolism, insulin sensitivity, and body composition. Eur. J. Endocrinol. 155, 453–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Couse, J. F. & Korach, K. S. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr. Rev. 20, 358–417 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Robertson, K. M. et al. Impairment of spermatogenesis in mice lacking a functional aromatase (Cyp19) gene. Proc. Natl Acad. Sci. USA 96, 7986–7991 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pentikainen, V., Erkkilä, K., Suomalainen, L., Parvinen, M. & Dunkel, L. Estradiol acts as a germ cell survival factor in the human testis in vitro. J. Clin. Endocrinol. Metab. 85, 2057–2067 (2000).

    CAS  PubMed  Google Scholar 

  122. Shetty, G., Krishnamurthy, H., Krishnamurthy, H. N., Bhatnagar, S. & Moudgal, R. N. Effect of estrogen deprivation on the reproductive physiology of male and female primates. J. Steroid Biochem. Mol. Biol. 61, 157–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Aquila, S. et al. Towards a physiological role for cytochrome P450 aromatase in ejaculated human sperm. Hum. Reprod. 18, 1650–1659 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Mauras, N., Bell, J., Snow, B. G. & Winslow, K. L. Sperm analysis in growth hormone-deficient adolescents previously treated with an aromatase inhibitor: comparison with normal controls. Fertil. Steril. 84, 239–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Ramasamy, R. et al. Successful fertility treatment for Klinefelter's syndrome. J. Urol. 182, 1108–1113 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Bonjour, J. P. & Chevalley, T. Pubertal timing, peak bone mass and fragility fracture risk. Bonekey Osteovision 4, 30–48 (2007).

    Article  Google Scholar 

  127. McCloskey, E. V. Aromatase inhibitors and bone health. Bonekey Osteovision 3, 5–13 (2006).

    Article  Google Scholar 

  128. Hero, M. et al. Impact of aromatase inhibitor therapy on bone turnover, cortical bone growth and vertebral morphology in pre- and peripubertal boys with idiopathic short stature. Horm. Res. 71, 290–297 (2009).

    CAS  PubMed  Google Scholar 

  129. Lorentzon, M., Swanson, C., Andersson, N., Mellström, D. & Ohlsson, C. Free testosterone is a positive, whereas free estradiol is a negative, predictor of cortical bone size in young Swedish men: the GOOD study. J. Bone Miner. Res. 20, 1334–1341 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Seeman, E. Clinical review 137: Sexual dimorphism in skeletal size, density, and strength. J. Clin. Endocrinol. Metab. 86, 4576–4584 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Wickman, S., Kajantie, E. & Dunkel, L. Effects of suppression of estrogen action by the p450 aromatase inhibitor letrozole on bone mineral density and bone turnover in pubertal boys. J. Clin. Endocrinol. Metab. 88, 3785–3793 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Leder, B. Z., LeBlanc, K. M., Schoenfeld, D. A., Eastell, R. & Finkelstein, J. S. Differential effects of androgens and estrogens on bone turnover in normal men. J. Clin. Endocrinol. Metab. 88, 204–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Michael, H., Härkönen, P. L., Väänänen, H. K. & Hentunen, T. A. Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J. Bone Miner. Res. 20, 2224–2232 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Seeman, E. & Delmas, P. D. Bone quality—the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354, 2250–2261 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Ma, D. & Jones, G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J. Clin. Endocrinol. Metab. 88, 1486–1491 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Bouillon, R., Bex, M., Vanderschueren, D. & Boonen, S. Estrogens are essential for male pubertal periosteal bone expansion. J. Clin. Endocrinol. Metab. 89, 6025–6029 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Lee, K., Jessop, H., Suswillo, R., Zaman, G. & Lanyon, L. Endocrinology: bone adaptation requires oestrogen receptor α. Nature 424, 389 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Metzger, D. L. & Kerrigan, J. R. Estrogen receptor blockade with tamoxifen diminishes growth hormone secretion in boys: evidence for a stimulatory role of endogenous estrogens during male adolescence. J. Clin. Endocrinol. Metab. 79, 513–518 (1994).

    CAS  PubMed  Google Scholar 

  139. Wickman, S., Saukkonen, T. & Dunkel, L. The role of sex steroids in the regulation of insulin sensitivity and serum lipid concentrations during male puberty: a prospective study with a P450-aromatase inhibitor. Eur. J. Endocrinol. 146, 339–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Tikkanen, M. J. & Nikkilä, E. A. Regulation of hepatic lipase and serum lipoproteins by sex steroids. Am. Heart J. 113, 562–567 (1987).

    Article  CAS  PubMed  Google Scholar 

  141. Sorva, R., Kuusi, T., Dunkel, L. & Taskinen, M. R. Effects of endogenous sex steroids on serum lipoproteins and postheparin plasma lipolytic enzymes. J. Clin. Endocrinol. Metab. 66, 408–413 (1988).

    Article  CAS  PubMed  Google Scholar 

  142. Moran, A. et al. Association between the insulin resistance of puberty and the insulin-like growth factor-I/growth hormone axis. J. Clin. Endocrinol. Metab. 87, 4817–4820 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Phillips, K. A., Ribi, K. & Fisher, R. Do aromatase inhibitors have adverse effects on cognitive function? Breast Cancer Res. 13, 203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Osterlund, M. K., Gustafsson, J. A., Keller, E. & Hurd, Y. L. Estrogen receptor β (ERβ) messenger ribonucleic acid (mRNA) expression within the human forebrain: distinct distribution pattern to ERα mRNA. J. Clin. Endocrinol. Metab. 85, 3840–3846 (2000).

    CAS  PubMed  Google Scholar 

  145. Cherrier, M. M. et al. The role of aromatization in testosterone supplementation: effects on cognition in older men. Neurology 64, 290–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Kil, K. E. et al. Synthesis and PET studies of [11C-cyano]letrozole (Femara), an aromatase inhibitor drug. Nucl. Med. Biol. 36, 215–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jenkins, V. A. et al. Effects of anastrozole on cognitive performance in postmenopausal women: a randomised, double-blind chemoprevention trial (IBIS II). Lancet Oncol. 9, 953–961 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Young, L. A., Neiss, M. B., Samuels, M. H., Roselli, C. E. & Janowsky, J. S. Cognition is not modified by large but temporary changes in sex hormones in men. J. Clin. Endocrinol. Metab. 95, 280–288 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Hero, M., Maury, S., Luotoniemi, E., Service, E. & Dunkel, L. Cognitive effects of aromatase inhibitor therapy in peripubertal boys. Eur. J. Endocrinol. 163, 149–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Dixon, J. M. et al. Letrozole suppresses plasma estradiol and estrone sulphate more completely than anastrozole in postmenopausal women with breast cancer. J. Clin. Oncol. 26, 1671–1676 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. de Jong, P. C. et al. Inhibition of breast cancer tissue aromatase activity and estrogen concentrations by the third-generation aromatase inhibitor vorozole. Cancer Res. 57, 2109–2111 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Jan M. Wit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementry Information

Appendix 1. Literature search details (DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wit, J., Hero, M. & Nunez, S. Aromatase inhibitors in pediatrics. Nat Rev Endocrinol 8, 135–147 (2012). https://doi.org/10.1038/nrendo.2011.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing