Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New aspects of natural-killer-cell surveillance and therapy of cancer

Key Points

Summary

  • Natural-killer (NK) cells are important components of the innate immune system.

  • There is evidence of tumour rejection by NK cells. NK cells act against tumour initiation, growth and metastasis in rodents and humans.

  • NK cells suppress tumour cells though a variety of effector mechanisms, including the perforin/granzyme-containing granule-mediated pathway, death-receptor pathway and IFN-γ-mediated pathway.

  • NK-cell functions are regulated by the balance of inhibitory and activating signals that they receive through their various classes of receptor. Each class and functional role in controlling tumour immunity is discussed.

  • Co-stimulatory molecules that are expressed by NK cells further serve to control NK-cell antitumour function and evoke subsequent adaptive T-cell immunity.

  • The cytokine and chemokine environment serves to define the differentiation, proliferation and recruitment of NK cells.

  • NK cells might influence the development of adaptive immunity through cross-talk with antigen-presenting dendritic cells.

  • The clinical use of NK cells in patients has undergone 15 years of refinement. With the description of key developmental factors for NK cells and the definition of immunoglobulin-like receptors for MHC class I, more sophisticated approaches to NK-cell transfer are yielding impressive antitumour responses.

Abstract

Natural-killer (NK) cells form a first line of defence against pathogens or host cells that are stressed and/or cancerous. NK cells express surface receptors that receive signals from the environment and determine their response to foreign or malignant cells. NK cells respond to these signals by producing effector molecules that can both directly suppress tumour growth and convey important information to the rest of the immune system. We have only recently begun to appreciate the potential for NK cells to be rationally manipulated in the treatment of human cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Control of NK-cell functions by the balance of activation/inhibitory signals.
Figure 2: NK cells and immune responses to tumour cells.
Figure 3: NK-cell effector functions that eliminate tumour cells.
Figure 4: Co-stimulatory molecules that regulate NK-cell antitumour immunity and link the innate and acquired immune system.

Similar content being viewed by others

References

  1. Cerwenka, A. & Lanier, L. L. Natural killer cells, viruses and cancer. Nature Rev. Immunol. 1, 41–49 (2001).

    Article  CAS  Google Scholar 

  2. Wiltrout, R. H. et al. Augmentation of organ-associated natural killer activity by biological response modifiers. Isolation and characterization of large granular lymphocytes from the liver. J. Exp. Med. 160, 1431–1449 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Fogler, W. E. et al. NK cell infiltration into lung, liver, and subcutaneous B16 melanoma is mediated by VCAM-1/VLA-4 interaction. J. Immunol. 156, 4707–4714 (1996).

    CAS  PubMed  Google Scholar 

  4. Biron, C. A. Activation and function of natural killer cell responses during viral infections. Curr. Opin. Immunol. 9, 24–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Glas, R. et al. Recruitment and activation of natural killer (NK) cells in vivo determined by the target cell phenotype. An adaptive component of NK cell-mediated responses. J. Exp. Med. 191, 129–138 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cooper, M. A., Fehniger, T. A. & Caligiuri, M. A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Colucci, F., Di Santo, J. P. & Leibson, P. J. Natural killer cell activation in mice and men: different triggers for similar weapons? Nature Immunol. 3, 807–813 (2002).

    Article  CAS  Google Scholar 

  8. Cooper, M. A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97, 3146–3151 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Koo, G. C., Dumont, F. J., Tutt, M., Hackett, J. Jr & Kumar, V. The NK-1.1(−) mouse: a model to study differentiation of murine NK cells. J. Immunol. 137, 3742–3747 (1986).

    CAS  PubMed  Google Scholar 

  10. Smyth, M. J., Crowe, N. Y. & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol. 13, 459–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Riccardi, C., Santoni, A., Barlozzari, T., Puccetti, P. & Herberman, R. B. In vivo natural reactivity of mice against tumor cells. Int. J. Cancer 25, 475–486 (1980).An early and clear description of the natural activity of NK cells against tumour cells in vivo.

    Article  CAS  PubMed  Google Scholar 

  12. Gorelik, E., Rosen, B., Copeland, D., Weatherly, B. & Herberman, R. B. Evaluation of role of natural killer cells in radiation-induced leukemogenesis in mice. J. Natl Cancer Inst. 72, 1397–1403 (1984).

    CAS  PubMed  Google Scholar 

  13. Barlozzari, T., Reynolds, C. W. & Herberman, R. B. In vivo role of natural killer cells: involvement of large granular lymphocytes in the clearance of tumor cells in anti-asialo GM1-treated rats. J. Immunol. 131, 1024–1027 (1983).

    CAS  PubMed  Google Scholar 

  14. Ljunggren, H. G. & Karre, K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J. Exp. Med. 162, 1745–1759 (1985).A selection of mouse lymphoma variants that lacked H-2 first illustrated the concept of NK cells recognizing 'missing-self' in vivo.

    Article  CAS  PubMed  Google Scholar 

  15. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. van den Broek, M. F., Kagi, D., Zinkernagel, R. M. & Hengartner, H. Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur. J. Immunol. 25, 3514–3516 (1995).The first demonstration that perforin is a major effector pathway used by NK cells to eliminate MHC class-I-deficient tumours in vivo.

    Article  CAS  PubMed  Google Scholar 

  17. Smyth, M. J., Kelly, J. M., Baxter, A. G., Korner, H. & Sedgwick, J. D. An essential role for tumor necrosis factor in natural killer cell-mediated tumor rejection in the peritoneum. J. Exp. Med. 188, 1611–1619 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smyth, M. J. et al. Perforin is a major contributor to NK cell control of tumor metastasis. J. Immunol. 162, 6658–6662 (1999).

    CAS  PubMed  Google Scholar 

  19. Talmadge, J. E., Phillips, H., Schindler, J., Tribble, H. & Pennington, R. Systematic preclinical study on the therapeutic properties of recombinant human interleukin 2 for the treatment of metastatic disease. Cancer Res. 47, 5725–5732 (1987).

    CAS  PubMed  Google Scholar 

  20. Trinchieri, G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol. 70, 83–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Wiltrout, R. H. et al. Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver. J. Immunol. 134, 4267–4275 (1985).

    CAS  PubMed  Google Scholar 

  22. McClain, K. L. Immunodeficiency states and related malignancies. Cancer Treat. Res. 92, 39–61 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).Striking demonstration of the role of NK1.1+ cells in natural protection from chemical carcinogen-induced tumour initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haliotis, T., Ball, J. K., Dexter, D. & Roder, J. C. Spontaneous and induced primary oncogenesis in natural killer (NK)-cell-deficient beige mutant mice. Int. J. Cancer 35, 505–513 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Erianne, G. S. et al. B cell lymphomas of C57L/J mice; the role of natural killer cells and T helper cells in lymphoma development and growth. Leuk. Res. 24, 705–718 (2000).

    Article  CAS  Google Scholar 

  28. Miyauchi-Hashimoto, H., Okamoto, H., Tanaka, K. & Horio, T. Ultraviolet radiation-induced suppression of natural killer cell activity is enhanced in xeroderma pigmentosum group A (XPA) model mice. J. Invest. Dermatol. 112, 965–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Norris, P. G., Limb, G. A., Hamblin, A. S. & Hawk, J. L. Impairment of natural-killer-cell activity in xeroderma pigmentosum. N. Engl. J. Med. 319, 1668–1669 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Gaspari, A. A., Fleisher, T. A. & Kraemer, K. H. Impaired interferon production and natural killer cell activation in patients with the skin cancer-prone disorder, xeroderma pigmentosum. J. Clin. Invest. 92, 1135–1142 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Whiteside, T. L. & Herberman, R. B. Role of human natural killer cells in health and disease. Clin. Diagn. Lab. Immunol. 1, 125–133 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Whiteside, T. L., Vujanovic, N. L. & Herberman, R. B. Natural killer cells and tumor therapy. Curr. Top. Microbiol. Immunol. 230, 221–244 (1998).

    CAS  PubMed  Google Scholar 

  33. Trapani, J. A., Davis, J., Sutton, V. R. & Smyth, M. J. Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Curr. Opin. Immunol. 12, 323–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).Landmark paper that first described perforin-deficient mice and their lack of NK-cell-mediated cytolysis.

    Article  CAS  PubMed  Google Scholar 

  35. Smyth, M. J. et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J. Exp. Med. 193, 661–670 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kodama, T. et al. Perforin-dependent NK cell cytotoxicity is sufficient for anti-metastatic effect of IL-12. Eur. J. Immunol. 29, 1390–1396 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Brandau, S. et al. Perforin-mediated lysis of tumor cells by Mycobacterium bovis Bacillus Calmette–Guerin-activated killer cells. Clin. Cancer Res. 6, 3729–3738 (2000).

    CAS  PubMed  Google Scholar 

  38. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Street, S. E., Trapani, J. A., MacGregor, D. & Smyth, M. J. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J. Exp. Med. 196, 129–134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Davis, J. E., Smyth, M. J. & Trapani, J. A. Granzyme A- and B-deficient killer lymphocytes are defective in eliciting DNA fragmentation but retain potent in vivo anti-tumor capacity. Eur. J. Immunol. 31, 39–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Rev. Cancer 2, 420–430 (2002).

    Article  CAS  Google Scholar 

  42. Kayagaki, N. et al. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J. Immunol. 163, 1906–1913 (1999).

    CAS  PubMed  Google Scholar 

  43. Takeda, K. et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Med. 7, 94–100 (2001).The first demonstration that NK-cell TRAIL has a physiological function as a tumour suppressor.

    Article  CAS  PubMed  Google Scholar 

  44. Cretney, E. et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J. Immunol. 168, 1356–1361 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195, 161–169 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  Google Scholar 

  47. Bradley, M., Zeytun, A., Rafi-Janajreh, A., Nagarkatti, P. S. & Nagarkatti, M. Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas+ and Fas tumor cells. Blood 92, 4248–4255 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Screpanti, V., Wallin, R. P., Ljunggren, H. G. & Grandien, A. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J. Immunol. 167, 2068–2073 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Loza, M. J., Zamai, L., Azzoni, L., Rosati, E. & Perussia, B. Expression of type 1 (interferon gamma) and type 2 (interleukin-13, interleukin-5) cytokines at distinct stages of natural killer cell differentiation from progenitor cells. Blood 99, 1273–1281 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97, 192–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Yao, L. et al. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood 93, 1612–1621 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Smyth, M. J. et al. Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99, 1259–1266 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Hayakawa, Y. et al. IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood 100, 1728–1733 (2002).

    CAS  PubMed  Google Scholar 

  55. Cifone, M. G. et al. Interleukin-2-activated rat natural killer cells express inducible nitric oxide synthase that contributes to cytotoxic function and interferon-gamma production. Blood 93, 3876–3884 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Furuke, K. et al. Human NK cells express endothelial nitric oxide synthase, and nitric oxide protects them from activation-induced cell death by regulating expression of TNF-alpha. J. Immunol. 163, 1473–1480 (1999).

    CAS  PubMed  Google Scholar 

  57. Leibson, P. J. Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 6, 655–661 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Yokoyama, W. M. et al. A family of murine NK cell receptors specific for target cell MHC class I molecules. Semin. Immunol. 7, 89–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Takei, F., Brennan, J. & Mager, D. L. The Ly-49 family: genes, proteins and recognition of class I MHC. Immunol. Rev. 155, 67–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Lanier, L. L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Long, E. O. et al. Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunol. Rev. 181, 223–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. O'Callaghan, C. A. Molecular basis of human natural killer cell recognition of HLA-E (human leucocyte antigen-E) and its relevance to clearance of pathogen-infected and tumour cells. Clin. Sci. 99, 9–17 (2000).

    Article  CAS  Google Scholar 

  63. Liao, N. S., Bix, M., Zijlstra, M., Jaenisch, R. & Raulet, D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253, 199–202 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Ruggeri, L., Capanni, M., Martelli, M. F. & Velardi, A. Cellular therapy: exploiting NK cell alloreactivity in transplantation. Curr. Opin. Hematol. 8, 355–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).Recipients of MHC-mismatched transplants display NK-cell alloreactivity that eliminates leukaemia relapse, prevents graft rejection and protects patients against graft versus host disease. A beautiful demonstration of how new knowledge about NK-cell receptors for MHC class I can pave the way for effective immunotherapy using NK cells.

    Article  CAS  PubMed  Google Scholar 

  66. Bakker, A. B., Phillips, J. H., Figdor, C. G. & Lanier, L. L. Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, gamma delta T cells, and antigen-specific CTL. J. Immunol. 160, 5239–5245 (1998).

    CAS  PubMed  Google Scholar 

  67. Koh, C. Y. et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97, 3132–3137 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Smith, K. M., Wu, J., Bakker, A. B., Phillips, J. H. & Lanier, L. L. Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J. Immunol. 161, 7–10 (1998).

    CAS  PubMed  Google Scholar 

  69. Idris, A. H., Iizuka, K., Smith, H. R., Scalzo, A. A. & Yokoyama, W. M. Genetic control of natural killing and in vivo tumor elimination by the Chok locus. J. Exp. Med. 188, 2243–2256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Idris, A. H. et al. The natural killer gene complex genetic locus Chok encodes Ly-49D, a target recognition receptor that activates natural killing. Proc. Natl Acad. Sci. USA 96, 6330–6335 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kubota, A., Lian, R. H., Lohwasser, S., Salcedo, M. & Takei, F. IFN-gamma production and cytotoxicity of IL-2-activated murine NK cells are differentially regulated by MHC class I molecules. J. Immunol. 163, 6488–6493 (1999).

    CAS  PubMed  Google Scholar 

  72. Le Drean, E. et al. Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. Eur. J. Immunol. 28, 264–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Moser, J. M., Gibbs, J., Jensen, P. E. & Lukacher, A. E. CD94-NKG2A receptors regulate antiviral CD8(+) T cell responses. Nature Immunol. 3, 189–195 (2002).

    Article  CAS  Google Scholar 

  74. Jia, S. H., Kurepa, Z., Bai, A. & Forman, J. Comparative ability of Qdm/Qa-1b, kb, and Db to protect class Ilow cells from NK-mediated lysis in vivo. J. Immunol. 165, 6142–6147 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Lanier, L. L. On guard: activating NK cell receptors. Nature Immunol. 2, 23–27 (2001).

    Article  CAS  Google Scholar 

  77. Sivori, S. et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J. Exp. Med. 186, 1129–1136 (1997).First decription of a new family of natural cytotoxicity receptors on NK cells that have a key role in non-MHC-restricted cytolysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vitale, M. et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med. 187, 2065–2072 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moretta, A., Biassoni, R., Bottino, C., Mingari, M. C. & Moretta, L. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol. Today 21, 228–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Tomasello, E. et al. Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 13, 355–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).Demonstration that NKG2D recognizes stress-inducible MICA, a distant homologue of MHC class I, and previously shown to function as an antigen for γδ T cells and frequently expressed in epithelial tumours. These data first indicated an activating-immunoreceptor–MHC-ligand interaction that might promote antitumour NK- and T-cell responses.

    Article  CAS  PubMed  Google Scholar 

  82. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA 93, 12445–12450 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Malarkannan, S. et al. The molecular and functional characterization of a dominant minor H antigen, H60. J. Immunol. 161, 3501–3509 (1998).

    CAS  PubMed  Google Scholar 

  87. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).First description of mouse GPI-anchored cell-surface proteins that function as ligands for the activating NKG2D receptor and confer target susceptibility to NK-cell attack.

    Article  CAS  PubMed  Google Scholar 

  88. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  89. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Vetter, C. S. et al. Expression of stress-induced MHC class I related chain molecules on human melanoma. J. Invest. Dermatol. 118, 600–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).First direct evidence in the mouse that linked the expression of stress-induced ligands with tumour-cell rejection by NK cells and CD8+ T cells in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cerwenka, A., Baron, J. L. & Lanier, L. L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl Acad. Sci. USA 98, 11521–11526 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Kennedy, C. et al. MICA gene polymorphism is not associated with an increased risk for skin cancer. J. Invest. Dermatol. 118, 686–691 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Ghaderi, M. et al. Tumor necrosis factor A and MHC class I chain related gene A (MIC-A) polymorphisms in Swedish patients with cervical cancer. Hum. Immunol. 62, 1153–1158 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Pende, D. et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur. J. Immunol. 31, 1076–1086 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Wilson, J. L. et al. NK cell triggering by the human costimulatory molecules CD80 and CD86. J. Immunol. 163, 4207–4212 (1999).

    CAS  PubMed  Google Scholar 

  99. Galea-Lauri, J. et al. Expression of a variant of CD28 on a subpopulation of human NK cells: implications for B7-mediated stimulation of NK cells. J. Immunol. 163, 62–70 (1999).

    CAS  PubMed  Google Scholar 

  100. Geldhof, A. B. et al. Expression of B7-1 by highly metastatic mouse T lymphomas induces optimal natural killer cell-mediated cytotoxicity. Cancer Res. 55, 2730–2733 (1995).

    CAS  PubMed  Google Scholar 

  101. Kelly, J. M., Takeda, K., Darcy, P. K., Yagita, H. & Smyth, M. J. A role for IFN-gamma in primary and secondary immunity generated by NK cell-sensitive tumor-expressing CD80 in vivo. J. Immunol. 168, 4472–4479 (2002).Direct demonstration that NK-cell-mediated rejection of tumours via CD27–CD70 co-stimulatory interactions subsequently evoke the development of tumour-specific cytotoxic and T helper type 1 responses, providing a key link between innate NK-cell responses and adaptive T-cell immunity.

    Article  CAS  PubMed  Google Scholar 

  102. LaBelle, J. L., Hanke, C. A., Blazar, B. R. & Truitt, R. L. Negative effect of CTLA-4 on induction of T-cell immunity in vivo to B7-1+, but not B7-2+, murine myelogenous leukemia. Blood 99, 2146–2153 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Lang, S., Vujanovic, N. L., Wollenberg, B. & Whiteside, T. L. Absence of B7.1-CD28/CTLA-4-mediated co-stimulation in human NK cells. Eur. J. Immunol. 28, 780–786 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Sugita, K. et al. Participation of the CD27 antigen in the regulation of IL-2-activated human natural killer cells. J. Immunol. 149, 1199–1203 (1992).

    CAS  PubMed  Google Scholar 

  105. Takeda, K. et al. CD27-mediated activation of murine NK cells. J. Immunol. 164, 1741–1745 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Kelly, J. M. et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nature Immunol. 3, 83–90 (2002).

    Article  CAS  Google Scholar 

  107. Sivori, S. et al. 2B4 functions as a co-receptor in human NK cell activation. Eur. J. Immunol. 30, 787–793 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Sivori, S. et al. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc. Natl Acad. Sci. USA 99, 4526–4531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tangye, S. G., Phillips, J. H., Lanier, L. L. & Nichols, K. E. Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J. Immunol. 165, 2932–2936 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Nakajima, A. et al. Antitumor effect of CD40 ligand: elicitation of local and systemic antitumor responses by IL-12 and B7. J. Immunol. 161, 1901–1907 (1998).

    CAS  PubMed  Google Scholar 

  111. Takeda, K. et al. Relative contribution of NK and NKT cells to the anti-metastatic activities of IL-12. Int. Immunol. 12, 909–914 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Duda, D. G. et al. Direct in vitro evidence and in vivo analysis of the antiangiogenesis effects of interleukin 12. Cancer Res. 60, 1111–1116 (2000).

    CAS  PubMed  Google Scholar 

  113. Smyth, M. J., Taniguchi, M. & Street, S. E. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol. 165, 2665–2670 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Fernandez, N. C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Med. 5, 405–411 (1999).Milestone paper illustrating that dendritic cells can trigger the innate, NK-cell-mediated antitumour immunity.

    Article  CAS  PubMed  Google Scholar 

  115. Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14, 105–110 (2001).

    CAS  PubMed  Google Scholar 

  116. Fehniger, T. A. & Caligiuri, M. A. Interleukin 15: biology and relevance to human disease. Blood 97, 14–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Yajima, T. et al. Overexpression of interleukin-15 in vivo enhances antitumor activity against MHC class I-negative and -positive malignant melanoma through augmented NK activity and cytotoxic T-cell response. Int. J. Cancer 99, 573–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Lynch, D. H. et al. Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nature Med. 3, 625–631 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Peron, J. M. et al. FLT3-ligand administration inhibits liver metastases: role of NK cells. J. Immunol. 161, 6164–6170 (1998).

    CAS  PubMed  Google Scholar 

  120. Pawlowska, A. B. et al. In vitro tumor-pulsed or in vivo Flt3 ligand-generated dendritic cells provide protection against acute myelogenous leukemia in nontransplanted or syngeneic bone marrow-transplanted mice. Blood 97, 1474–1482 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Zheng, L. M. et al. Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J. Exp. Med. 184, 579–584 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Moore, R. J. et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nature Med. 5, 828–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Pilaro, A. M. et al. TNF-alpha is a principal cytokine involved in the recruitment of NK cells to liver parenchyma. J. Immunol. 153, 333–342 (1994).

    CAS  PubMed  Google Scholar 

  124. Kasaian, M. T. et al. IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 16, 559–569 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Campbell, J. J. et al. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J. Immunol. 166, 6477–6482 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Inngjerdingen, M., Damaj, B. & Maghazachi, A. A. Expression and regulation of chemokine receptors in human natural killer cells. Blood 97, 367–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Yoneda, O. et al. Fractalkine-mediated endothelial cell injury by NK cells. J. Immunol. 164, 4055–4062 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Nishimura, M. et al. Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J. Immunol. 168, 6173–6180 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N. M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Maki, G. et al. Induction of sensitivity to NK mediated cytotoxicity by TNF-alpha treatment: possible roles of ICAM-3 and CD44. Leukemia 12, 1565–1572 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Costello, R. T. et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 15, 3661–3667 (2002).

    Article  Google Scholar 

  134. Maraninchi, D. et al. A phase II study of interleukin-2 in 49 patients with relapsed or refractory acute leukemia. Leuk Lymphoma 31, 343–349 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Chang, E. & Rosenberg, S. A. Patients with melanoma metastases at cutaneous and subcutaneous sites are highly susceptible to interleukin-2-based therapy. J. Immunother. 24, 88–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Mulatero, C. W. et al. A phase II study of combined intravenous and subcutaneous interleukin-2 in malignant pleural mesothelioma. Lung Cancer 31, 67–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Benyunes, M. C. et al. Interleukin-2 with or without lymphokine-activated killer cells as consolidative immunotherapy after autologous bone marrow transplantation for acute myelogenous leukemia. Bone Marrow Transplant. 12, 159–163 (1993).

    CAS  PubMed  Google Scholar 

  138. Hayes, R. L. et al. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76, 840–852 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Rosenberg, S. A. et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J. Natl Cancer Inst. 85, 622–632 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Margolin, K. A. Interleukin-2 in the treatment of renal cancer. Semin. Oncol. 27, 194–203 (2000).

    CAS  PubMed  Google Scholar 

  141. Semino, C. et al. Adoptive immunotherapy of advanced solid tumors: an eight year clinical experience. Anticancer Res. 19, 5645–5649 (1999).

    CAS  PubMed  Google Scholar 

  142. Burns, L. J. et al. Enhancement of the anti-tumor activity of a peripheral blood progenitor cell graft by mobilization with interleukin 2 plus granulocyte colony-stimulating factor in patients with advanced breast cancer. Exp. Hematol. 28, 96–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Caligiuri, M. A. et al. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J. Exp. Med. 171, 1509–1526 (1990).

    Article  CAS  PubMed  Google Scholar 

  144. Buzio, C. et al. Long-term immunotherapy with low-dose interleukin-2 and interferon-alpha in the treatment of patients with advanced renal cell carcinoma. Cancer 92, 2286–2296 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Carson, W. E. et al. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Eur. J. Immunol. 31, 3016–3025 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Kossman, S. E., Scheinberg, D. A., Jurcic, J. G., Jimenez, J. & Caron, P. C. A phase I trial of humanized monoclonal antibody HuM195 (anti-CD33) with low-dose interleukin 2 in acute myelogenous leukemia. Clin. Cancer Res. 5, 2748–2755 (1999).

    CAS  PubMed  Google Scholar 

  147. da Costa, L., Renner, C., Hartmann, F. & Pfreundschuh, M. Immune recruitment by bispecific antibodies for the treatment of Hodgkin disease. Cancer Chemother. Pharmacol. 46, S33–S36 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Renner, C. et al. Initiation of humoral and cellular immune responses in patients with refractory Hodgkin's disease by treatment with an anti-CD16/CD30 bispecific antibody. Cancer Immunol. Immunother. 49, 173–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Gong, J. H., Maki, G. & Klingemann, H. G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8, 652–658 (1994).

    CAS  PubMed  Google Scholar 

  150. Yan, Y. et al. Antileukemia activity of a natural killer cell line against human leukemias. Clin. Cancer Res. 4, 2859–2868 (1998).

    CAS  PubMed  Google Scholar 

  151. Tonn, T., Becker, S., Esser, R., Schwabe, D. & Seifried, E. Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J. Hematother. Stem Cell Res. 10, 535–544 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Ruggeri, L. et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94, 333–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Davies, S. M. et al. An evaluation of KIR ligand incompatability in mismatched unrelated donor hematopoietic transplants. Blood 5 Jul 2002 [epub ahead of print].

  154. Groh, V. et al. Tumour-derived soluble MC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Trapani and D. Godfrey for their collaboration, and the Human Frontiers in Science Program and National Health and Medical Research Council of Australia for supporting our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Smyth.

Related links

Related links

DATABASES

Cancer.gov

acute myelogenous leukaemia

chronic myelogenous leukaemia

hepatic cancer

Hodgkin's disease

lung cancer

melanoma

renal-cell carcinoma

GenBank

Epstein–Barr virus

LocusLink

α-GalCer

CD16

CD27

CD28

CD3ξ

CD30

CD40L

CD56

CD70

CD80

CD86

CD94

CD161

CD244

CTLA-4

DAP10

Dap12

DAP12

FAS

FASL

FLICE

FLIP

FLT3

FLT3L

GM-CSF

granzymes

H60

HLA-A

HLA-B

HLA-C

HLA-E

HLA-G

IFN-α

IFN-β

IFN-γ

IL-2

IL-5

IL-10

IL-12

IL-13

IL-15

IL-21

c-KIT

LY49

Ly49C/I

Ly49D

MICA

NKG2D

NKp30

NKp44

NKp46

perforin

PI3K

Qdm

SAP

SHP1

SHP2

TAP1

TGF-β

TNF-α

TRAIL

OMIM

X-linked lymphoproliferative syndrome

FURTHER INFORMATION

Mark Smyth

19th International Natural Killer Cell Workshop

Glossary

INNATE IMMUNE SYSTEM

Non-adaptive immunity that involves epithelial barriers, phagocytic cells such as neutrophils and macrophages, the complement system, natural-killer cells, and cytokines that coordinate the actions of these innate cells. These components rapidly respond and protect the host from initial infections, without prior priming with specific antigens.

EXTRAVASATION

Movement out of the vascular compartment into interstitial spaces.

NON-CLASSICAL MHC CLASS I MOLECULES

These are also known as major histocompatibility complex (MHC) class 1b glycoproteins. They differ from classical MHC molecules by specific patterns of transcription, protein expression and immunological functions. They are more specialized in function than classical MHC molecules and, in some cases, interact with more limited subsets of lymphoid cells, such as CD1d and natural-killer T cells.

MYCOBACTERIUM BOVIS BACILLUS CALMETTE–GUERIN

An attenuated, non-virulent strain of M. bovis that is used as a vaccine against tuberculosis. It acts as an inflammatory substance that has direct effects on the tumour. It also activates antigen-presenting cells and acts as an adjuvant in the immune stimulation of cancer patients. It has been used most successfully in the treatment of bladder cancer.

T HELPER 1 AND T HELPER 2 CYTOKINES

These are two patterns of cytokine production that have been described for CD4+ T cells. The TH1 pattern includes pro-inflammatory cytokines (typified by interferon-γ), whereas the TH2 pattern includes cytokines such as interleukin (IL)-4, IL-5 and IL-13.

NATURAL-KILLER T CELLS

(NKTs). A unique T-cell lineage that expresses NK-cell markers such as CD161 and recognizes glycolipid antigens in the context of the non-classical MHC molecule CD1d. NKT cells are potent producers of immunoregulatory cytokines, and have been implicated in autoimmune diseases, viral infections and tumour control in mice and humans.

ALLOGENEIC

A mismatch of tissue or cells between donor and recipient (of the same species but genetically non-identical)

SIGNAL PEPTIDES

Antigens are processed and presented on the surface of the cell as peptide fragments that are bound within the cleft of molecules encoded by the major histocompatibility complex genes. Peptides include those that are derived from the signal sequence of proteins (such as from the starting methionine to the mature amino terminus of the protein).

ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY

(ADCC). A mechanism by which natural-killer (NK) cells are targeted to IgG-coated cells, resulting in lysis of the antibody-coated cells. A specific receptor for the constant region of IgG, called FcγRIII (CD16), is expressed on the NK-cell membrane and mediates the ADCC.

γδ T CELLS

T cells that express a T-cell receptor (TCR) that are composed of γ and δ chains and are most abundant at epithelial tissue barriers. The forms of antigen that are recognized by γδ TCR are poorly understood, although some γδ T cells recognize antigens that are presented by non-classical major histocompatibility complex class I molecules.

Fc RECEPTOR

A cell-surface receptor that is specific for the carboxy-terminal constant region of an Ig molecule. Fc receptors are typically multichain complexes that include Ig binding components and signalling components. Several types of Fc receptors exist, including those that are reactive with different IgG isotypes: IgE and IgA. Fc receptors mediate many of the cell-dependent effector functions of antibodies, including antigen-induced activation of mast cells, phagocytosis of antibody-bound antigens, and targeting and activation of natural-killer cells.

T-CELL MEMORY

The unique property of the T-cell-mediated adaptive immune system to respond more rapidly, with greater magnitude, and more effectively to a repeated exposure to an antigen, compared with the first exposure.

ADAPTIVE T-CELL IMMUNITY

T-cell mediated immunity, which is stimulated by presentation of processed antigen. In contrast to innate immunity, adaptive immunity is characterized by exquisite specificity for distinct macromolecules and 'memory'.

HIGH ENDOTHELIAL VENULES

(HEVs). Specialized venules that are the sites of lymphocyte extravasation from the blood into the stroma of a peripheral lymph node or mucosal lymphoid tissue. HEVs are lined by endothelial cells that protrude into the vessel lumen and express unique adhesion molecules that are involved in binding naive T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smyth, M., Hayakawa, Y., Takeda, K. et al. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2, 850–861 (2002). https://doi.org/10.1038/nrc928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing