Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adolescent and young adult patients with cancer: a milieu of unique features

Key Points

  • Adolescent and young adult (AYA) patients with cancer are a unique subgroup of patients that might receive treatment from oncologists specializing either in the treatment of children or older adults

  • The types of cancers seen in AYA patients, as well as the type of support and ancillary services required, differ from those of paediatric or older adult patients

  • The 5-year survival of AYA patients with cancer has, in general, increased over the past 30 years, although cancer remains a leading cause of death for this age group

  • Clinical trials and emerging technologies have enabled improved understanding of 'host' biology and treatment approaches in AYA patients diagnosed with cancer

  • Unlike paediatric or older adult patients with cancer, fewer clinical trials are conducted to investigate outcomes of AYA patients, who often also lack access to age-appropriate psychosocial and health services

  • Understanding of long-term survivorship in patients initially diagnosed with cancer while AYAs is limited and, presently, is extrapolated largely from what is known about patients diagnosed as children

Abstract

Adolescent and young adult (AYA) patients with cancer are a unique category of patients who, depending on age at time of diagnosis, might receive treatment from oncologists specializing either in the treatment of children or adults. In the USA, AYA oncology generally encompasses patients 15–39 years of age. AYA patients with cancer typically present with diseases that span the spectrum from 'paediatric' cancers (such as acute lymphoblastic leukaemia [ALL] and brain tumours) to 'adult' tumours (such as breast cancer and melanoma), as well as cancers that are largely unique to their age group (such as testicular cancer and bone tumours). Research indicates that outcomes of AYA patients with cancer are influenced not only by the treatment provided, but also by factors related to 'host' biology. In addition to the potential biological and cancer-specific differences between AYAs and other patients with cancer, AYA patients also often have disparate access to clinical trials and suffer from a lack of age-appropriate psychosocial support services and health services, which might influence survival as well as overall quality of life. In this Review, these issues are discussed, with a focus on two types of AYA cancer—ALL and melanoma—highlighting findings arising from the use of emerging technologies, such as whole-genome sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ABCDE criteria for melanoma identification.

Similar content being viewed by others

References

  1. Adolescent and Young Adult Oncology Progress Review Group. Closing the gap: research and care imperatives for adolescents and young adults with cancer. Office of Science Planning & Assessment (OSPA) Library [online], (2006).

  2. Bleyer, A., O'Leary, M., Barr, R. & Ries, L. A. G. (eds) Cancer epidemiology in older adolescents and young adults 15 to 29 years of age, including SEER incidence and survival: 1975–2000 (National Cancer Institute 2006).

    Google Scholar 

  3. Bleyer, A., Albritton, K. H., Barr, R. D., Lewis, I. J. & Sender, L. S. Trailblazers in adolescent and young adult oncology. J. Adolesc. Young Adult Oncol. 1, 13–18 (2011).

    Article  PubMed  Google Scholar 

  4. Australian Institute of Health and Welfare. Cancer in adolescents and young adults in Australia. Australian Institute of Health and Welfare [online], (2011).

  5. De, P. et al. Candian adolescents and young adults with cancer: opportunity to improve coordination and level of care. CMAJ 183, E187–E194 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu, Q. J. et al. Cancer incidence among adolescents and young adults in urban Shanghai, 1973–2005. PLoS ONE 7, e42607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajani, S., Young, A. J., McGoldrick, D. A., Pearce, D. L. & Sharaf, S. M. The International Charter of Rights for Young People with Cancer. J. Adolesc. Young Adult Oncol. 1, 49–52 (2011).

    Article  PubMed  Google Scholar 

  8. Howlander, N. et al. SEER Cancer Statistics Review (CSR) 1975–2011. Surveillance, Epidemiology, and End Results Program [online], (2014).

  9. Bleyer, A. et al. The distinctive biology of cancer in adolescents and young adults. Nat. Rev. Cancer 8, 288–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Portell, C. A. & Sweetenham, J. W. Adult lymphoblastic lymphoma. Cancer J. 18, 432–438 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Zelenetz, A. D. et al. NCCN Clinical Practice Guidelines in Oncology: non-Hodgkin's lymphomas. J. Natl Compr. Canc. Netw. 8, 288–334 (2010).

    Article  PubMed  Google Scholar 

  12. Wilhelm, M. et al. ENCCA WP17-WP7 consensus paper on teenagers and young adults (TYA) with bone sarcomas. Ann. Oncol. 25, 1500–1505 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Keegan, T. H. et al. Impact of breast cancer subtypes on 3-year survival among adolescent and young adult women. Breast Cancer Res. 15, R95 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tricoli, J. V., Seibel, N. L., Blair, D. G., Albritton, K. & Hayes-Lattin, B. Unique characteristics of adolescent and young adult acute lymphoblastic leukemia, breast cancer, and colon cancer. J. Natl Cancer Inst. 103, 628–635 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    Article  PubMed  Google Scholar 

  16. Heron, M. Deaths: leading causes for 2010. Natl Vital Stat. Rep. 62, 1–96 (2013).

    PubMed  Google Scholar 

  17. Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).

    Article  CAS  PubMed  Google Scholar 

  18. Hunger, S. P. et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children's Oncology Group. J. Clin. Oncol. 30, 1663–1669 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pui, C. H. et al. Improved prognosis for older adolescents with acute lymphoblastic leukemia. J. Clin. Oncol. 29, 386–391 (2011).

    Article  PubMed  Google Scholar 

  20. Stock, W. et al. Outcome of adolescents and young adults with acute lymphoblastic leukemia (ALL): a comparison of Children's Cancer Group (CCG) and Cancer and Leukemia Group B (CALGB) regimens [abstract]. Blood 96, 2009 (2000).

    Google Scholar 

  21. Boissel, N. et al. Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. J. Clin. Oncol. 21, 774–780 (2003).

    Article  PubMed  Google Scholar 

  22. de Bont, J. M. et al. Significant differences in outcome for adolescents with acute lymphoblastic leukemia treated on pediatric vs. adult protocols in the Netherlands. Leukemia 18, 2032–2035 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Ramanujachar, R. et al. Adolescents with acute lymphoblastic leukaemia: outcome on UK national paediatric (ALL97) and adult (UKALLX11/E2993) trials. Pediatr. Blood Cancer 48, 254–261 (2007).

    Article  PubMed  Google Scholar 

  24. Stock, W. et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children's Cancer Group and Leukemia Group B studies. Blood 112, 1646–1654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coccia, P. F. et al. Adolescent and young adult oncology. Clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 10, 1112–1150 (2012).

    Article  PubMed  Google Scholar 

  26. Gupta, A. A., Edelstein, K., Albert-Green, A. & D'Agostino, N. Assessing information and service needs of young adults with cancer at a single institution. The importance of information on cancer diagnosis, fertility preservation, diet, and exercise. Support. Care Cancer 21, 2477–2484 (2013).

    Article  PubMed  Google Scholar 

  27. Barling, J. A., Stevens, J. A. & Davies, K. M. The reality of hospitalisation: stories from family members of their hospital experience for adolescents and young adults living with and dying from cancer. Contemp. Nurse 46, 150–160 (2014).

    Article  PubMed  Google Scholar 

  28. Schiffer, C. A. Differences in outcomes in adolescents with acute lymphoblastic leukemia: a consequence of better regimens? Better doctors? Both? J. Clin. Oncol. 21, 760–761 (2003).

    Article  PubMed  Google Scholar 

  29. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  30. Advani, A. S. et al. Frontline-treatment of acute lymphoblastic leukemia (ALL) in older adolescents and young adults (AYA) using a pediatric regimen is feasible: toxicity results of the prospective US Intergroup Trial C10403 (Alliance) [abstract]. Blood 122, 3903 (2013).

    Article  Google Scholar 

  31. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  32. Yang, J. J. et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat. Genet. 43, 237–241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, H. et al. ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J. Clin. Oncol. 30, 751–757 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, H. et al. Novel susceptibility variants at 10p12.31–122 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J. Natl Cancer Inst. 105, 733–742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Radtke, S. et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood 121, 5145–5153 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Kapogiannis, B. G. & Mattison, D. R. Adolescents in clinical trials. Clin. Pharmacol. Ther. 84, 655–659 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Nowell, P. C. Discovery of the Philadelphia chromosome: a personal perspective. J. Clin. Invest. 117, 2033–2035 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Klein, A. et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300, 765–767 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. Schultz, K. R. et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group study. J. Clin. Oncol. 27, 5175–5181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hunger, S. P. Tyrosine kinase inhibitor use in pediatric Philadelphia chromosome-positive acute lymphoblastic anemia. Hematology Am. Soc. Hematol. Educ. Program 2011, 361–365 (2011).

    Article  PubMed  Google Scholar 

  41. Priest, J. R. et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia. Blood 56, 15–22 (1980).

    Article  CAS  PubMed  Google Scholar 

  42. Faderl, S. et al. Outcome of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Leuk. Lymphoma 36, 263–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Harrison, C. J. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br. J. Haematol. 144, 147–156 (2009).

    Article  PubMed  Google Scholar 

  44. Koo, H. H. Philadelphia chromosome-positive acute lymphoblastic leukemia in childhood. Korean J. Pediatr. 54, 106–110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schultz, K. R. et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group study. J. Clin. Oncol. 27, 5175–5181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schultz, K. R. et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children's Oncology Group study AALL0031. Leukemia 28, 1467–1471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, H. J., Thompson, J. E., Wang, E. S. & Wetzler, M. Philadelphia chromosome-positive acute lymphoblastic leukemia: current treatment and future perspectives. Cancer 117, 1583–1594 (2011).

    Article  PubMed  Google Scholar 

  48. Cohen, M. H., Johnson, J. R., Justice, R. & Pazdur, R. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist 13, 709–714 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Winter, S. S. et al. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children's Oncology Group Study AALL0434. Pediatr. Blood Cancer. http://dx.doi.org/10.1002/pbc.25470.

  50. Van Vlierberghe, P. & Ferrando, A. The molecular basis of T cell acute lymphoblastic leukemia. J. Clin. Invest. 122, 3398–3406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moorman, A. V. et al. IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J. Clin. Oncol. 30, 3100–3108 (2012).

    Article  PubMed  Google Scholar 

  52. Harvey, R. C. et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115, 5312–5321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moorman, A. V. & Harrison, C. J. in Adult acute lymphoblastic leukemia: biology and treatment. (eds Advani, A. S. & Lazarus, H. M.) 61–76 (Springer Science+Business Media, 2011).

    Book  Google Scholar 

  54. Harrison, C. J. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology Am. Soc. Hematol. Educ. Program 2013, 118–125 (2013).

    Article  PubMed  Google Scholar 

  55. Advani, A. S. Biology and treatment of acute lymphocytic leukemia in adolescents and young adults. Am. Soc. Clin. Oncol. Educ. Book 2013, 285–289 (2013).

    Article  Google Scholar 

  56. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kang, H. et al. Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115, 1394–1405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harvey, R. C. et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116, 4874–4884 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roberts, K. G. et al. Outcomes of children with BCR–ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J. Clin. Oncol. 32, 3012–3020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pui, C. H. et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N. Engl. J. Med. 360, 2730–2741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pui, C. H. et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol. 16, 465–474 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 371, 1005–1015 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Brayer, J. B. & Pinilla-Ibarz, J. Developing strategies in the immunotherapy of leukemias. Cancer Control 20, 49–59 (2013).

    Article  PubMed  Google Scholar 

  64. CAR T-Cell therapy: engineering patients' immune cells to treat their cancers. The National Cancer Institute at the National Institute of Health [online], (2014).

  65. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Davila, M. L. et al. Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies. Int. J. Hematol. 99, 361–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Dotti, G., Gottschalk, S., Savoldo, B. & Brenner, M. K. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol. Rev. 257, 107–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Fry, T. J. & Mackall, C. L. T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology Am. Soc. Hematol. Educ. Program 2013, 348–353 (2013).

    Article  PubMed  Google Scholar 

  69. Ramos, C. A., Savoldo, B. & Dotti, G. CD19-CAR trials. Cancer J. 20, 112–118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu, X. J., Zhao, H. Z. & Tang, Y. M. Efficacy and safety of adoptive immunotherapy using anti-CD19 chimeric antigen receptor transduced T-cells: a systematic review of phase I clinical trials. Leuk. Lymphoma 54, 255–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Davila, M. L. et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177-ra38 (2013).

    Article  CAS  Google Scholar 

  73. Kochenderfer, J. N. et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122, 4129–4139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cruz, C. R. et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122, 2965–2973 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Novartis Media Releases. Novartis personalized cell therapy CTL019 receives FDA Breakthrough Therapy designation [online], (2014).

  76. Nagorsen, D. et al. Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk. Lymphoma 50, 886–891 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Dijoseph, J. F., Dougher, M. M., Armellino, D. C., Evans, D. Y. & Damle, N. K. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 21, 2240–2245 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Handgretinger, R. et al. Complete remission after blinatumomab-induced donor T-cell activation in three pediatric patients with post-transplant relapsed acute lymphoblastic leukemia. Leukemia 25, 181–184 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Topp, M. S. et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J. Clin. Oncol. 29, 2493–2498 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Amgen News Releases. Amgen receives FDA Breakthrough Therapy designation for investigational BiTE® antibody blinatumomab in acute lymphoblastic leukemia [online], (2014).

  81. Kochuparambil, S. T. & Litzow, M. R. Novel antibody therapy in acute lymphoblastic leukemia. Curr. Hematol. Malig. Rep. 9, 165–173 (2014).

    Article  PubMed  Google Scholar 

  82. Rytting, M., Triche, L., Thomas, D., O'Brien, S. & Kantarjian, H. Initial experience with CMC-544 (inotuzumab ozogamicin) in pediatric patients with relapsed B-cell acute lymphoblastic leukemia. Pediatr. Blood Cancer 61, 369–372 (2014).

    Article  PubMed  Google Scholar 

  83. Hausauer, A. K., Swetter, S. M., Cockburn, M. G. & Clarke, C. A. Increases in melanoma among adolescent girls and young women in California: trends by socioeconomic status and UV radiation exposure. Arch. Dermatol. 147, 783–789 (2011).

    Article  PubMed  Google Scholar 

  84. Rigel, D. S. Epidemology of melanoma. Semin. Cutan. Med. Surg. 29, 204–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Tavernise, S. Surgeon General calls for action to reduce skin cancer rate. The New York Times [online], (2014).

  86. Liu, F. et al. A unique gender difference in early onset melanoma implies that in addition to ultraviolet light exposure other causative factors are important. Pigment Cell Melanoma Res. 26, 128–135 (2013).

    Article  PubMed  Google Scholar 

  87. Schulman, J. M. & Fisher, D. E. Indoor ultraviolet tanning and skin cancer: health risks and opportunities. Curr. Opin. Oncol. 21, 144–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Skin Cancer Foundation. Facts about sunburn and skin cancer [online], (2014).

  89. Boniol, M., Autier, P., Boyle, P. & Gandini, S. Cutaneous melanoma attributable to sunbed use: systematic review and meta-analyis. BMJ 345, e4757 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lazovich, D. et al. Indoor tanning and risk of melanoma: a case–control study in a highly exposed population. Cancer Epidemiol. Biomarkers Prev. 19, 1557–1568 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Green, A. C., Williams, G. M., Logan, V. & Strutton, G. M. Reduced melanoma after regular sunscreen use: randomized trial follow-up. J. Clin. Oncol. 29, 257–263 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Thieden, E., Philipsen, P. A., Sandby-Møller, J., Heydenreich, J. & Wulf, H. C. Proportion of lifetime UV dose received by children, teenagers and adults based on time-stamped personal dosimetry. J. Invest. Dermatol. 123, 1147–1150 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. American Cancer Society. Known and probable human carcinogens [online], (2014).

  94. Mancebo, S. E., Hu, J. Y. & Wang, S. Q. Sunscreens: a review of health benefits, regulations, and controversies. Dermatol. Clin. 32, 427–438 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Potente, S., Coppa, K., Williams, A. & Engels, R. Legally brown: using ethnographic methods to understand sun protection attitudes and behaviours among young Australians 'I didn't mean to get burnt—it just happened!'. Health Educ. Res. 26, 39–52 (2011).

    Article  PubMed  Google Scholar 

  96. Bränström, R. et al. Melanoma risk factors, perceived threat and intentional tanning: an international online survey. Eur. J. Cancer Prev. 19, 216–226 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Knight, J. M., Kirincich, A. N., Farmer, E. R. & Hood, A. F. Awareness of the risks of tanning lamps does not influence behavior among college students. Arch. Dermatol. 138, 1311–1315 (2002).

    Article  PubMed  Google Scholar 

  98. Holman, D. M. & Watson, M. Correlates of intentional tanning among adolescents in the United States: a systematic review of the literature. J. Adolesc. Health 52, S52–S59 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Merten, J. W., Higgins, S., Rowan, A. & Pragle, A. Sun safety knowledge, attitudes, and behaviors among beachgoing adolescents. Am. J. Health Educ. 45, 37–41 (2014).

    Article  Google Scholar 

  100. Iannacone, M. R., Youlden, D. R., Baade, P. D., Aitken, J. F. & Green, A. C. Melanoma incidence trends and survival in adolescents and young adults in Queensland, Australia. Int. J. Cancer 136, 603–609 (2015).

    CAS  PubMed  Google Scholar 

  101. Hazen, B. P., Bhatia, A. C., Zaim, T. & Brodell, R. T. The clinical diagnosis of early malignant melanoma: expansion of the ABCD criteria to improve diagnostic sensitivity. Dermatol. Online J. 5, 3 (1999).

    CAS  PubMed  Google Scholar 

  102. Abbasi, N. R. et al. Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA 292, 2771–2776 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Titus, L. J. et al. Recent skin self-examination and doctor visits in relation to melanoma risk and tumour depth. Br. J. Dermatol. 168, 571–576 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. De Giorgi, V. et al. Skin self-examination and the ABCDE rule in the early diagnosis of melanoma: is the game over? Br. J. Dermatol. 168, 1370–1371 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Weir, H. K. et al. Melanoma in adolescents and young adults (ages 15–39 years): United States, 1999–2006. J. Am. Acad. Dermatol. 65, S38–S49 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cordoro, K. M., Gupta, D., Frieden, I. J., McCalmont, T. & Kashani-Sabet, M. Pediatric melanoma: results of a large cohort study and proposal for modified ABCD detection criteria for children. J. Am. Acad. Dermatol. 68, 913–925 (2013).

    Article  PubMed  Google Scholar 

  107. Long, G. V. et al. Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma. Am. J. Surg. Pathol. 37, 61–65 (2013).

    Article  PubMed  Google Scholar 

  108. Ascierto, P. A. et al. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 10, 85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wong, K. K. Recent developments in anti-cancer agents targeting the Ras/Raf/ MEK/ERK pathway. Recent Pat. Anticancer Drug Discov. 4, 28–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Wellbrock, C. & Hurlstone, A. BRAF as therapeutic target in melanoma. Biochem. Pharmacol. 80, 561–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Cantwell-Dorris, E. R., O'Leary, J. J. & Sheils, O. M. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol. Cancer Ther. 10, 385–394 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Garbe, C., Abusaif, S. & Eigentler, T. K. Vemurafenib. Recent Results Cancer Res. 201, 215–225 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Ribas, A. & Flaherty, K. T. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat. Rev. Clin. Oncol. 8, 426–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Flemming, A. Cancer: targeting mutant BRAF in metastatic melanoma. Nat. Rev. Drug Discov. 9, 841 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Sala, E. et al. BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol. Cancer Res. 6, 751–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 63, 809–819 (2010).

    Article  Google Scholar 

  118. Basile, K. J., Abel, E. V. & Aplin, A. E. Adaptive upregulation of FOXD3 and resistance to PLX4032/4720-induced cell death in mutant B-RAF melanoma cells. Oncogene 31, 2471–2479 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Sun, C. et al. Reversible and adaptive resistance to BRAFV600E inhibition in melanoma. Nature 508, 118–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Rebecca, V. W. et al. Evaluating melanoma drug response and therapeutic escape with quantitative proteomics. Mol. Cell Proteomics 13, 1844–1854 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Abdel-Wahab, O. et al. Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent BRAF- and NRAS-mutant malignancies. Cancer Discov. 4, 538–545 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Jarkowski, A. & Khushalani, N. I. BRAF and beyond: tailoring strategies for the individual melanoma patient. J. Carcinog. 13, 1 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. GlaxoSmithKline Media. Trametinib (Mekinist) and dabrafenib (Tafinlar) combination demonstrated overall survival benefit compared to vemurafenib; phase III BRAF V600-mutant metastatic melanoma study stopped early [online], (2014).

  124. Rastrelli, M. et al. Melanoma m1: diagnosis and therapy. In Vivo 28, 273–285 (2014).

    CAS  PubMed  Google Scholar 

  125. Yauch, R. L. & Settleman, J. Recent advances in pathway-targeted cancer drug therapies emerging from cancer genome analysis. Curr. Opin. Genet. Dev. 22, 45–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Dutton-Regester, K. & Hayward, N. K. Whole genome and exome sequencing of melanoma: a step toward personlized targeted therapy. Adv. Pharmacol. 65, 399–435 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Perrin, C. et al. Metastatic melanoma: results of 'classical' second-line treatment with cytotoxic chemotherapies. J. Dermatolog. Treat. 25, 396–400 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Rigel, D. S. & Carucci, J. A. Malignant melanoma. Prevention, early detection, and treatment in the 21st century. CA Cancer J. Clin. 50, 215–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Legha, S. S. Current therapy for malignant melanoma. Semin. Oncol. 16, 34–44 (1989).

    CAS  PubMed  Google Scholar 

  130. Kirkwood, J. M., Jukic, D. M., Averbook, B. J. & Sender, L. S. Melanoma in pediatric, adolescent, and young adult patients. Semin. Oncol. 36, 419–431 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mamalis, A., Garcha, M., Jagdeo, J. Targeting the PD-1 pathway: a promising future for the treatment of melanoma. Arch. Dermatol. Res. 306, 511–519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bristol-Myers Squibb Press Releases. Phase 3 first-line melanoma study of nivolumab, an investigational PD-1 checkpoint inhibitor, demonstrates superior overall survival compared to dacarbazine; Study stopped early [online], (2014).

  134. Webster, R. M. & Mentzer, S. E. The malignant melanoma landscape. Nat. Rev. Drug Discov. 13, 491–492 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Kefford, R. et al. Clinical efficacy and correlation with tumor PD-L1 expression in patients (pts) with melanoma (MEL) treated with the anti-PD-1 monoclonal antibody MK-3475. Presented at the 2014 American Society of Clinical Oncology (ASCO) Annual Meeting (2014).

    Article  Google Scholar 

  136. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Maio, M. et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J. Clin. Oncol. 33, 1191–1196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Merck's pivotal KEYNOTE-006 study in first-line treatment for advanced melanoma met co-primary endpoints and will be stopped early. Merck [online], (2015).

  139. Philips, G. K. & Atkins, M. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int. Immunol. 27, 39–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Shin, D. S. & Ribas, A. The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? Curr. Opin. Immunol. 33, 23–35 (2015).

    Article  CAS  Google Scholar 

  141. Tsai, K. K. & Daud, A. L. The role of anti-PD-1/PD-L1 agents in melanoma: progress to date. Drugs 75, 563–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Mahoney, K. M., Freeman, G. J. & McDermott, D. F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther. http://dx.doi.org/10.1016/j.clinthera.2015.02.018

  143. Beaupin, L. Are adolescents overlooked in clinical trials? Roswell Park Cancer Institute [online], (2013).

  144. Tai, E. et al. Understanding and addressing the lack of clinical trial enrollment among adolescents with cancer. Pediatrics 133, S98–S103 (2014).

    Article  PubMed  Google Scholar 

  145. Fern, L. A., Lewandowski, J. A., Coxon, K. M. & Whelan, J., for the National Cancer Research Institute Teenage and Young Adult Clinical Studies Group UK. Available, accessible, aware, appropriate, and acceptable: a strategy to improve participation of teenagers and young adults in cancer trials. Lancet Oncol. 15, e341–e350 (2014).

    Article  PubMed  Google Scholar 

  146. Unger, J. M. et al. Patient income level and cancer clinical trial participation. J. Clin. Oncol. 31, 536–542 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Unger, J. M. et al. Comparison of survival outcomes among cancer patients treated in and out of clinical trials. J. Natl Cancer Inst. 106, dju002 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ellis, L. M. et al. American Society of Clinical Oncology perspective: raising the bar for clinical trials by defining clinically meaningful outcomes. J. Clin. Oncol. 32, 1277–1280 (2014).

    Article  PubMed  Google Scholar 

  149. Burke, M. E., Albritton, K. & Marina, N. Challenges in the recruitment of adolescents and young adults to cancer clinical trials. Cancer 110, 2385–2393 (2007).

    Article  PubMed  Google Scholar 

  150. Song, P. H., Reiter, K. L., Weiner, B. J., Minasian, L. & McAlearney, A. S. The business case for provider participation in clinical trials research: an application to the National Cancer Institute's community clinical oncology program. Health Care Manage. Rev. 38, 284–294 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Institute of Medicine. Transforming clinical research in the United States: challenges and opportunities: workshop summary. The National Academies Press [online], (2010).

  152. National Cancer Institute. Clinical trials offer a path to better care for AYAs with cancer [online], (2011).

  153. Tai, E., Beaupin, L. & Bleyer, A. Clinical trial enrollment among adolescents with cancer: supplement overview. Pediatrics 133, S85–S90 (2014).

    Article  PubMed  Google Scholar 

  154. Gupta, A. A. & Indelicato, D. J. Increasing the number of clinical trials available to adolescents diagnosed with cancer. Pediatrics 133, S114–S118 (2014).

    Article  PubMed  Google Scholar 

  155. Kaplan, C. P. et al. Clinical trial discussion, referral, and recruitment: physician, patient, and system factors. Cancer Causes Control 24, 979–988 (2013).

    Article  PubMed  Google Scholar 

  156. Baer, A. R., Michaels, M., Good, M. J. & Schapira, L. Engaging referring physicians in the clinical trial process. J. Oncol. Pract. 8, e8–e10 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gribsby, T. J. et al. Attitudes toward cancer clinical trial participation in young adults with a history of cancer and a healthy college student sample: a preliminary investigation. J. Adolesc. Young Adult Oncol. 3, 20–27 (2014).

    Article  Google Scholar 

  158. Manne, S. et al. Attitudinal barriers to participation in oncology clinical trials: factor analysis and correlates of barriers. Eur. J. Cancer Care (Engl.). 24, 28–38 (2015).

    Article  CAS  Google Scholar 

  159. Manne, S. et al. Knowledge, attitudes, and self-efficacy as predictors of preparedness for oncology clinical trials: a mediational model. Med. Decis. Making 34, 454–463 (2014).

    Article  PubMed  Google Scholar 

  160. Langford, A., Resnicow, K. & An, L. Clinical trial awareness among racial/ethnic minorities in HINTS 2007: sociodemographic, attitudinal, and knowledge correlates. J. Health Commun. 15, 92–101 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Langford, A. et al. Racial/ethnic differences in clinical trial enrollment, refusal rates, ineligibility, and reasons for decline among patients at sites in the National Cancer Institute's Community Cancer Centers Program. Cancer 120, 877–884 (2014).

    Article  PubMed  Google Scholar 

  162. Parsons, H. M., Harlan, L. C., Seibel, N. L., Stevens, J. L. & Keegan, T. H. Clinical trial participation and time to treatment among adolescents and young adults with cancer: does age at diagnosis or insurance make a difference? J. Clin. Oncol. 29, 4045–4053 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Barakat, L. P., Schwartz, L. A., Reilly, A., Deatrick, J. A. & Balis, F. A qualitative study of phase III cancer clinical trial enrollment decision-making: perspectives from adolescents, young adults, caregivers, and providers. J. Adolesc. Young Adult Oncol. 3, 3–11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Read, K. et al. Decision-making by adolescents and parents of children with cancer regarding health research participation. Pediatrics 124, 959–965 (2009).

    Article  PubMed  Google Scholar 

  165. Miller, V. A. et al. Adolescent perspectives on phase I cancer research. Pediatr. Blood Cancer 60, 873–878 (2013).

    Article  PubMed  Google Scholar 

  166. Sprague, D., Russo, J., LaVallie, D. L. & Buchwald, D. Barriers to cancer clinical trial participation among American Indian and Alaska Native tribal college students. J. Rural Health 29, 55–60 (2013).

    Article  PubMed  Google Scholar 

  167. Shaw, P. H. et al. Improved clinical trial enrollment in adolescent and young adult (AYA) oncology patients after the establishment of an AYA oncology program uniting pediatric and medical oncology divisions. Cancer 118, 3614–3617 (2012).

    Article  PubMed  Google Scholar 

  168. Stoneham, S. J. et al. Adolescents and young adults with a “rare” cancer: getting past semantics to optimal care for patients with germ cell tumors. Oncologist 19, 689–692 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Freyer, D. R., Felgenhauer, J. Perentesis, J. & COG Adolescent and Young Adult Oncology Discipline Committee. Children's Oncology Group's 2013 blueprint for research: adolescent and young adult oncology. Pediatr. Blood Cancer 60, 1055–1058 (2013).

    Article  PubMed  Google Scholar 

  170. Grubbs, S. S. The new National Cancer Institute National Clinical Trials Network. Am. Soc. Clin. Oncol. Educ. Book 2012, 146–148 (2012).

    Google Scholar 

  171. Committee on Cancer Clinical Trials and the NCI Cooperative Group Program (eds Nass, S. J., Moses, H. L. & Mendelsohn, J.). A national cancer clinical trials system for the 21st century: reinvigorating the NCI cooperative group program (The National Academies Press, 2010).

  172. Felgenhauer, J. & Hooke, M. C. Regulatory barriers to clinical trial enrollment of adolescent and young adult oncology patients. Pediatrics 133, S119–S122 (2014).

    Article  PubMed  Google Scholar 

  173. Abrams, J. et al. National Cancer Institute's Precision Medicine Initiatives for the new National Clinical Trials Network. Am. Soc. Clin. Oncol. Educ. Book 2014, 71–76 (2014).

    Article  Google Scholar 

  174. Gorman, J. R. et al. A diversified recruitment approach incorporating social media leads to research participation among young adult-aged female cancer survivors. J. Adolesc. Young Adult Oncol. 3, 59–65 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Fern, L. & Whelan, J. National Cancer Research Institute Teenage and Young Adult Clinical Studies Group: the United Kingdom approach to research. International perspectives on AYAO, part 4. J. Adolesc. Young Adult Oncol. 2, 161–166 (2013).

    Article  PubMed  Google Scholar 

  176. Denicoff, A. M. et al. The National Cancer Institute-American Society of Clinical Oncology Cancer Trial Accrual Symposium: summary and recommendations. J. Oncol. Pract. 9, 267–276 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Epelman, C. L. The adolescent and young adult with cancer: state of the art—psychosocial aspects. Curr. Oncol. Rep. 15, 325–331 (2013).

    Article  PubMed  Google Scholar 

  178. Smith, A. W. et al. Unmet support service needs and health-related quality of life among adolescents and young adults with cancer: the AYA HOPE study. Front. Oncol. 3, 75 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zebrack B. J. et al. Psychosocial service use and unmet need among recently diagnosed adolescent and young adult cancer patients. Cancer 119, 201–214 (2013).

    Article  PubMed  Google Scholar 

  180. Veloso, A. G. et al. Unmet needs in cancer rehabilitation during the early cancer trajectory—a nationwide patient survey. Acta Oncol. 52, 372–381 (2013).

    Article  PubMed  Google Scholar 

  181. Zebrack, B. J. et al. Psychological distress and unsatisfied need for psychosocial support in adolescent and young adult cancer patients during the first year following diagnosis. Psychooncology 23, 1267–1275 (2014).

    Article  PubMed  Google Scholar 

  182. D'Agostino, N. M. & Edelstein, K. Psychosocial challenges and resource needs of young adult cancer survivors: implications for program development. J. Psychosoc. Oncol. 31, 585–600 (2013).

    Article  PubMed  Google Scholar 

  183. Park, C. L., Wortmann, J. H., Hale, A. E., Cho, D. & Blank, T. O. Assessing quality of life in young adult cancer survivors: development of the Survivorship-Related Quality of Life scale. Qual. Life Res. 23, 2213–2224 (2014).

    Article  PubMed  Google Scholar 

  184. Rabin, C., Simpson, N., Morrow, K. & Pinto, B. Intervention format and delivery preferences among young adult cancer survivors. Int. J. Behav. Med. 20, 304–310 (2013).

    Article  PubMed  Google Scholar 

  185. Nathan, P. C. et al. Family physician preferences and knowledge gaps regarding the care of adolescent and young adult survivors of childhood cancer. J. Cancer Surviv. 7, 275–282 (2013).

    Article  PubMed  Google Scholar 

  186. Hauken, M. A., Larsen, T. M. & Holsen, I. Meeting reality: young adult cancer survivors' experiences of reentering everyday life after cancer treatment. Cancer Nurs. 36, E17–E26 (2013).

    Article  PubMed  Google Scholar 

  187. Wiener, L., Zadeh, S., Wexler, L. H. & Pao, M. When silence is not golden: engaging adolescents and young adults in discussions around end-of-life care choices. Pediatr. Blood Cancer 60, 715–718 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zadeh, S., Pao, M. & Wiener, L. Opening end-of-life discussions: how to introduce Voicing My CHOiCES, an advance care planning guide for adolescents and young adults. Palliat. Support. Care http://dx.doi.org/10.1017/S1478951514000054 (2014).

  189. Nass, S. J. & Patlak, M. (eds) Identifying and addressing the needs of adolescents and young adults with cancer: workshop summary (2013). The National Academies Press [online], (2013).

  190. Callahan, S. T. & Cooper, W. O. Uninsurance and health care access among young adults in the United States. Pediatrics 116, 88–95 (2005).

    Article  PubMed  Google Scholar 

  191. Bleyer, A., Budd, T. & Montello, M. Adolescents and young adults with cancer: the scope of the problem and criticality of clinical trials. Cancer 107, 1645–1655 (2006).

    Article  PubMed  Google Scholar 

  192. Park, E. R. et al. Childood Cancer Survivor Study participants' perceptions and knowledge of health insurance coverage: implications for the Affordable Care Act. J. Cancer Surviv. 6, 251–259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wich, L. G. et al. Impact of socioeconomic status and sociodemographic factors on melanoma presentation among ethnic minorities. J. Community Health 36, 461–468 (2011).

    Article  PubMed  Google Scholar 

  194. Smith, E. C., Ziogas, A. & Anton-Culver, H. Delay in surgical treatment and survival after breast cancer diagnosis in young women by race/ethnicity. JAMA Surg. 148, 516–523 (2013).

    Article  PubMed  Google Scholar 

  195. Smith, E. C., Ziogas, A. & Anton-Culver, H. Association between insurance and socioeconomic status and risk of advanced stage Hodgkin lymphoma in adolescents and young adults. Cancer 118, 6179–6187 (2012).

    Article  PubMed  Google Scholar 

  196. Niu, X., Roche, L. M., Pawlish, K. S. & Henry, K. A. Cancer survival disparities by health insurance status. Cancer Med. 2, 403–411 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Smith, A. W. et al. Health-related quality of life of adolescent and young adult patients with cancer in the United States: the Adolescent and Young Adult Health Outcomes and Patient Experience study. J. Clin. Oncol. 31, 2136–2145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Freyer, D. R. Transition of care for young adult survivors of childhood and adolescent cancer: rationale and approaches. J. Clin. Oncol. 28, 4810–4818 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Kirchhoff, A. C., Lyles, C. R., Fluchel, M., Wright, J. & Leisenring, W. Limitations in health care access and utilization among long-term survivors of adolescent and young adult cancer. Cancer 118, 5964–5972 (2012).

    Article  PubMed  Google Scholar 

  200. Aizer, A. A. et al. Cancer-specific outcomes among young adults without health insurance. J. Clin. Oncol. 32, 2025–2030 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  201. US Department of Health & Human Services. Young adult coverage [online], (2014).

  202. US Department of Health & Human Services. Preventive services covered under the Affordable Care Act [online], (2012).

  203. Guy, G. P. et al. Estimating the health and economic burden of cancer among those diagnosed as adolescents and young adults. Health Aff. (Millwood) 33, 1024–1031 (2014).

    Article  Google Scholar 

  204. Arnett, J. J. Emerging adulthood. A theory of development from the late teens through the twenties. Am. Psychol. 55, 469–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. The National Collaborating Centre for Cancer. Improving outcomes in children and young people with cancer. The National Institute for Health and Clinical Excellence [online], (2005).

  206. Zebrack, B., Mathews-Bradshaw, B., Siegel, S. & LIVESTRONG Young Adult Alliance. Quality cancer care for adolescents and young adults: a position statement. J. Clin. Oncol. 28, 4862–4867 (2010).

    Article  PubMed  Google Scholar 

  207. Hayes-Lattin, B., Mathews-Bradshaw, B. & Siegel, S. Adolescent and young adult oncology training for health professionals: a position statement. J. Clin. Oncol. 28, 4858–4861 (2010).

    Article  PubMed  Google Scholar 

  208. Ward, E., DeSantis, C., Robbins, A., Kohler, B. & Jemal, A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 64, 83–103 (2014).

    Article  PubMed  Google Scholar 

  209. Mulcahy Levy, J. M. et al. Late effects of total body irradiation and hematopoietic stem cell transplant in children under 3 years of age. Pediatr. Blood Cancer 60, 700–704 (2013).

    Article  PubMed  Google Scholar 

  210. Wolfe, K. R. et al. Executive functions and social skills in survivors of pediatric brain tumor. Child Neuropsycol. 19, 370–384 (2013).

    Article  Google Scholar 

  211. McClellan, W. et al. Understanding the functional late effects and informational needs of adult survivors of childhood cancer. Oncol. Nurs. Forum 40, 254–262 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Butler, R. W. et al. Interventions to improve neuropsychological functioning in childhood cancer survivors. Dev. Disabil. Res. Rev. 14, 251–258 (2008).

    Article  PubMed  Google Scholar 

  213. Lange, D. D., Wong, A. W., Strauser, D. R. & Wagner, S. Vocational identity, positive affect, and career thoughts in a group of young adult central nervous system cancer survivors. Int. J. Rehabil. Res. 37, 297–301 (2014).

    Article  PubMed  Google Scholar 

  214. Khan, F., Amatya, B., Drummond, K. & Galea, M. Effectiveness of integrated multidisciplinary rehabilitation in primary brain cancer survivors in an Australian community cohort: a controlled clinical trial. J. Rehabil. Med. 46, 754–760 (2014).

    Article  PubMed  Google Scholar 

  215. Schulte, F., Vannatta, K. & Barrera, M. Social problem solving and social performance after a group social skills intervention for childhood brain tumor survivors. Psychooncology 23, 183–189 (2014).

    Article  PubMed  Google Scholar 

  216. Rodgers, S. P., Trevino, M., Zawaski, J. A., Gaber, M. W. & Leasure, J. L. Neurogenesis, exercise, and cognitive late effects of pediatric radiotherapy. Neural Plast. 2013, 698528 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Mulder, R. L., Hudson, M. M., Skinner, R. & Kremer, L. C. Health problems in survivors of childhood cancer: the need for international collaboration in long-term follow-up care. Future Oncol. 9, 1667–1670 (2013).

    Article  CAS  PubMed  Google Scholar 

  218. Han, J. W. et al. Increasing and worsening late effects in childhood cancer survivors during follow-up. J. Korean Med. Sci. 28, 755–762 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  219. CureSearch Children's Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent, and young adult cancers [online], (2008).

  220. Essig, S. et al. Risk of late effects of treatment in children newly diagnosed with standard-risk acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 15, 841–851 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Kwak, M. et al. Prevalence and predictors of post-traumatic stress symptoms in adolescent and young adult cancer survivors: a 1-year follow-up study. Psychooncology 22, 1798–1806 (2013).

    Article  PubMed  Google Scholar 

  222. Gallagher, J. DNA project 'to make UK world genetic research leader'. BBC News [online], (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, and contributed substantially to discussion of content. Both authors wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Leonard Sender.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sender, L., Zabokrtsky, K. Adolescent and young adult patients with cancer: a milieu of unique features. Nat Rev Clin Oncol 12, 465–480 (2015). https://doi.org/10.1038/nrclinonc.2015.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing