Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination

Key Points

  • CTLA-4 regulates T-cell activation upon initiation of an immune response, in the lymphoid organs, where naive T cells are primed, and potentially in the periphery via regulatory T-cell (TREG) depletion

  • This diverse role of CTLA-4 in initiating and mounting immune responses might explain the plethora of immune-related adverse events (irAEs) experienced by patients receiving treatment with anti-CTLA-4 antibodies

  • PD-1 suppresses T-cell activity, mostly within the peripheral tissues and in the tumour microenvironment, which might explain the distinct spectrum and reduced incidence of adverse effects of anti-PD-1 antibodies

  • Thyroid disorders are more frequent adverse effects of treatment with anti-PD-1 antibodies (pembrolizumab and nivolumab) whereas colitis and hypophysitis are more frequent with anti-CTLA-4 antibodies (ipilimumab)

  • General guidelines on the management of irAEs recommend treatment of symptoms; corticosteroids are generally indicated together with dose skipping or discontinuation in patients with persistent grade ≥2 adverse events

Abstract

Inhibition of immune checkpoints using anti-programmed cell death-1 (PD-1) or anti cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4) monoclonal antibodies has revolutionized the management of patients with advanced-stage melanoma and is among the most promising treatment approaches for many other cancers. Use of CTLA-4 and PD-1 inhibitors, either as single agents, or in combination, has been approved by the US FDA for the treatment of metastatic melanoma. Treatment with these novel immunotherapies results in a unique and distinct spectrum of adverse events, which are mostly related to activation of the immune system and are, therefore, an unwanted consequence of their mechanisms of action. Adverse effects of CTLA-4 and/or PD-1 inhibition are most commonly observed in the skin, gastrointestinal tract, liver and endocrine systems and include pruritus, rash, nausea, diarrhoea and thyroid disorders. In this Review, the authors describe the adverse event profile of checkpoint inhibitors targeting CTLA-4 and PD-1, used both as monotherapies and in combination and aim to provide some general guidelines, based upon the mechanisms of action of these therapies and on the management of these immune-related adverse events.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune checkpoints and control of T-cell activation in melanoma.
Figure 2: The most common adverse events in patients treated with ipilimumab, pembrolizumab, nivolumab, or ipilimumab plus nivolumab.
Figure 3: Adverse events of special interest noted with immune-checkpoint inhibitors.
Figure 4: Management of immune-related adverse events excluding skin and endocrine toxicities.

Similar content being viewed by others

References

  1. Greenwald, R. J. et al. The B7 family revisited. Annu. Rev. Immunol. 23, 515–548 (2005).

    PubMed  Google Scholar 

  2. Zou, W. et al. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Segal, N. H. et al. Epitope landscape in breast and colorectal cancer. Cancer Res. 68, 889–892 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Dunn, G. P. et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Drake, C. G. et al. Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan, D. et al. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Topalian, S. L. et al. Cancer immunotherapy comes of age. J. Clin. Oncol. 29, 4828–4836 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mellman, I. et al. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Brunner, M. C. et al. CTLA-4-mediated inhibition of early events of T cell proliferation. J. Immunol. 162, 5813–5820 (1999).

    CAS  PubMed  Google Scholar 

  11. Leach, D. R. et al. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. O'Day, S. J. et al. Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110, 2614–2627 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Camacho, L. H. et al. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J. Clin. Oncol. 27, 1075–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Ribas, A. et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31, 616–622 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wolchock, J. D. et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11, 155–164 (2010).

    Article  CAS  Google Scholar 

  16. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. The Department of Health and Human Services. FDA approves new treatment for a type of late-stage skin cancer. FDA [online] http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm1193237.htm (2011).

  18. The European Medicines Agency. Assessment report for Yervoy (ipilimumab). [online] http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002213/WC500109302.pdf (2011).

  19. Lynch, T. J. et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 30, 2046–2054 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Slovin, S. F. et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann. Oncol. 24, 1813–1821 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Calabrò, L. et al. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 14, 1104–1111 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Patnaik, A. et al. Phase I study of MK-3475 (anti-PD-1 monoclonal antibody) in patients with advanced solid tumors [abstract]. J. Clin. Oncol. 33 (Suppl.), a2512 (2012).

    Google Scholar 

  25. Westin, J. R. et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 15, 69–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Hamanishi, J. et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 33, 4015–4022 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Topalian, S. L. et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol. 32, 1020–1030 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Robert, C. et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384, 1109–1117 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Ribas, A. et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 16, 908–918 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Daud, A. et al. Long-term efficacy of pembrolizumab (pembro; MK-3475) in a pooled analysis of 655 patients (pts) with advanced melanoma (MEL) enrolled in KEYNOTE-001 [abstract]. J. Clin. Oncol. 33 (Suppl.), a9005 (2015).

    Article  Google Scholar 

  35. The Department of Health and Human Services. FDA approves Keytruda for advanced melanoma. FDA [online] http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm412802.htm (2014).

  36. American Association for Cancer Research. PD-1 inhibitor approved for melanoma. Cancer Discov. 4, 1249 (2014).

  37. Poole, R. M. Pembrolizumab: first global approval. Drugs 74, 1973–1981 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. The Department of Health and Human Services. Pembrolizumab label updated with new clinical trial information FDA [online] http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm478493.htm (2015).

  39. The European Medicines Agency. Assessment report: Keytruda. International non-proprietary name: pembrolizumab. [online] http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/003820/WC500190992.pdf (2015).

  40. The Department of Health and Human Services. FDA approves Opdivo for advanced melanoma. FDA [online] http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427716.htm (2014).

  41. The European Medicines Agency. Keytruda. [online] http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/003820/human_med_001886., (2015).

  42. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sznol, M. et al. Survival, response duration, and activity by BRAF mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS-936558, ONO-4538) and ipilimumab (IPI) concurrent therapy in advanced melanoma (MEL) [abstract]. J. Clin. Oncol. 32 (Suppl. 5), a9003 (2014).

    Article  Google Scholar 

  44. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pardoll, D. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fecher, L. A. et al. Ipilimumab and its toxicities: a multidisciplinary approach. Oncologist 18, 733–743 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Schwartz, R. H. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71, 1065–1068 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Rudd, C. E. et al. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 229, 12–26 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hathcock, K. S. et al. Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 262, 905–907 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Cutler, C. W. et al. Dendritic cells: immune saviors or Achilles' heel? Infect. Immun. 69, 4703–4708 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sharpe, A. H. et al. T-cell costimulation — biology, therapeutic potential, and challenges. N. Engl. J. Med. 355, 973–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Konig, R. Interactions between MHC molecules and co-receptors of the TCR. Curr. Opin. Immunol. 14, 75–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Freeman, G. J. et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262, 909–911 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Azuma, M. et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366, 76–79 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Peggs, K. S. et al. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bulliard, Y. et al. Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wang, C. J. et al. Cutting edge: cell-extrinsic immune regulation by CTLA-4 expressed on conventional T cells. J. Immunol. 189, 1118–1122 (2012).

    Article  PubMed  CAS  Google Scholar 

  59. Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Postow, M. A. et al. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Smigiel, K. S. et al. Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol. Rev. 259, 40–59 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Khattri, R. et al. Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol. 162, 5784–5791 (1999).

    CAS  PubMed  Google Scholar 

  64. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, H. B. et al. Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. J. Immunol. 166, 6430–6436 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Sanderson, K. et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol. 23, 741–750 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Mora, J. R. et al. T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol. 27, 235–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Ott, P. A. et al. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin. Cancer Res. 19, 5300–5309 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Keir, M. E. et al. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Francisco, L. M. et al. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Okazaki, T. et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 14, 1212–1218 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Fife, B. T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 10, 1185–1192 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Topalian, S. L. et al. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 24, 207–212 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Blank, C. et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 64, 1140–1145 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Nishimura, H. et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Liang, S. C. et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur. J. Immunol. 33, 2706–2716 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Weber, J. S. et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J. Clin. Oncol. 26, 5950–5956 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Margolin, K. et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 13, 459–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Di Giacomo, A. M. et al. Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncol. 13, 879–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Weber, J. S. et al. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer 119, 1675–1682 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–530 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Gupta, A. et al. Systematic review: colitis associated with anti-CTLA-4 therapy. Aliment. Pharmacol. Ther. 42, 406–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Weber, J. S. et al. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30, 2691–2697 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Marthey, L. et al. Ipilimumab colitis: a GETAID multicentric study [poster P202]. J. Chrohns Colitits 8, S146 (2014).

    Article  Google Scholar 

  90. Dignass, A. et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: current management. J. Crohns Colitis 6, 991–1030 (2012).

    Article  PubMed  Google Scholar 

  91. Beck, K. E. et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol. 24, 2283–2289 (2006).

    Article  PubMed  CAS  Google Scholar 

  92. Berman, D. et al. Blockade of cytotoxic T-lymphocyte antigen-4 by ipilimumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immun. 10, 11 (2010).

    PubMed  PubMed Central  Google Scholar 

  93. Lacouture, M. E. et al. Ipilimumab in patients with cancer and the management of dermatologic adverse events. J. Am. Acad. Dermatol. 71, 161–169 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Voskens, C. J. et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS ONE 8, e53745 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Delyon, J. et al. Hemophilia A induced by ipilimumab. N. Engl. J. Med. 365, 1747–1748 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Robinson, M. R. et al. Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis. J. Immunother. 27, 478–479 (2004).

    Article  PubMed  Google Scholar 

  97. Ribas, A. et al. A randomized controlled comparison of pembrolizumab and chemotherapy in patients with ipilimumab-refractory melanoma [late breaker oral presentation]. Soc. Melanoma Res. Congress SMR (2014).

    Google Scholar 

  98. Orlov, S. et al. Induction of painless thyroiditis in patients receiving programmed death 1 receptor immunotherapy for metastatic malignancies. J. Clin. Endocrinol. Metab. 100, 1738–1741 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  100. Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Weber, J. S. et al. Safety profile of nivolumab (NIVO) in patients (pts) with advanced melanoma (MEL): a pooled analysis [abstract]. J. Clin. Oncol. 33 (Suppl.), a9018 (2015).

    Article  Google Scholar 

  102. Bristol-Myers Squibb Company. Risk evaluation and mitigation strategy (REMS). FDA [online] http://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/UCM249435.pdf, (2012).

  103. Lichtiger, S. et al. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N. Engl. J. Med. 330, 1841–1845 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Pages, C. et al. Ipilimumab-induced acute severe colitis treated by infliximab. Melanoma Res. 23, 227–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Minor, D. R. et al. Infliximab in the treatment of anti-CTLA4 antibody (ipilimumab) induced immune-related colitis. Cancer Biother. Radiopharm. 24, 321–325 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Merrill, S. P. et al. Early administration of infliximab for severe ipilimumab-related diarrhea in a critically ill patient. Ann. Pharmacother. 48, 806–810 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Douglas, B. J. et al. Ipilimumab in metastatic melanoma patients with pre-existing autoimmune disorders [abstract]. J. Clin. Oncol. 33 (Suppl.), a9019 (2015).

    Google Scholar 

  108. Prashanth, P. et al. Efficacy and toxicity of treatment with the anti-CTLA-4 antibody ipilimumab in patients with metastatic melanoma who have progressed on anti-PD-1 therapy [abstract]. J. Clin. Oncol. 33 (Suppl.), a9059 (2015).

    Google Scholar 

  109. Lutzky, J. et al. Association between immune-related adverse events (irAEs) and disease control or overall survival in patients (pts) with advanced melanoma treated with 10 mg/kg ipilimumab in three phase II clinical trials [abstract]. J. Clin. Oncol. 33 (Suppl. 15), a9034 (2009).

    Google Scholar 

  110. Weber, J. S. et al. Phase II trial of extended dose anti-CTLA-4 antibody ipilimumab (formerly MDX-010) with a multipeptide vaccine for resected stages IIIC and IV melanoma [abstract]. J. Clin. Oncol. 33 (Suppl. 15), a9023 (2009).

    Google Scholar 

  111. Hua, C. et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 152, 45–51 (2016).

    Article  PubMed  Google Scholar 

  112. Freeman-Keller, M. et al. Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.CCR-15-1136 (2015).

Download references

Acknowledgements

The authors would like to thank Cedric Verjat for assisting with the creation of Figs 1, 2 and 3.

Author information

Authors and Affiliations

Authors

Contributions

C.B., E.L. and C.R. researched data for this article, C.B., A.T. and C.R. made a substantial contribution to discussions of content. C.B., A.T. and C.R. wrote the manuscript, and all authors edited and/or reviewed the manuscript prior to submission. C.B. and A.T. contributed equally to this Review.

Corresponding author

Correspondence to Caroline Robert.

Ethics declarations

Competing interests

A.T. has acted as consultant of BMS and Merck. He has also conducted contract research for Amgen, BMS, Merck and Novartis. E.R. has acted as a consultant of and BMS and Roche. O.L. has acted as a consultant of Genzyme and MSD. F.C. has acted as consultant of Abbvie, Enterome, Ferring, Genentech, Hospira, Jansen, Mayoly, MSD, Otsuka, Splindler, and Takeda and Vifor. A.M. has acted as an advisor and has received honoraria from Amgen, BMS, Pfizer, MSD, Novartis and Roche. A.E. is a member of the scientific advisory board of BMS, Incyte, Medimmune and Merck. J-C.S. has acted as a consultant of Astra-Zeneca, Merus, MSD, Pfizer, Roche, Servier and Symphogen. C.M. has acted as consultant of BMS and Merck. C.R. has acted as a consultant of Amgen, BMS, GSK, Merck, Novartis and Roche. C.B, F.L.L, H.I., S.C., A.B., E.L., M.T. and C.L. declare no competing interests.

Supplementary information

Supplementary information S1 (table)

Incidence per 1000 person-months of all grade and grade 3 to 5 adverse events under immunotherapy using the SAS Sytstem. The results include data from the following studies: CA-184-002, KEYNOTE-001, KEYNOTE-001 (randomized cohorts), KEYNOTE-002, KEYNOTE-006, CheckMate-037, CheckMate-066, CheckMate-067, and CheckMate-069. (PDF 2014 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutros, C., Tarhini, A., Routier, E. et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol 13, 473–486 (2016). https://doi.org/10.1038/nrclinonc.2016.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.58

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research