Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gender differences in the cardiovascular effect of sex hormones

Abstract

The higher incidence of cardiovascular disease in men than in women of similar age, and the menopause-associated increase in cardiovascular disease in women, has led to speculation that gender-related differences in sex hormones have a key role in the development and evolution of cardiovascular disease. Compelling data have indicated that sex differences in vascular biology are determined not only by gender-related differences in sex steroid levels, but also by gender-specific tissue and cellular differences that mediate sex-specific responses. In this Review, we describe the sex-specific effects of estrogen and testosterone on cardiovascular risk, direct vascular effects of these sex hormones, and how these effects influence development of atherosclerosis. Cardiovascular effects of exogenous hormone administration are also discussed. Importantly, evidence has indicated that estrogens alone or in combination with progestins in postmenopausal women increase cardiovascular risk if started late after menopause, but that it possibly has beneficial cardiovascular effects in younger postmenopausal women, although data on long-term testosterone therapy are lacking. Hormone therapy should not be considered solely for primary prevention or treatment of cardiovascular disease at this time.

Key Points

  • Sex hormones influence cardiovascular risk factors and vascular biology in a sex-specific manner

  • Physiological estrogens have beneficial vascular effects in both sexes; in women their effect is dependent on the time of estrogen deprivation

  • Physiological androgens improve vascular functions and risk factors in men; in women, their effects depend on background estrogen levels

  • Estrogens alone or in combination with progestins in women possibly have a protective effect on coronary heart disease if started early after onset of menopause, but long-term data are lacking

  • At this stage, estrogens alone or in combination with progestins should be prescribed only for relief of menopausal symptoms

  • Long-term interventional studies with androgen supplementation within the physiological range in men are lacking and, therefore, warranted

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fat distribution and estrogen production.
Figure 2: Receptor-mediated modes of action of sex steroids in vascular cells.
Figure 3: Different effects of testosterone and estrogens in male and female rabbits.

Similar content being viewed by others

References

  1. Kannel, W. B., Hjortland, M. C., McNamara, P. M. & Gordon, T. Menopause and risk of cardiovascular disease: the Framingham study. Ann. Intern. Med. 85, 447–452 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Vitale, C. et al. Cardiovascular Effects of Transdermal Testosterone in Postmenopausal Women [abstract 5063]. Circulation 118 (Suppl.), S1137–S1138 (2008).

    Google Scholar 

  3. Liu, Y. et al. Relative androgen excess and increased cardiovascular risk after menopause: a hypothesized relation. Am. J. Epidemiol. 154, 489–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Wild, S., Pierpoint, T., McKeigue, P. & Jacobs, H. S. Cardiovascular disease in women with polycystic ovary syndrome at long-term follow-up: a retrospective cohort study. Clin. Endocrinol. (Oxf.) 52, 595–600 (2000).

    Article  CAS  Google Scholar 

  5. Hulley, S. et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280, 605–613 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, G. L. et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291, 1701–1712 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Barrett-Connor, E. L., Cohn, B. A., Wingard, D. L. & Edelstein, S. L. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study. JAMA 265, 627–631 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Ding, E. L., Song, Y., Malik, V. S. & Liu, S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 295, 1288–1299 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Snyder, P. J. et al. Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J. Clin. Endocrinol. Metab. 84, 2647–2653 (1999).

    CAS  PubMed  Google Scholar 

  11. Katznelson, L. et al. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J. Clin. Endocrinol. Metab. 81, 4358–4365 (1996).

    CAS  PubMed  Google Scholar 

  12. Ferrannini, E. et al. Insulin resistance, hyperinsulinemia, and blood pressure: role of age and obesity. European Group for the Study of Insulin Resistance (EGIR). Hypertension 30, 1144–1149 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Maggio, M. et al. Estradiol and Metabolic Syndrome in Older Italian Men: The InCHIANTI Study. J. Androl. doi: 10.2164/jandrol.108.006098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Knopp, R. H., Zhu, X. & Bonet, B. Effects of estrogens on lipoprotein metabolism and cardiovascular disease in women. Atherosclerosis 110 (Suppl.), S83–S91 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. [No authors listed] Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. The Writing Group for the PEPI Trial. JAMA 273, 199–208 (1995).

    Article  Google Scholar 

  16. Hsia, J. et al. Lipoprotein particle concentrations may explain the absence of coronary protection in the women's health initiative hormone trials. Arterioscler. Thromb. Vasc. Biol. 28, 1666–1671(2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walton, C., Godsland, I. F., Proudler, A. J., Wynn, V. & Stevenson, J. C. The effects of the menopause on insulin sensitivity, secretion and elimination in non-obese, healthy women. Eur. J. Clin. Invest. 23, 466–473 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Steinberg, H. O. et al. Type II diabetes abrogates sex differences in endothelial function in premenopausal women. Circulation 101, 2040–2046 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Reckelhoff, J. F. Gender differences in the regulation of blood pressure. Hypertension 37, 1199–1208 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Lightman, A. et al. The ovarian renin–angiotensin system: renin-like activity and angiotensin II/III immunoreactivity in gonadotropin-stimulated and unstimulated human follicular fluid. Am. J. Obstet. Gynecol. 156, 808–816 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Fischer, M., Baessler, A. & Schunkert, H. Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc. Res. 53, 672–677 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Belmin, J., Lévy, B. I. & Michel, J. B. Changes in the renin–angiotensin–aldosterone axis in later life. Drugs Aging 5, 391–400 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Brown, N. J., Abbas, A., Byrne, D., Schoenhard, J. A. & Vaughan, D. E. Comparative effects of estrogen and angiotensin-converting enzyme inhibition on plasminogen activator inhibitor-1 in healthy postmenopausal women. Circulation 105, 304–309 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Hernandez Schulman, I & Raij, L. Salt sensitivity and hypertension after menopause: role of nitric oxide and angiotensin II. Am. J. Nephrol. 26, 170–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Schunkert, H. et al. Effects of estrogen replacement therapy on the renin–angiotensin system in postmenopausal women. Circulation 95, 39–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. D'Amico, A. V., Chen, M. H., Renshaw, A. A., Loffredo, M. & Kantoff, P. W. Causes of death in men undergoing androgen suppression therapy for newly diagnosed localized or recurrent prostate cancer. Cancer 113, 3290–3297 (2008).

    Article  PubMed  Google Scholar 

  27. Khaw, K. T. & Barrett-Connor, E. Endogenous sex hormones, high density lipoprotein cholesterol, and other lipoprotein fractions in men. Arterioscler. Throm. 11, 489–494 (1991).

    Article  CAS  Google Scholar 

  28. Simon, D. et al. Association between plasma total testosterone and cardiovascular risk factors in healthy adult men: The Telecom Study. J. Clin. Endocrinol. Metab. 82, 682–685 (1997).

    CAS  PubMed  Google Scholar 

  29. Sutton-Tyrrell, K. et al. Sex hormone–binding globulin and the free androgen index are related to cardiovascular risk factors in multiethnic premenopausal and perimenopausal women enrolled in the study of women across the nation (SWAN). Circulation 111, 1242–1249 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Mudali, S. et al. Endogenous postmenopausal hormones and serum lipids: the atherosclerosis risk in communities study. J. Clin. Endocrinol. Metab. 90, 1202–1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Srinivasan, S. R., Sundaram, G. S., Williamson, G. D., Webber, L. S. & Berenson, G. S. Serum lipoproteins and endogenous sex hormones in early life: observations in children with different lipoprotein profiles. Metabolism 34, 861–867 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Viikari, J. et al. Atherosclerosis precursors in Finnish children and adolescents. IV. Serum lipids in newborns, children and adolescents. Acta Paediatr. Scand. Suppl. 318, 103–109 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Mohler, B., Ackermann-Liebrich, U., Steffen, T. & Staehelin, H. B. Cholesterol screening in childhood: results of a 9-year follow-up study in Swiss and Italian children in Switzerland. Soz. Praventivmed. 41, 333–340 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Pilz, S. et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin. J. Clin. Endocrinol. Metab. 90, 4792–4796 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Bottner, A. et al. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J. Clin. Endocrinol. Metab. 89, 4053–4061 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. Mauras, N. Growth hormone and sex steroids. Interactions in puberty. Endocrinol. Metab. Clin. North Am. 30, 529–544 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Mauras, N., Rogol, A. D., Haymond, M. W. & Veldhuis, J. D. Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Horm. Res. 45, 74–80 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Isidori, A. M. et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin. Endocrinol. (Oxf.) 63, 280–293 (2005).

    Article  CAS  Google Scholar 

  39. Kapoor, D., Malkin, C. J., Channer, K. S. & Jones, T. H. Androgens, insulin resistance and vascular disease in men. Clin. Endocrinol. (Oxf.). 63, 239–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Coviello, A. D., Legro, R. S. & Dunaif, A. Adolescent girls with polycystic ovary syndrome have an increased risk of the metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J. Clin. Endocrinol. Metab. 91, 492–497 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Pasquali, R. et al. Influence of menopause on blood cholesterol levels in women: the role of body composition, fat distribution and hormonal milieu. Virgilio Menopause Health Group. J. Intern. Med. 241, 195–203 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Cauley, J. A., Gutai, J. P., Kuller, L. H. & Powell, J. G. The relation of endogenous sex steroid hormone concentrations to serum lipid and lipoprotein levels in postmenopausal women. Am. J. Epidemiol. 132, 884–894 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Simon, D. et al. Androgen therapy improves insulin sensitivity and decreases leptin level in healthy adult men with low plasma total testosterone: a 3-month randomized placebo-controlled trial. Diabetes Care 24, 2149–2151 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kapoor, D., Goodwin, E., Channer, K. S. & Jones, T. H. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol. 154, 899–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, F. C. & von Eckardstein, A. Androgens and coronary artery disease. Endocr. Rev. 24, 183–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, P. Y., Death, A. K. & Handelsman, D. J. Androgens and cardiovascular disease. Endocr. Rev. 24, 313–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Björntorp, P. The regulation of adipose tissue distribution in humans. Int. J. Obes. Relat. Metab. Disord. 20, 291–302 (1996).

    PubMed  Google Scholar 

  48. Mårin, P., Odén, B. & Björntorp, P. Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J. Clin. Endocrinol. Metab. 80, 239–243 (1995).

    PubMed  Google Scholar 

  49. Holmäng, A. & Björntorp, P. The effects of testosterone on insulin sensitivity in male rats. Acta Physiol. Scand. 146, 505–510 (1992).

    Article  PubMed  Google Scholar 

  50. Khaw, K. T. & Barrett-Connor, E. Blood pressure and endogenous testosterone in men: an inverse relationship. J. Hypertens. 6, 329–332 (1998).

    Google Scholar 

  51. Baltatu, O. et al. Abolition of hypertension-induced end-organ damage by androgen receptor blockade in transgenic rats harboring the mouse ren-2 gene. Am. Soc. Nephrol. 13, 2681–2687 (2002).

    Article  CAS  Google Scholar 

  52. Muller, M., den Tonkelaar, I., Thijssen, J. H., Grobbee, D. E. & van der Schouw, Y. T. Endogenous sex hormones in men aged 40–80 years. Eur. J. Endocrinol. 149, 583–589 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Simon, D. et al. The influence of aging on plasma sex hormones in men: the Telecom Study. Am. J. Epidemiol. 135, 783–791 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Ferrini, R. L. & Barrett-Connor, E. Sex hormones and age: a cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men. Am. J. Epidemiol. 147, 750–754 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Mårin, P. et al. The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int. J. Obes. Relat. Metab. Disord. 16, 991–997 (1992).

    PubMed  Google Scholar 

  56. Mendelsohn, M. E. & Karas, R. H. Molecular and cellular basis of cardiovascular gender differences. Science 308, 1583–1587 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Volterrani, M., Rosano, G., Coats, A., Beale, C. & Collins, P. Estrogen acutely increases peripheral blood flow in postmenopausal women. Am. J. Med. 99, 119–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Leonardo, F. et al. Effect of acute administration of estradiol 17 beta on aortic blood flow in menopausal women. Am. J. Cardiol. 80, 791–793 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Collins, P. et al. 17β-Estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation 92, 24–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Rosano, G. M. et al. Acute administration of 17beta-estradiol reduces endothelin-1 release during pacing-induced ischemia. Int. J. Cardiol. 116, 34–39 (2006).

    Article  PubMed  Google Scholar 

  61. Rosano, G. M. et al. Effect of estradiol 17beta upon coronary artery vasoconstrictor response to methylergometrine maleate in female menopausal patients. Int. J. Cardiol. 107, 254–259 (2006).

    Article  PubMed  Google Scholar 

  62. Williams, J. K., Delansorne, R. & Paris, J. Estrogens, progestins, and coronary artery reactivity in atherosclerotic monkeys. J. Steroid Biochem. Mol. Biol. 65, 219–224 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Aavik, E., du Toit, D., Myburgh, E., Frösen, J. & Hayry, P. Estrogen receptor beta dominates in baboon carotid after endothelial denudation injury. Mol. Cell. Endocrinol. 182, 91–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Lindner, V. et al. Increased expression of estrogen receptor-beta mRNA in male blood vessels after vascular injury. Circ. Res. 83, 224–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Sudhir, K. et al. Endothelial dysfunction in a man with disruptive mutation in oestrogen-receptor gene. Lancet 349, 1146–1147 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Sudhir, K. et al. Premature coronary artery disease associated with a disruptive mutation in the estrogen receptor gene in a man. Circulation 96, 3774–3777 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Carani, C. et al. Effect of testosterone and of estradiol in a man with aromatase deficiency. N. Engl. J. Med. 337, 91–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Harada, N. et al. Localized expression of aromatase in human vascular tissues. Circ. Res. 84, 1285–1291 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Lew, R., Komesaroff, P., Williams, M., Dawood, T. & Sudhir, K. Endogenous estrogens influence endothelial function in young men. Circ. Res. 93, 1127–1133 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Mendelsohn, M. E. & Karas, R. H. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med. 340, 1801–1811 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Zhu Y. et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science 295, 505–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Skavdahl, M. et al. Estrogen receptor-β mediates male–female differences in the development of pressure overload hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 288, H469–H476 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Pare, G. et al. Estrogen receptor-α mediates the protective effects of estrogen against vascular injury. Circ. Res. 90, 1087–1092 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Hodgin, J. B. et al. Estrogen receptor alpha is a major mediator of 17beta-estradiol's atheroprotective effects on lesion size in Apoe−/− mice. J. Clin. Invest. 107, 333–340 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Haas, E. et al. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ. Res. 104, 288–291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vitale, C. et al. Time since menopause influences the acute and chronic effect of estrogens on endothelial function. Arterioscler. Thromb. Vasc. Biol. 28, 348–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Chambliss, K. L., Yuhanna, I. S., Anderson, R. G., Mendelsohn, M. E. & Shaul, P. W. ER β has non-genomic action in caveolae. Mol. Endocrinol. 16, 938–946 (2002).

    CAS  PubMed  Google Scholar 

  79. Nakamura, Y., Suzuki, T. & Sasano, H. Estrogen actions and in situ synthesis in smooth muscle cells and their correlation with atherosclerosis. J. Steroid Biochem. Mol. Biol. 93, 263–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Lakoski, S. G., Brosnihan, B. & Herrington, D. M. Hormone therapy, C-reactive protein, and progression of atherosclerosis: data from the Estrogen Replacement on Progression of Coronary Artery Atherosclerosis (ERA) trial. Am. Heart J. 150, 907–911 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Manson, J. E. et al. Estrogen therapy and coronary-artery calcification. N. Engl. J. Med. 356, 2591–2602 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Post, W. S. et al. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc. Res. 43, 985–991 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Losordo, D. W., Kearney, M., Kim, E. A., Jekanowski, J. & Isner, J. M. Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women. Circulation 89, 1501–1510 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Christian, R. C. et al. Intimal estrogen receptor (ER)beta, but not ERalpha expression, is correlated with coronary calcification and atherosclerosis in pre- and postmenopausal women. J. Clin. Endocrinol. Metab. 91, 2713–2720 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Sullivan, J. C. Sex and the renin–angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1220–R1226 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Jones, R. D., Hugh Jones, T. & Channer, K. S. The influence of testosterone upon vascular reactivity. Eur. J. Endocrinol. 151, 29–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. English, K. M. et al. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. Eur. Heart J. 21, 890–894 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Webb, C. M., McNeill, J. G., Hayward, C. S., de Zeigler, D. & Collins, P. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation 100, 1690–1696 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Rosano, G. M. C. et al. Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation 6, 1666–1670 (1999).

    Article  Google Scholar 

  90. McCredie, R. J. et al. Vascular reactivity is impaired in genetic females taking high dose androgens. J. Am. Coll. Cardiol. 32, 1331–1335 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Worboys, S., Kotsopoulos, D., Teede, H., McGrath, B. & Davis, S. R. Evidence that parenteral testosterone therapy may improve endothelium-dependent and -independent vasodilation in postmenopausal women already receiving estrogen. J. Clin. Endocrinol. Metab. 86, 158–161 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. McCrohon, J. A. et al. Androgen receptor expression is greater in macrophages from male than from female donors. A sex difference with implications for atherogenesis. Circulation 101, 224–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Sader, M. A. et al. Androgen receptor gene expression in leucocytes is hormonally regulated: implications for gender differences in disease pathogenesis. Clin. Endocrinol. (Oxf.) 62, 56–63 (2005).

    Article  CAS  Google Scholar 

  94. Death, A. K. et al. Dihydrotestosterone promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a NF-κB-dependent pathway. Endocrinology 145, 1889–1897 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Jones, R. D., English, K. M., Jones, T. H. & Channer, K. S. Testosterone-induced coronary vasodilatation occurs via a non-genomic mechanism: evidence of a direct calcium antagonism action. Clin. Sci. (Lond.) 107, 149–158 (2004).

    Article  CAS  Google Scholar 

  96. Deenadayalu, V. P. et al. Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am. J. Physiol. Heart Circ. Physiol. 281, H1720–H1727 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Honda, H., Unemoto, T. & Kogo, H. Different mechanisms for testosterone-induced relaxation of aorta between normotensive and spontaneously hypertensive rats. Hypertension 34, 1232–1236 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Bruck, B. et al. Gender-specific differences in the effects of testosterone and estrogen on the development of atherosclerosis in rabbits. Arterioscler. Thromb. Vasc. Biol. 17, 2192–2199 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Von Dehn, G. et al. Atherosclerosis in apolipoprotein E-deficient mice is decreased by suppression of endogenous testosterone. Horm. Metab. Res. 33, 110–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Alexandersen, P., Haarbo, J., Byrjalsen, I., Lawaetz, H. & Christiansen, C. Natural androgens inhibit male atherosclerosis: a study in castrated, cholesterol-fed rabbits. Circ. Res. 84, 813–819 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Adams, M. R., Williams, J. K. & Kaplan, J. R. Effects of androgens on coronary artery atherosclerosis and atherosclerosis-related impairment of vascular responsiveness. Arterioscler. Thromb. Vasc. Biol. 15, 562–570 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Appt, S. E., Clarkson, T. B., Lees, C. J. & Anthony, M. S. Low dose estrogens inhibit coronary artery atherosclerosis in postmenopausal monkeys. Maturitas 55, 187–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Wuerst, J. H. Jr, Dry, T. J. & Edwards, J. E. The degree of coronary atherosclerosis in bilaterally oophorectomized women. Circulation 7, 801–809 (1953).

    Article  Google Scholar 

  104. Sullivan, J. M. et al. Estrogen replacement and coronary artery disease. Effect on survival in postmenopausal women. Arch. Intern. Med. 150, 2557–2562 (1990).

    Article  CAS  PubMed  Google Scholar 

  105. Sullivan, J. M. & Fowlkes, L. P. Estrogens, menopause and coronary artery disease. Cardiol. Clin. 14, 105–110 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Oliver, M. F. Ischaemic heart disease in young women a re-appraisal of the sex factor. Acta Cardiol. Suppl. 20, 59–68 (1974).

    Google Scholar 

  107. Hodis, H. N. et al. Hormone therapy and the progression of coronary-artery atherosclerosis in postmenopausal women. N. Engl. J. Med. 349, 535–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Clarkson, T. B., Antony, M. S. & Klein, K. P. Hormone replacement therapy and coronary artery atherosclerosis: the monkey model. Br. J. Obstet. Gynaecol. 103 (Suppl. 13), 53–57 (1996).

    CAS  PubMed  Google Scholar 

  109. Cann, J. A. et al. Timing of estrogen replacement influences atherosclerosis progression and plaque leukocyte populations in ApoE−/− mice. Atherosclerosis 201 43–52 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nathan, L. et al. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. Proc. Natl Acad. Sci. USA 98, 3589–3593 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Arad, Y., Badimon, J. J., Badimon, L., Hembree, W. C. & Ginsberg, H. N. Dehydroepiandrosterone feeding prevents aortic fatty streak formation and cholesterol accumulation in cholesterol-fed rabbit. Arteriosclerosis 9, 159–166 (1989).

    Article  CAS  PubMed  Google Scholar 

  112. Nettleship, J. E., Jones, T. H., Channer, K. S. & Jones, R. D. Physiological testosterone replacement therapy attenuates fatty streak formation and improves high-density lipoprotein cholesterol in the Tfm mouse: an effect that is independent of the classic androgen receptor. Circulation 116, 2427–2434 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Shores, M. M., Matsumoto, A. M., Sloan, K. L. & Kivlahan, D. R. Low serum testosterone and mortality in male veterans. Arch. Intern. Med. 166, 1660–1665 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Laughlin, G. A., Barrett-Connor, E. & Bergstrom, J. Low serum testosterone and mortality in older men. J. Clin. Endocrinol. Metab. 93, 68–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Khaw, K. T. et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Circulation 116, 2694–2701 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Phillips, G. B., Pinkernell, B. H. & Jing, T. Y. The association of hypotestosteronemia with coronary artery disease in men. Arterioscler. Thromb. 14, 701–706 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Mäkinen, J. et al. Increased carotid atherosclerosis in andropausal middle-aged men. J. Am. Coll. Cardiol. 45, 1603–1608 (2005).

    Article  PubMed  CAS  Google Scholar 

  118. van den Beld, A. W. et al. Endogenous hormones and carotid atherosclerosis in elderly men. Am. J. Epidemiol. 157, 25–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Fukui, M. et al. Association between serum testosterone concentration and carotid atherosclerosis in men with type 2 diabetes. Diabetes Care 26, 1869–1873 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. De Pergola, G. et al. Free testosterone plasma levels are negatively associated with the intima–media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men. Int. J. Obes. Relat. Metab. Disord. 27, 803–807 (2007).

    Article  CAS  Google Scholar 

  121. Muller, M. et al. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men, Circulation 109, 2074–2079 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Rosano, G. M. et al. Low testosterone levels are associated with coronary artery disease in male patients with angina. Int. J. Impot. Res. 19, 176–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Norman, R. J., Dewailly, D., Legro, R. S. & Hickey, T. E. Polycystic ovary syndrome. Lancet 370, 685–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Rajkhowa, M., Glass, M. R., Rutherford, A. J., Michelmore, K. & Balen, A. H. Polycystic ovary syndrome: a risk factor for cardiovascular disease? BJOG 107, 11–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Tabott, E. O., Zborowski, J. V., Sutton-Tyrell, K., McHugh-Pemu, P. & Cuzick, D. S. Cardiovascular risk in women with polycystic ovarian syndrome. Obstet. Gynecol. Clin. North Am. 28, 111–133 (2001).

    Article  Google Scholar 

  126. Dahlgren, E., Janson, P. O., Johansson, S., Lapidus, L. & Odén, A. Polycystic ovary syndrome and risk for myocardial infarction. Evaluated from a risk factor model based on a prospective population study of women. Acta Obstet. Gynecol. Scand. 71, 599–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  127. Barrett-Connor, E. & Goodman-Gruen, D. Dehydroepiandrosterone sulfate does not predict cardiovascular death in postmenopausal women. The Rancho Bernardo Study. Circulation 91, 1757–1760 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. Van Kesteren, P.J., Asscheman, H., Megens, J. A. & Gooren, L. J. Mortality and morbidity in transsexual subjects treated with cross sex hormones. Clin. Endocrinol. (Oxf.) 47, 337–342 (1997).

    Article  CAS  Google Scholar 

  129. Herrington, D. M. et al. Statin therapy, cardiovascular events, and total mortality in the Heart and Estrogen/Progestin Replacement Study (HERS). Circulation 105, 2962–2967 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Rossouw, J. E. et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 297, 1465–1477 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Ouyang, P., Michos, E. D. & Karas, R. H. Hormone replacement therapy and the cardiovascular system: lessons learned and unanswered questions. J. Am. Coll. Cardiol. 47, 1741–1753 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Grodstein, F., Manson, J. E. & Stampfer, M. J. Hormone therapy and coronary heart disease: the role of time since menopause and age at hormone initiation. J. Womens Health (Larchmt) 15, 35–44 (2006).

    Article  Google Scholar 

  133. Collins, P. et al. Effects of the selective estrogen receptor modulator raloxifene on coronary outcomes in the Raloxifene Use for The Heart Trial: results of subgroup analyses by age and other factors. Circulation 119, 922–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wright, J., Naftolin, F., Schneider, H. P., Sturdee, D. W. & Executive Committee of the International Menopause Society. Guidelines for the hormone treatment of women in the menopausal transition and beyond. Position statement by the Executive Committee of the International Menopause Society. Maturitas 48, 27–31 (2004).

    Article  PubMed  Google Scholar 

  135. Rosano, G. M. et al. Hormone replacement therapy and cardioprotection: a new dawn? A statement of the Study Group on Cardiovascular Disease in Women of the Italian Society of Cardiology on hormone replacement therapy in postmenopausal women. J. Cardiovasc. Med. (Hagerstown) 10, 85–92 (2009).

    Article  Google Scholar 

  136. Grodstein, F. et al. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann. Intern. Med. 133, 933–941 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Sitruk-Ware, R. L. Hormone therapy and the cardiovascular system: the critical role of progestins. Climacteric 6 (Suppl. 3), 21–28 (2003).

    CAS  PubMed  Google Scholar 

  138. Rosano, G. M., Vitale, C., Silvestri, A. & Fini, M. Metabolic and vascular effect of progestins in post-menopausal women. Implications for cardioprotection. Maturitas 46 (Suppl. 1), S17–S29 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. [No authors listed] Factors influencing long-term prognosis after recovery from myocardial infarction—three-year findings of the coronary drug project. J. Chronic Dis. 27, 267–285 (1974).

  140. Phillips, G. B., Castelli, W. P., Abbott, R. D. & McNamara, P. M. Association of hyperestrogenemia and coronary heart disease in men in the Framingham cohort. Am. J. Med. 74, 863–869 (1983).

    Article  CAS  PubMed  Google Scholar 

  141. Rhoden, E. L. & Morgentaler, A. Risks of testosterone-replacement therapy and recommendations for monitoring. N. Engl. J. Med. 350, 482–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Braunstein, G. D. Management of female sexual dysfunction in postmenopausal women by testosterone administration: safety issues and controversies. J. Sex. Med. 4, 859–866 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Caminiti, G. et al. Effects of testosterone supplementation in elderly female patients with chronic heart failure [abstract 4523]. Eur. Heart J. 29 (Suppl.), 769 (2008).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant of the Italian Ministry of Health – Ricerca Finalizzata (G. M. C. Rosano).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe M. C. Rosano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale, C., Mendelsohn, M. & Rosano, G. Gender differences in the cardiovascular effect of sex hormones. Nat Rev Cardiol 6, 532–542 (2009). https://doi.org/10.1038/nrcardio.2009.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing