Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular and cellular mechanisms of CLL: novel therapeutic approaches

Abstract

The mainstay of therapy of chronic lymphocytic leukemia (CLL) is cytotoxic chemotherapy; however, CLL is still an incurable disease with resistance to therapy developing in the majority of patients. In recent years, our understanding of the biological basis of CLL pathogenesis has substantially improved and novel treatment strategies are emerging. Tailoring and individualizing therapy according to the molecular and cellular biology of the disease is on the horizon, and advances with targeted agents such as monoclonal antibodies combined with traditional chemotherapy have lead to improved remission rates. The proposed key role of the B-cell receptor (BCR) in CLL pathogenesis has led to a number of possible opportunities for therapeutic exploitation. We are beginning to understand that the microenviroment is of utmost importance in CLL because certain T-cell subsets and stromal cells support the outgrowth and development of the malignant clone. Furthermore, an increase in our understanding of the deregulated cell-death machinery in CLL is a prerequisite to developing new targeted strategies that might be more effective in engaging with the cell-death machinery. This Review summarizes the progress made in understanding these features of CLL biology and describes novel treatment strategies that have also been exploited in current clinical trials.

Key Points

  • Antigenic input and B-cell receptor (BCR) signaling are important in the pathophysiology of chronic lymphocytic leukemia (CLL)

  • A number of relevant signals downstream of the BCR signal, or that modify its signal, have been implicated in CLL and are currently exploited as targets for therapy

  • The contribution of accessory immune cells and of stromal microenvironment to CLL pathophysiology is starting to be exploited in a therapeutic fashion

  • CLL-specific proapoptotic and antiapoptotic influences contributed by microenvironmental and immunologic cues allow for a unique opportunity to target the core cell-death machinery in various combinations

  • A large number of early clinical trials exploiting such rationales are currently under way and the results will need careful integration into future therapeutic concepts

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of BCR signaling in the biology of CLL.
Figure 2: Cellular interactions as potential therapeutic targets in the CLL microenvironment.
Figure 3: Therapeutic roads into the Bcl-2 death-signaling machinery.

Similar content being viewed by others

References

  1. Moreton, P. et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J. Clin. Oncol. 23, 2971–2979 (2005).

    CAS  PubMed  Google Scholar 

  2. Bosch, F. et al. Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin. Cancer Res. 14, 155–161 (2008).

    CAS  PubMed  Google Scholar 

  3. Lamanna, N. et al. Sequential therapy with fludarabine, high-dose cyclophosphamide, and rituximab in previously untreated patients with chronic lymphocytic leukemia produces high-quality responses: molecular remissions predict for durable complete responses. J. Clin. Oncol. 27, 491–497 (2009).

    CAS  PubMed  Google Scholar 

  4. Boettcher, S. et al. Quantitative MRD assessments predict progression free survival in CLL patients treated with fludarabine and cyclophosphamide with or without rituximab—a prospective analysis in 471 patients from the randomized GCLLSG CLL8 trial [abstract]. Blood 112, a326 (2008).

    Google Scholar 

  5. Keating, M. J. et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J. Clin. Oncol. 23, 4079–4088 (2005).

    CAS  PubMed  Google Scholar 

  6. Dohner, H. et al. P53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85, 1580–1589 (1995).

    CAS  PubMed  Google Scholar 

  7. Byrd, J. C. et al. Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J. Clin. Oncol. 24, 437–443 (2006).

    CAS  PubMed  Google Scholar 

  8. Xu, J. L. & Davis, M. M. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13, 37–45 (2000).

    CAS  PubMed  Google Scholar 

  9. Maizels, N. Immunoglobulin gene diversification. Annu. Rev. Genet. 39, 23–46 (2005).

    CAS  PubMed  Google Scholar 

  10. William, J. et al. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297, 2066–2070 (2002).

    CAS  PubMed  Google Scholar 

  11. Chiorazzi, N. & Ferrarini, M. B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu. Rev. Immunol. 21, 841–894 (2003).

    CAS  PubMed  Google Scholar 

  12. Messmer, B. T. et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J. Exp. Med. 200, 519–525 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Murray, F. et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 111, 1524–1533 (2008).

    CAS  PubMed  Google Scholar 

  14. Damle, R. N. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94, 1840–1847 (1999).

    CAS  PubMed  Google Scholar 

  15. Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G. & Stevenson, F. K. Unmutated Ig V-H genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999).

    CAS  PubMed  Google Scholar 

  16. Rosenwald, A. et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med. 194, 1639–1647 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Klein, U. et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194, 1625–1638 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Damle, R. N. et al. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99, 4087–4093 (2002).

    CAS  PubMed  Google Scholar 

  19. Stamatopoulos, K. et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood 109, 259–270 (2007).

    CAS  PubMed  Google Scholar 

  20. Athanasiadou, A. et al. Recurrent cytogenetic findings in subsets of patients with chronic lymphocytic leukemia expressing IgG-switched stereotyped immunoglobulins. Haematologica 93, 473–474 (2008).

    PubMed  Google Scholar 

  21. Mauerer, K. et al. Immunoglobulin gene segment usage, location and immunogenicity in mutated and unmutated chronic lymphocytic leukaemia. Br. J. Haematol. 129, 499–510 (2005).

    CAS  PubMed  Google Scholar 

  22. Hamblin, T. J. Prognostic markers in chronic lympocytic leukaemia. Best Pract. Res. Clin. Haematol. 20, 455–468 (2007).

    CAS  PubMed  Google Scholar 

  23. Contri, A. et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J. Clin. Invest. 115, 369–378 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Longo, P. G. et al. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 111, 846–855 (2008).

    CAS  PubMed  Google Scholar 

  25. Fujimoto, M., Poe, J. C., Jansen, P. J., Sato, S. & Tedder, T. F. CD19 amplifies B lymphocyte signal transduction by regulating Src-family protein tyrosine kinase activation. J. Immunol. 162, 7088–7094 (1999).

    CAS  PubMed  Google Scholar 

  26. Alfarano, A. et al. An alternatively spliced form of CD79b gene may account for altered B-cell receptor expression in B-chronic lymphocytic leukemia. Blood 93, 2327–2335 (1999).

    CAS  PubMed  Google Scholar 

  27. Lankester, A. C. et al. Antigen receptor nonresponsiveness in chronic lymphocytic leukemia B cells. Blood 86, 1090–1097 (1995).

    CAS  PubMed  Google Scholar 

  28. Gobessi, S. et al. ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood 109, 2032–2039 (2007).

    CAS  PubMed  Google Scholar 

  29. Wiestner, A. et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101, 4944–4951 (2003).

    CAS  PubMed  Google Scholar 

  30. Durig, J. et al. ZAP-70 expression is a prognostic factor in chronic lymphocytic leukemia. Leukemia 17, 2426–2434 (2003).

    CAS  PubMed  Google Scholar 

  31. Mockridge, C. I. et al. Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood 109, 4424–4431 (2007).

    CAS  PubMed  Google Scholar 

  32. Efremov, D. G., Gobessi, S. & Longo, P. G. Signaling pathways activated by antigen-receptor engagement in chronic lymphocytic leukemia B-cells. Autoimmun. Rev. 7, 102–108 (2007).

    CAS  PubMed  Google Scholar 

  33. Allsup, D. J. et al. B-cell receptor translocation to lipid rafts and associated signaling differ between prognostically important subgroups of chronic lymphocytic leukemia. Cancer Res. 65, 7328–7337 (2005).

    CAS  PubMed  Google Scholar 

  34. Deaglio, S., Vaisitti, T., Aydin, S., Ferrero, E. & Malavasi, F. In-tandem insight from basic science combined with clinical research: CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood 108, 1135–1144 (2006).

    CAS  PubMed  Google Scholar 

  35. Cockayne, D. A. et al. Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses. Blood 92, 1324–1333 (1998).

    CAS  PubMed  Google Scholar 

  36. Deaglio, S. et al. CD38/CD19: a lipid raft-dependent signaling complex in human B cells. Blood 109, 5390–5398 (2007).

    CAS  PubMed  Google Scholar 

  37. Deaglio, S. et al. CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential. Blood 110, 4012–4021 (2007).

    CAS  PubMed  Google Scholar 

  38. Muzio, M. et al. Constitutive activation of distinct BCR-signaling pathways in a subset of CLL patients: a molecular signature of anergy. Blood 112, 188–195 (2008).

    CAS  PubMed  Google Scholar 

  39. Veldurthy, A. et al. The kinase inhibitor dasatinib induces apoptosis in chronic lymphocytic leukemia cells in vitro with preference for a subgroup of patients with unmutated IgVH genes. Blood 112, 1443–1452 (2008).

    CAS  PubMed  Google Scholar 

  40. Garg, R. J. et al. Phase II study of dasatinib in patients with relapsed CLL [abstract]. Blood 112, a4197 (2008).

    Google Scholar 

  41. Castro, J. E. et al. A phase II, open label study of AT-101 in combination with rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Evaluation of two dose regimens [abstract 3119]. Blood 110, 917A–918A (2007).

  42. Hallaert, D. Y. et al. c-Abl kinase inhibitors overcome CD40-mediated drug resistance in CLL [abstract 3078]. Blood 110, 905A (2007).

  43. Amrein, P. C. et al. A phase II study of dasatinib in relapsed and refractory chronic lymphocytic leukemia (CLL/SLL) [abstract 3126]. Blood 110, 920A (2007).

  44. Hirsch, C. L., Smith-Windsor, E. L. & Bonham, K. Src family kinase members have a common response to histone deacetylase inhibitors in human colon cancer cells. Int. J. Cancer 118, 547–554 (2006).

    CAS  PubMed  Google Scholar 

  45. Michie, A. M. & Nakagawa, R. Elucidating the role of protein kinase C in chronic lymphocytic leukaemia. Hematol. Oncol. 24, 134–138 (2006).

    CAS  PubMed  Google Scholar 

  46. Alkan, S. et al. Survival role of protein kinase C (PKC) in chronic lymphocytic leukemia and determination of isoform expression pattern and genes altered by PKC inhibition. Am. J. Hematol. 79, 97–106 (2005).

    CAS  PubMed  Google Scholar 

  47. Abrams, S. T. et al. B-cell receptor signaling in chronic lymphocytic leukemia cells is regulated by overexpressed active protein kinase CbetaII. Blood 109, 1193–1201 (2007).

    CAS  PubMed  Google Scholar 

  48. Barragan, M. et al. Regulation of Akt/PKB by phosphatidylinositol 3-kinase-dependent and -independent pathways in B-cell chronic lymphocytic leukemia cells: role of protein kinase Cβ. J. Leukoc. Biol. 80, 1473–1479 (2006).

    CAS  PubMed  Google Scholar 

  49. Ringshausen, I. et al. Mechanisms of apoptosis-induction by rottlerin: therapeutic implications for B-CLL. Leukemia 20, 514–520 (2006).

    CAS  PubMed  Google Scholar 

  50. Nakagawa, R., Soh, J. W. & Michie, A. M. Subversion of protein kinase C alpha signaling in hematopoietic progenitor cells results in the generation of a B-cell chronic lymphocytic leukemia-like population in vivo. Cancer Res. 66, 527–534 (2006).

    CAS  PubMed  Google Scholar 

  51. Wojciechowski, W., Li, H., Marshall, S., Dell'Agnola, C. & Espinoza-Delgado, I. Enhanced expression of CD20 in human tumor B cells is controlled through ERK-dependent mechanisms. J. Immunol. 174, 7859–7868 (2005).

    CAS  PubMed  Google Scholar 

  52. Jazirehi, A. R., Vega, M. I., Chatterjee, D., Goodglick, L. & Bonavida, B. Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation, and chemosensitization of non-Hodgkin's lymphoma B cells by rituximab. Cancer Res. 64, 7117–7126 (2004).

    CAS  PubMed  Google Scholar 

  53. Marzo, I. et al. Farnesyltransferase inhibitor BMS-214662 induces apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 18, 1599–1604 (2004).

    CAS  PubMed  Google Scholar 

  54. Smal, C. et al. Pharmacological inhibition of the MAPK/ERK pathway increases sensitivity to 2-chloro-2'-deoxyadenosine (CdA) in the B-cell leukemia cell line EHEB. Biochem. Pharmacol. 73, 351–358 (2007).

    CAS  PubMed  Google Scholar 

  55. Caligaris-Cappio, F. & Ghia, P. Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J. Clin. Oncol. 26, 4497–4503 (2008).

    CAS  PubMed  Google Scholar 

  56. Ghia, P., Granziero, L., Chilosi, M. & Caligaris-Cappio, F. Chronic B cell malignancies and bone marrow microenvironment. Semin. Cancer Biol. 12, 149–155 (2002).

    PubMed  Google Scholar 

  57. Mackus, W. J. M. et al. Expansion of CMV-specific CD8+CD45RA+CD27 T cells in B-cell chronic lymphocytic leukemia. Blood 102, 1057–1063 (2003).

    CAS  PubMed  Google Scholar 

  58. Pedersen, I. M. & Reed, J. C. Microenvironmental interactions and survival of CLL B-cells. Leuk. Lymphoma 45, 2365–2372 (2004).

    Google Scholar 

  59. Burger, J. A., Burger, M. & Kipps, T. J. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94, 3658–3667 (1999).

    CAS  PubMed  Google Scholar 

  60. Mainou-Fowler, T., Miller, S., Proctor, S. J. & Dickinson, A. M. The levels of TNF alpha, IL4 and IL10 production by T-cells in B-cell chronic lymphocytic leukaemia (B-CLL). Leuk. Res. 25, 157–163 (2001).

    CAS  PubMed  Google Scholar 

  61. Hamblin, A. D. & Hamblin, T. J. The immunodeficiency of chronic lymphocytic leukaemia. Br. Med. Bull. 87, 49–62 (2008).

    CAS  PubMed  Google Scholar 

  62. Sinisalo, M. et al. Response to vaccination against different types of antigens in patients with chronic lymphocytic leukaemia. Br. J. Haematol. 114, 107–110 (2001).

    CAS  PubMed  Google Scholar 

  63. Serrano, D. et al. Clonal expansion within the CD4+CD57+ and CD8+CD57+ T cell subsets in chronic lymphocytic leukemia. J. Immunol. 158, 1482–1489 (1997).

    CAS  PubMed  Google Scholar 

  64. Kay, N. E., Johnson, J. D., Stanek, R. & Douglas, S. D. T-cell subpopulations in chronic lymphocytic leukemia: abnormalities in distribtuion and in in vitro receptor maturation. Blood 54, 540–544 (1979).

    CAS  PubMed  Google Scholar 

  65. Totterman, T. H., Carlsson, M., Simonsson, B., Bengtsson, M. & Nilsson, K. T-cell activation and subset patterns are altered in B-CLL and correlate with the stage of the disease. Blood 74, 786–792 (1989).

    CAS  PubMed  Google Scholar 

  66. Trojan, A. et al. Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nat. Med. 6, 667–672 (2000).

    CAS  PubMed  Google Scholar 

  67. Ranheim, E. A. & Kipps, T. J. Activated T-cells induce expression of B7/Bb1 on normal or leukemic B-cells through a Cd40-dependent signal. J. Exp. Med. 177, 925–935 (1993).

    CAS  PubMed  Google Scholar 

  68. Ramsay, A. G. et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J. Clin. Invest. 118, 2427–2437 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Frolova, E. A., Scott, S. C. & Jones, R. A. Cd45Ro+ T-cells immunoregulate spontaneous in vitro immunoglobulin production by normal and chronic lymphocytic-leukemia B-cells. Leuk. Lymphoma 18, 103–111 (1995).

    CAS  PubMed  Google Scholar 

  70. Scrivener, S., Kaminski, E. R., Demaine, A. & Prentice, A. G. Analysis of the expression of critical activation/interaction markers on peripheral blood T cells in B-cell chronic lymphocytic leukaemia: evidence of immune dysregulation. Br. J. Haematol. 112, 959–964 (2001).

    CAS  PubMed  Google Scholar 

  71. Tivol, E. A. et al. Loss of Ctla-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of Ctla-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  72. Luqman, M. et al. The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood 112, 711–720 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Messmer, D. & Kipps, T. J. CD154 gene therapy for human B-cell malignancies. Ann. NY Acad. Sci. 1062, 51–60 (2005).

    PubMed  Google Scholar 

  74. Biagi, E. et al. Molecular transfer of CD40 and OX40 ligands to leukemic human B cells induces expansion of autologous tumor-reactive cytotoxic T lymphocytes. Blood 105, 2436–2442 (2005).

    CAS  PubMed  Google Scholar 

  75. Ghia, P. et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur. J. Immunol. 32, 1403–1413 (2002).

    CAS  PubMed  Google Scholar 

  76. Chilosi, M. et al. Immunohistochemical demonstration of follicular dendritic cells in bone-marrow involvement of B-cell chronic lymphocytic-leukemia. Cancer 56, 328–332 (1985).

    CAS  PubMed  Google Scholar 

  77. Ghia, P. et al. The pattern of CD38 expression defines a distinct subset of chronic lymphocytic leukemia (CLL) patients at risk of disease progression. Blood 101, 1262–1269 (2003).

    CAS  PubMed  Google Scholar 

  78. Patten, P. E. M. et al. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood 111, 5173–5181 (2008).

    CAS  PubMed  Google Scholar 

  79. Tinhofer, I. et al. Expression levels of CD38 in T cells predict course of disease in male patients with B-chronic lymphocytic leukemia. Blood 108, 2950–2956 (2006).

    CAS  PubMed  Google Scholar 

  80. Deaglio, S., Aydin, S., Vaisitti, T., Bergui, L. & Malavasi, F. CD38 at the junction between prognostic marker and therapeutic target. Trends Mol. Med. 14, 210–218 (2008).

    CAS  PubMed  Google Scholar 

  81. Kretz-Rommel, A. & Bowdish, K. S. Rationale for anti-CD200 immunotherapy in B-CLL and other hematologic malignancies: new concepts in blocking immune suppression. Expert Opin. Biol. Ther. 8, 5–15 (2008).

    CAS  PubMed  Google Scholar 

  82. Lagneaux, L., Delforge, A., Bron, D., De Bruyn, C. & Stryckmans, P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91, 2387–2396 (1998).

    CAS  PubMed  Google Scholar 

  83. Ogata, T., Yamakawa, M., Imai, Y. & Takahashi, T. Follicular dendritic cells adhere to fibronectin and laminin fibers via their respective receptors. Blood 88, 2995–3003 (1996).

    CAS  PubMed  Google Scholar 

  84. Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    CAS  PubMed  Google Scholar 

  85. Trentin, L. et al. Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood 104, 502–508 (2004).

    CAS  PubMed  Google Scholar 

  86. Burger, M. et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 106, 1824–1830 (2005).

    CAS  PubMed  Google Scholar 

  87. Till, K. J. et al. CLL, but not normal, B cells are dependent on autocrine VEGF and alpha(4) beta(1) integrin for chemokine-induced motility on and through endothelium. Blood 105, 4813–4819 (2005).

    CAS  PubMed  Google Scholar 

  88. Alfonso-Perez, M. et al. Anti-CCR7 monoclonal antibodies as a novel tool for the treatment of chronic lymphocyte leukemia. J. Leukoc. Biol. 79, 1157–1165 (2006).

    CAS  PubMed  Google Scholar 

  89. List, A. F. Lenalidomide—the phoenix rises. N. Engl. J. Med. 357, 2183–2186 (2007).

    CAS  PubMed  Google Scholar 

  90. Richardson, P. Management of the relapsed/refractory myeloma patient: Strategies incorporating lenalidomide. Semin. Hematol. 42 (4 Suppl. 4), S9–S15 (2005).

    CAS  PubMed  Google Scholar 

  91. Mitsiades, C. S., Hayden, P. J., Anderson, K. C. & Richardson, P. G. From the bench to the bedside: emerging new treatments in multiple myeloma. Best Pract. Res. Clin. Haematol. 20, 797–816 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chanan-Khan, A. et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J. Clin. Oncol. 24, 5343–5349 (2006).

    CAS  PubMed  Google Scholar 

  93. Ferrajoli, A. et al. Lenalidomide is active in patients with relapsed/refractory chronic lymphocytic leukemia (CLL) carrying unfavorable chromosomal abnormalities [abstract]. Blood 110, 754A (2007).

  94. Andritsos, L. A. et al. Higher doses of lenalidomide are associated with unacceptable toxicity including life-threatening tumor flare in patients with chronic lymphocytic leukemia. J. Clin. Oncol. 26, 2519–2525 (2008).

    CAS  PubMed  Google Scholar 

  95. Carlo-Stella, C. et al. Targeting TRAIL agonistic receptors for cancer therapy. Clin. Cancer Res. 13, 2313–2317 (2007).

    CAS  PubMed  Google Scholar 

  96. Adams, J. M. & Cory, S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 19, 488–496 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tinhofer, I. et al. Inversion of CD4+/CD8+ ratio in B chronic lymphocytic leukemia correlates with differential sensitivity of CD4+ and CD8+ T lymphocytes to the killing efficacy of Fas (APO-1/CD95) ligand(+) tumor cells. Blood 92, 271B (1998).

    Google Scholar 

  98. Proto-Siqueira, R. et al. SAGE analysis demonstrates increased expression of TOSO contributing to Fas-mediated resistance in CLL. Blood 112, 394–397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chu, P. et al. Latent sensitivity to Fas-mediated apoptosis after CD40 ligation may explain activity of CD154 gene therapy in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 3854–3859 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Anether, G., Tinhofer, I., Senfter, M. & Greil, R. Tetrocarcin-A-induced ER stress mediates apoptosis in B-CLL cells via a Bcl-2-independent pathway. Blood 101, 4561–4568 (2003).

    CAS  PubMed  Google Scholar 

  101. Kater, A. P. et al. Inhibitors of XIAP sensitize CD40-activated chronic lymphocytic leukemia cells to CD95-mediated apoptosis. Blood 106, 1742–1748 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dicker, F., Kater, A. P., Fukuda, T. & Kipps, T. J. Fas-ligand (CD178) and TRAIL synergistically induce apoptosis of CD40-activated chronic lymphocytic leukemia B cells. Blood 105, 3193–3198 (2005).

    CAS  PubMed  Google Scholar 

  103. Inoue, S. et al. Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ. 11 (Suppl. 2), S193–S206 (2004).

    CAS  PubMed  Google Scholar 

  104. MacFarlane, M. et al. Chronic lymphocytic leukemic cells exhibit apoptotic signaling via TRAIL-R1. Cell Death Differ. 12, 773–782 (2005).

    CAS  PubMed  Google Scholar 

  105. Hallaert, D. Y. et al. c-Abl kinase inhibitors overcome CD40-mediated drug resistance in CLL: implications for therapeutic targeting of chemoresistant niches. Blood 112, 5141–5149 (2008).

    CAS  PubMed  Google Scholar 

  106. Smit, L. A. et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood 109, 1660–1668 (2007).

    CAS  PubMed  Google Scholar 

  107. Willimott, S., Baou, M., Naresh, K. & Wagner, S. D. CD154 induces a switch in pro-survival Bcl-2 family members in chronic lymphocytic leukaemia. Br. J. Haematol. 138, 721–732 (2007).

    CAS  PubMed  Google Scholar 

  108. Mackus, W. J. M. et al. Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation. Leukemia 19, 427–434 (2005).

    CAS  PubMed  Google Scholar 

  109. Stankovic, T. et al. Microarray analysis reveals that TP53-and ATM-mutant B-CLLs share a defect in activating proapoptotic responses after DNA damage but are distinguished by major differences in activating prosurvival responses. Blood 103, 291–300 (2004).

    CAS  PubMed  Google Scholar 

  110. Morales, A. A. et al. Expression and transcriptional regulation of functionally distinct Bmf isoforms in B-chronic lymphocytic leukemia cells. Leukemia 18, 41–47 (2004).

    CAS  PubMed  Google Scholar 

  111. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    CAS  PubMed  Google Scholar 

  112. Qi, X. J., Wildey, G. M. & Howe, P. H. Evidence that Ser(87) of Bim(EL) is phosphorylated by Akt and regulates BimEL apoptotic function. J. Biol. Chem. 281, 813–823 (2006).

    CAS  PubMed  Google Scholar 

  113. Pekarsky, Y. et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66, 11590–11593 (2006).

    CAS  PubMed  Google Scholar 

  114. Calin, G. A. et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA 105, 5166–5171 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gowda, A. et al. IL-21 mediates apoptosis through up-regulation of the BH3 family member BIM and enhances both direct and antibody-dependent cellular cytotoxicity in primary chronic lymphocytic leukemia cells in vitro. Blood 111, 4723–4730 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302, 1036–1038 (2003).

    CAS  PubMed  Google Scholar 

  118. Zenz, T. et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 112, 3322–3329 (2008).

    CAS  PubMed  Google Scholar 

  119. Austen, B. et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J. Clin. Oncol. 25, 5448–5457 (2007).

    CAS  PubMed  Google Scholar 

  120. Gryshchenko, I. et al. MDM2 SNP309 is associated with poor outcome in B-cell chronic lymphocytic leukemia. J. Clin. Oncol. 26, 2252–2257 (2008).

    CAS  PubMed  Google Scholar 

  121. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    CAS  PubMed  Google Scholar 

  122. Dicker, F. et al. CD154 induces p73 to overcome the resistance to apoptosis of chronic lymphocytic leukemia cells lacking functional p53. Blood 108, 3450–3457 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. O'Brien, S. et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J. Clin. Oncol. 25, 1114–1120 (2007).

    CAS  PubMed  Google Scholar 

  124. O'Brien, S. M. et al. Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J. Clin. Oncol. 23, 7697–7702 (2005).

    CAS  PubMed  Google Scholar 

  125. Labi, V., Grespi, F., Baumgartner, F. & Villunger, A. Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ. 15, 977–987 (2008).

    CAS  PubMed  Google Scholar 

  126. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    CAS  PubMed  Google Scholar 

  127. Trudel, S. et al. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015–070) in multiple myeloma. Blood 109, 5430–5438 (2007).

    CAS  PubMed  Google Scholar 

  128. Nguyen, M. et al. Small molecule obatoclax (GX15–070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl Acad. Sci. USA 104, 19512–19517 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. O'Brien, S. M. et al. Phase I study of obatoclax mesylate (GX15–070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 113, 299–305 (2008).

    PubMed  Google Scholar 

  130. Wilson, W. H. et al. A phase 1 study evaluating the safety, pharmacokinetics, and efficacy of ABT-263 in subjects with refractory or relapsed lymphoid malignancies [abstract]. J. Clin. Oncol. 26, a8511 (2008).

    Google Scholar 

  131. Balakrishnan, K., Burger, J. A., Wierda, W. G. & Gandhi, V. AT-101 induces apoptosis in CLL B-cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 113, 149–153 (2008).

    PubMed  Google Scholar 

  132. Aloyz, R. et al. Imatinib sensitizes CLL lymphocytes to chlorambucil. Leukemia 18, 409–414 (2004).

    CAS  PubMed  Google Scholar 

  133. Mansour, A., Chang, V. T., Srinivas, S., Harrison, J. & Raveche, E. Correlation of ZAP-70 expression in B cell leukemias to the ex vivo response to a combination of fludarabine/genistein. Cancer Immunol. Immunother. 56, 501–514 (2007).

    CAS  PubMed  Google Scholar 

  134. Ganeshaguru, K. et al. Actions of the selective protein kinase C inhibitor PKC412 on B-chronic lymphocytic leukemia cells in vitro. Haematologica 87, 167–176 (2002).

    CAS  PubMed  Google Scholar 

  135. Varterasian, M. L. et al. Phase II trial of bryostatin 1 in patients with relapsed low-grade non-Hodgkin's lymphoma and chronic lymphocytic leukemia. Clin. Cancer Res. 6, 825–828 (2000).

    CAS  PubMed  Google Scholar 

  136. Roberts, J. D. et al. Phase I study of bryostatin 1 and fludarabine in patients with chronic lymphocytic leukemia and indolent (non-Hodgkin's) lymphoma. Clin. Cancer Res. 12, 5809–5816 (2006).

    CAS  PubMed  Google Scholar 

  137. Galli, U. et al. Synthesis and biological evaluation of isosteric analogues of FK866, an inhibitor of NAD salvage. ChemMedChem. 3, 771–779 (2008).

    CAS  PubMed  Google Scholar 

  138. Rhodes, N. et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res. 68, 2366–2374 (2008).

    CAS  PubMed  Google Scholar 

  139. Zeng, Z. et al. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol. Cancer Ther. 5, 3113–3121 (2006).

    CAS  PubMed  Google Scholar 

  140. Cornall, R. J. et al. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8, 497–508 (1998).

    CAS  PubMed  Google Scholar 

  141. Xu, Y., Beavitt, S. J., Harder, K. W., Hibbs, M. L. & Tarlinton, D. M. The activation and subsequent regulatory roles of Lyn and CD19 after B cell receptor ligation are independent. J. Immunol. 169, 6910–6918 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Petra Desch for skillful support with graphical presentation. The work of the authors is supported by FWF grants L488-B13, P19481-B12, and SFB 021-P11 and grants of the Province of Salzburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Greil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleyer, L., Egle, A., Hartmann, T. et al. Molecular and cellular mechanisms of CLL: novel therapeutic approaches. Nat Rev Clin Oncol 6, 405–418 (2009). https://doi.org/10.1038/nrclinonc.2009.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing