Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stable angina pectoris: antianginal therapies and future directions

Abstract

Advances in pharmacotherapy for stable angina have produced a wide choice of drugs with various mechanisms of action, potentially enabling individualized, patient-specific treatment strategies to be developed. In this Review, the various treatment options for patients with stable angina are discussed. Data from randomized, clinical trials of established and novel drugs are reviewed, with particular emphasis on the proposed mechanisms of action, benefits of therapy, and adverse-effect profiles. The role of coronary revascularization in conjunction with optimal medical therapy as a treatment strategy is discussed, although drug therapy might reduce the need for prompt revascularization if the procedure is being considered solely for the purpose of alleviating angina. Finally, trials to investigate stimulation of angiogenesis using growth-factor, gene, and cell therapy are used to illustrate the challenges of chemically inducing the growth of adequate, durable blood vessels.

Key Points

  • No antianginal pharmacotherapy has been shown to prolong life or prevent myocardial infarction in patients with stable angina and normal left ventricular function, but drugs can improve quality of life

  • Multiple classes of drugs are available to manage stable angina; the choice of therapy should be individualized depending on comorbid conditions and left ventricular systolic function

  • β-Adrenergic-receptor blockers are the usual first-line therapy to reduce the myocardial oxygen requirements that occur with physical exertion—a common precipitating cause of angina

  • Ivabradine and ranolazine are two novel drugs with demonstrated efficacy and safety that expand therapeutic options for patients with stable angina

  • Coronary revascularization can alleviate angina more effectively than antianginal drugs; however, in the absence of high-risk coronary disease, optimal therapy with antianginal medications can obviate the need for coronary revascularization

  • Investigational therapies that stimulate angiogenesis are early in development and require much larger trials of efficacy and safety than previously performed, to assess their potential treatment benefit

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of ranolazine on ST-segment depression, rate–pressure product, and exercise duration.
Figure 2: Results of the ASSOCIATE study into ivabradine.65
Figure 3: Results of the BEAUTIFUL trial into ivabradine.72
Figure 4: Results of the COURAGE trial.100

Similar content being viewed by others

References

  1. Gibbons, R. J. et al. ACC/AHA 2002 guideline update for the management of patients with stable angina—summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Chronic Stable Angina). Circulation 107, 149–158 (2003).

    Article  PubMed  Google Scholar 

  2. Fraker, T. D. Jr et al. 2007 chronic angina focused update of the ACC/AHA 2002 Guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 Guidelines for the management of patients with chronic stable angina. Circulation 116, 2762–2772 (2007).

    Article  PubMed  Google Scholar 

  3. Fox, K. et al. Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur. Heart J. 27, 1341–1381 (2006).

    Article  PubMed  Google Scholar 

  4. Smith, S. C. et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update. Endorsed by the National Heart, Lung, and Blood Institute. Circulation 113, 2363–2372 (2006).

    Article  PubMed  Google Scholar 

  5. Boden, W. E. et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 356, 1503–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Maron, D. J. et al. Intensive multifactorial intervention for stable coronary artery disease: optimal medical therapy in the COURAGE trial. J. Am. Coll. Cardiol. 55, 1348–1358 (2010).

    Article  PubMed  Google Scholar 

  7. The BARI 2D Study Group. A randomized trial of therapy for type 2 diabetes and coronary artery disease. N. Engl. J. Med. 360, 2503–2515 (2009).

  8. Chaitman, B. R. et al. The Bypass Angioplasty Revascularization Investigation 2 Diabetes randomized trial of different treatment strategies in type 2 diabetes mellitus with stable ischemic heart disease. Impact of treatment strategy on cardiac mortality and myocardial infarction. Circulation 120, 2529–2540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaitman, B. R., Hadid, M. & Laddu, A. A. Choice of initial medical therapy vs. prompt coronary revascularization in patients with type 2 diabetes and stable ischemic coronary disease with special emphasis on the BARI 2D trial results. Curr. Opin. Cardiol. 25, 597–602 (2010).

    Article  PubMed  Google Scholar 

  10. Simoons, M. L. & Windecker, S. Chronic stable coronary artery disease: drugs vs. revascularization. Eur. Heart J. 31, 530–541 (2010).

    Article  PubMed  Google Scholar 

  11. Bakris, G. L. et al. Metabolic effects of carvedilol vs. metoprolol in patients with type 2 diabetes mellitus and hypertension. A randomized controlled trial. JAMA 292, 2227–2236 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Weiss, R. et al. Effectiveness of three different doses of carvedilol for exertional angina. Carvedilol Angina Study Group. Am. J. Cardiol. 82, 927–931 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. van der Does, R. et al. Comparison of safety and efficacy of carvedilol and metoprolol in stable angina pectoris. Am. J. Cardiol. 83, 643–649 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Hauf-Zachariou, U. et al. Carvedilol versus verapamil in chronic stable angina: a multicentre trial. Eur. J. Clin. Pharmacol. 52, 95–100 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Bangalore, S., Parkar, S., Grossman, E. & Messerli, F. H. A meta-analysis of 94,492 patients with hypertension treated with beta blockers to determine the risk of new-onset diabetes mellitus. Am. J. Cardiol. 100, 1254–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Elliott, W. J. & Meyer, P. M. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 269, 201–207 (2007).

    Article  CAS  Google Scholar 

  17. Kobusiak-Prokopowicz, M. et al. Impact of nebivolol on levels of serum nitric oxide, plasma von Willebrand factor and exercise stress testing parameters in hypertensive and ischemic heart disease patients. Cardiol. J. 15, 162–168 (2008).

    PubMed  Google Scholar 

  18. Gumbrielle, T. et al. Efficacy, safety and duration of nitrate-free interval to prevent tolerance to transdermal nitroglycerin in effort angina. Eur. Heart J. 13, 671–678 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Chaitman, B. R. & Sano, J. Novel therapeutic approaches to treating chronic angina in the setting of chronic ischemic heart disease. Clin. Cardiol. 30 (Suppl. 1), I25–I30 (2007).

    Article  PubMed  Google Scholar 

  20. Ciapponi, A., Pizzarro, R. & Harrison, J. Trimetazidine for stable angina. Cochrane Database of Systematic Reviews, Issue 4, Art. No.: CD003614. doi:10.1002/14651858.CD003614.pub2 (2005).

  21. Ribeiro, L. W., Ribeiro, J. P., Stein, R., Leitao, C. & Polanczyk, C. A. Trimetazidine added to combined hemodynamic antianginal therapy in patients with type 2 diabetes: a randomized crossover trial. Am. Heart J. 154, 78.e1–78.e7 (2007).

    Article  Google Scholar 

  22. MacInnes, A. et al. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ. Res. 93, e26–e32 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Marazzi, G. et al. Effect of fatty acid inhibition on silent and symptomatic myocardial ischemic in diabetic patients with coronary artery disease. Int. J. Cardiol. 120, 79–84 (2007).

    Article  PubMed  Google Scholar 

  24. IONA Study Group. Effect of nicorandil on coronary events in patients with stable angina: the Impact of Nicorandil of Angina (IONA) randomised trial. Lancet 359, 1269–1275 (2002).

  25. IONA Study Group. Determinants of coronary events in patients with stable angina: results from the Impact of Nicorandil in Angina Study. Am. Heart J. 150, 689.e1–689.e9 (2005).

  26. Simpson, D. & Wellington, K. Nicorandil: a review of its use in the management of stable angina pectoris, including high-risk patients. Drugs 64, 1941–1955 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Hanai, Y., Mita, M., Hishinuma, S. & Shoji, M. Systematic review on the short-term efficacy and safety of nicorandil for stable angina pectoris in comparison with those of β-blockers, nitrates and calcium antagonists. J. Pharmaceut. Soc. Japan 130, 1549–1563 (2010).

    Article  CAS  Google Scholar 

  28. Chaitman, B. R. Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation 113, 2462–2472 (2006).

    Article  PubMed  Google Scholar 

  29. Antzelevitch, C. et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 110, 904–910 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Makielski, J. C. & Valdivia, C. R. Ranolazine and late cardiac sodium current—a therapeutic target for angina, arrhythmia and more? Br. J. Pharmacol. 148, 4–6 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaitman, B. R. et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J. Am. Coll. Cardiol. 43, 1375–1382 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Chaitman, B. R. et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina. JAMA 291, 309–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Stone, P. H., Gratsiansky, N. A., Blokhin, A., Huang, I. Z. & Meng, L. Antianginal efficacy of ranolazine when added to treatment with amlodipine: the ERICA (Efficacy of Ranolazine in Chronic Angina) trial. J. Am. Coll. Cardiol. 48, 566–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Stone, P. H. et al. The anti-ischemic mechanism of action of ranolazine in stable ischemic heart disease. J. Am. Coll. Cardiol. 56, 934–942 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Venkataraman, R., Belardinelli, L., Blackburn, B., Heo, J. & Iskandrian, A. E. A study of the effects of ranolazine using automated quantitative analysis of serial myocardial perfusion images. J. Am. Coll. Cardiol. Cardiovasc. Imaging 2, 1301–1309 (2009).

    Article  Google Scholar 

  36. US National Library of Medicine. Study the Effects of Ranolazine on Myocardial Perfusion Assessed by Serial Quantitative Exercise SPECT Imaging. ClinicalTrials.gov[online], (2011).

  37. Timmis, A. D., Chaitman, B. R. & Crager, M. Effects of ranolazine on exercise tolerance and HbA1c in patients with chronic angina and diabetes. Eur. Heart J. 27, 42–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Morrow, D. A. et al. Evaluation of the glycometabolic effects of ranolazine in patients with and without diabetes mellitus in the MERLIN-TIMI 36 randomized controlled trial. Circulation 119, 2032–2039 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Chisholm, J. W. et al. Effect of ranolazine on A1C and glucose levels in hyperglycemic patients with non-ST elevation acute coronary syndrome. Diabetes Care 33, 1163–1168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ning, Y. et al. Ranolazine increases β-cell survival and improves glucose homeostasis in low dose STZ-induced diabetes in mice. J. Pharmacol. Exp. Ther. 337, 50–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Morrow, D. A. et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes. The MERLIN-TIMI 36 randomized trial. JAMA 297, 1775–1783 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Mega, J. L. et al. Clinical features and outcomes of women with unstable ischemic heart disease. Observations from Metabolic Efficiency with Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome–Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36). Circulation 121, 1809–1817 (2010).

    Article  PubMed  Google Scholar 

  43. Morrow, D. A. et al. B-type natriuretic peptide and the effect of ranolazine in patients with non-ST-segment elevation acute coronary syndromes. Observations from the MERLIN-TIMI 36 (Metabolic Efficiency with Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome–Thrombolysis in Myocardial Infarction 36) trial. J. Am. Coll. Cardiol. 55, 1189–1196 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Wilson, S. R. et al. Efficacy of ranolazine in patients with chronic angina. Observations from the randomized, double-blind, placebo-controlled MERLIN-TIMI (Metabolic Efficiency with Ranolazine for Less Ischemia in Non-ST-Segment Elevation Acute Coronary Syndromes) 36 trial. J. Am. Coll. Cardiol. 53, 1510–1516 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Scirica, B. M. et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non-ST-segment-elevation acute coronary syndrome. Results from the Metabolic Efficiency with Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome–Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 116, 1647–1652 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Scirica, B. M. et al. Relationship between nonsustained ventricular tachycardia after non-ST-elevation acute coronary syndrome and sudden cardiac death. Observations from the Metabolic Efficiency with Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome–Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 122, 455–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Scirica, B. M. et al. Ischemia detected on continuous electrocardiography after acute coronary syndrome. Observations from the MERLIN-TIMI 36 (Metabolic Efficiency with Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome–Thrombolysis in Myocardial Infarction 36) trial. J. Am. Coll. Cardiol. 53, 1411–1421 (2009).

    Article  PubMed  Google Scholar 

  48. US National Library of Medicine. Ranolazine Implantable Cardioverter-Defibrillator Trial (RAID). ClinicalTrials.gov[online], (2010).

  49. Burashnikov, A., Di Diego, J. M., Zygmunt, A. C., Belardinelli, L. & Antzelevitch, C. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation. Differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation 116, 1449–1457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sossalla, S. et al. Altered Na+ currents in atrial fibrillation. Effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J. Am. Coll. Cardiol. 55, 2330–2342 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Sicouri, S., Burashnikov, A., Belardinelli, L. & Antzelevitch, C. Synergistic electrophysiologic and antiarrhythmic effects of the combination of ranolazine and chronic amiodarone in canine atria. Circ. Arrhythm. Electrophysiol. 3, 88–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Moss, A. J. et al. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J. Cardiovasc. Electrophysiol. 19, 1289–1293 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Antoons, G. et al. Late Na+ current inhibition by ranolazine reduces torsades de pointes in the chronic atrioventricular block dog model. J. Am. Coll. Cardiol. 55, 801–809 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Dhalla, A. K. et al. Ranolazine, an antianginal agent, markedly reduces ventricular arrhythmias induced by ischemia and ischemia–reperfusion. Am. J. Physiol. Heart Circ. Physiol. 297, H1923–H1929 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Hwang, H. et al. Ranolazine as a cardioplegia additive improves recovery of diastolic function in isolated rat hearts. Circulation 120, S16–S21 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Lindegger, N., Hagen, B., Marks, A. R., Lederer, W. J. & Kass, R. S. Diastolic transient inward current in long QT syndrome type 3 is caused by Ca2+ overload and inhibited by ranolazine. J. Mol. Cell. Cardiol. 47, 326–334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma, A. et al. A pilot study of ranolazine in patients with intermittent claudication. Int. Angiol. 25, 361–369 (2006).

    CAS  PubMed  Google Scholar 

  58. Miles, R. H., Passman, R. & Murdoch, D. K. Comparison of effectiveness and safety of ranolazine versus amiodarone for preventing atrial fibrillation after coronary artery bypass grafting. Am. J. Cardiol. 108, 673–676 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Jacobshagen, C., Belardinelli, L., Hasenfuss, G. & Maier, L. S. Ranolazine for the treatment of heart failure with preserved ejection fraction: background, aims and design of the RALI-DHF study. Clin. Card. 34, 426–432 (2011).

    Article  Google Scholar 

  60. Rich, M. W., Crager, M. & McKay, C. R. Safety and efficacy of extended-release ranolazine in patients aged 70 years or older with chronic stable angina pectoris. Am. J. Geriatr. Cardiol. 16, 216–221 (2007).

    Article  PubMed  Google Scholar 

  61. DiFrancesco, D. The role of the funny current in pacemaker activity. Circ. Res. 106, 434–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Baruscotti, M., Barbuti, A. & Bucchi, A. The cardiac pacemaker current. J. Mol. Cell. Cardiol. 48, 55–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Savelieva, I. & Camm, A. J. If inhibition with ivabradine: electrophysiological effects and safety. Drug Safety 31, 95–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Fernandez, S. F., Tandar, A. & Boden, W. E. Emerging medical treatment for angina pectoris. Expert Opin. Emerging Drugs 15, 283–298 (2010).

    Article  CAS  Google Scholar 

  65. Tardif, J. C. et al. Efficacy of the If current inhibitor ivabradine in patients with chronic stable angina receiving beta-blocker therapy: a 4-month, randomized, placebo-controlled trial. Eur. Heart J. 30, 540–548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Borer, J. S., Fox, K., Jaillon, P. & Lerebours, G. Antianginal and antiischemic effects of ivabradine, an If inhibitor, in stable angina: a randomized, double-blind, multicentered, placebo-controlled trial. Circulation 107, 817–823 (2003).

    Article  PubMed  Google Scholar 

  67. Tardif, J.-C. et al. Efficacy of ivabradine, a new selective If inhibitor, compared with atenolol in patients with chronic stable angina. Eur. Heart J. 26, 2529–2536 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Tendera, M., Borer, J. S. & Tardif, J.-C. Efficacy of If inhibition with ivabradine in different subpopulations with stable angina pectoris. Cardiology 114, 116–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Demontis, G. C., Gargini, C., Paoli, T. G. & Cervetto, L. Selective Hcn1 channels inhibition by ivabradine in mouse rod photoreceptors. Invest. Ophthalmol. Vis. Sci. 50, 1948–1955 (2009).

    Article  PubMed  Google Scholar 

  70. Fox, K. et al. Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomized controlled trial. Lancet 372, 817–821 (2008).

    Article  PubMed  Google Scholar 

  71. Fox, K. et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomized, double-blind, placebo-controlled trial. Lancet 372, 807–816 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Fox, K. et al. Relationship between ivabradine treatment and cardiovascular outcomes in patients with stable coronary artery disease and left ventricular systolic dysfunction with limiting angina: a subgroup analysis of the randomized, controlled BEAUTIFUL trial. Eur. Heart J. 30, 2337–2345 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Swedberg, K. et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376, 875–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Bohm, M. et al. Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 376, 886–894 (2010).

    Article  PubMed  Google Scholar 

  75. Ferrari, R. A step further with ivabradine: SIGNIfY (Study assessInG the morbidity–mortality beNefits of the If inhibitor ivabradine in patients with coronarY artery disease). Eur. Heart J. Suppl. 11 (Suppl. D), D19–D27 (2009).

    Article  CAS  Google Scholar 

  76. Steg, P. G. Heart rate management in coronary artery disease: the CLARIFY registry. Eur. Heart J. Suppl. 11 (Suppl. D), D13–D18 (2009).

    Article  Google Scholar 

  77. Dominguez-Rodriguez, A. et al. Randomised, double-blind, placebo-controlled trial of ivabradine in patients with acute coronary syndrome: effects of the If current inhibitor ivabradine on reduction of inflammation markers in patients with acute coronary syndrome—RIVIERA trial study design and rationale. Cardiovasc. Drugs Ther. 23, 243–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Trippodo, N. C. et al. Combined inhibition of neutral endopeptidase and angiotensin converting enzyme in cardiomyopathic hamsters with compensated heart failure J. Pharmacol. Exp. Ther. 267, 108–116 (1993).

    CAS  PubMed  Google Scholar 

  79. Chaitman, B. R. et al. Antianginal efficacy of omapatrilat in patients with chronic angina pectoris. Am. J. Cardiol. 95, 1283–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Vicari, R. M. et al. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial. J. Am. Coll. Cardiol. 46, 1803–1811 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Noman, A., Ang, D. S., Ogston, S., Lang, C. C. & Struthers, A. D. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomized, placebo controlled crossover trial. Lancet 375, 2161–2167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Khatib, S. Y, Farah, H. & El-Migdadi, F. Allopurinol enhances adenine nucleotide levels and improves myocardial function in isolated hypoxic rat heart. Biochemistry (Mosc.) 66, 328–333 (2001).

    Article  CAS  Google Scholar 

  83. Grines, C. L. et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J. Am. Coll. Cardiol. 42, 1339–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Reilly, J. P. et al. Long-term (2-year) clinical events following transthoracic intramyocardial gene transfer of VEGF-2 in no-option patients. J. Interven. Cardiol. 81, 27–31 (2005).

    Article  Google Scholar 

  85. Losordo, D. W. et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105, 2012–2018 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Losordo, D. W. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina. A phase I/IIa double-blind, randomized controlled trial. Circulation 115, 3165–3172 (2007).

    Article  PubMed  Google Scholar 

  87. Shantsila, E., Watson, T. & Lip, G. Y. Endothelial progenitor cells in cardiovascular disorders. J. Am. Coll. Cardiol. 49, 741–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Henry, T. D. et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J. Am. Coll. Cardiol. 50, 1038–1046 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Ylä-Herttuala, S., Rissanen, T. T., Vajanto, I. & Hartikainen, J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J. Am. Coll. Cardiol. 49, 1015–1026 (2007).

    Article  PubMed  CAS  Google Scholar 

  90. Simons, M. et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: Double-blind, randomized, controlled clinical trial: FGF Initiating RevaScularization Trial (FIRST). Circulation 105, 788–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Henry, T. et al. The VIVA trial: Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107, 1359–1365 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Attanasio, S. & Schaer, G. Therapeutic angiogenesis for the management of refractory angina: current concepts. Cardiovasc. Ther. doi: 10.1111/j.1755–59222010.00153.x.

  93. Grines, C. et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 105, 1291–1297 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Kastrup, J. et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris: The Euroinject One trial. J. Am. Coll. Cardiol. 45, 982–988 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Gupta, R., Tongers, J. & Losordo, D. W. Human studies of angiogenic gene therapy. Circ. Res. 105, 724–736 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Ramshorst, J. et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: A randomized controlled trial. JAMA 301, 1997–2004 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Lathi, K. G. et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease: anesthetic management and results. Anesth. Analg. 92, 19–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Losordo, D. W. et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ. Res. 109, 428–436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tongers, J., Losordo, D. W. & Landmesser, U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur. Heart J. 32, 1197–1206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weintraub, W. S. et al. Effect of PCI on quality of life in patients with stable coronary disease. N. Engl. J. Med. 359, 677–687 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Hlatky, M. A. et al. Economic outcomes of treatment strategies for type 2 diabetes mellitus and coronary artery disease in the Bypass Angioplasty Revascularization Investigation 2 Diabetes trial. Circulation 120, 2550–2558 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Brooks, M. M. et al. Health status after treatment for coronary artery disease and type 2 diabetes mellitus in the Bypass Angioplasty Revascularization Investigation 2 Diabetes trial. Circulation 122, 1690–1699 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Velazquez, E. J. et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 364, 1607–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonow, R. O. et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N. Engl. J. Med. 364, 1617–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dagenais, G. R. et al. Effects of optimal medical treatment with or without coronary revascularization on angina and subsequent revascularization in patients with type 2 diabetes mellitus and stable ischemic heart disease. Circulation 123, 1492–1500 (2011).

    Article  PubMed  Google Scholar 

  106. Wijeysundera, H. C., Nallamothu, B. K., Krumholz, H. M., Tu, J. V. & Ko, D. T. Meta-analysis: Effects of percutaneous coronary intervention versus medical therapy on angina relief. Ann. Intern. Med. 152, 370–379 (2010).

    Article  PubMed  Google Scholar 

  107. The BARI 2D Study Group et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N. Eng. J. Med. 360, 2503–2515 (2009).

  108. Farkouh, M. E. et al. Design of the Future REvascularization Evaluation in patients with Diabetes mellitus: Optimal management of Multivessel disease (FREEDOM) Trial. Am. Heart J. 155, 215–223 (2008).

    Article  PubMed  Google Scholar 

  109. US National Institutes of Health. PROspective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE). ClinicalTrials.gov[online], (2010).

  110. US National Institutes of Health. Randomized Evaluation of Patients With Stable Angina Comparing Diagnostic Examinations (RESCUE). ClinicalTrials.gov[online], (2011).

  111. ISCHEMIA Trial. ISCHEMIA Trial. International Study of Comparative Health Effectiveness with Medical and Invasive Approaches[online], (2011).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to researching, discussing, writing, and editing the manuscript.

Corresponding author

Correspondence to Bernard R. Chaitman.

Ethics declarations

Competing interests

B. R. Chaitman is or has been a consultant for the following companies: Forest Pharmaceuticals, Gilead Sciences, Lilly, Merck, and Pfizer. Additionally, he has received honoraria from Gilead Sciences. A. A. Laddu declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaitman, B., Laddu, A. Stable angina pectoris: antianginal therapies and future directions. Nat Rev Cardiol 9, 40–52 (2012). https://doi.org/10.1038/nrcardio.2011.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing