Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond

Key Points

  • Mutationally activated BRAF is expressed in melanoma, glioblastoma, thyroid, lung and colon cancers and in a subset of haematological malignancies.

  • The most common BRAF mutation leads to the substitution of a glutamic acid for valine at amino acid 600 (V600E) in the kinase domain of the protein. This substitution mimics phosphorylation of the activation loop, thereby inducing constitutive BRAF protein kinase activity.

  • Point mutations in the related ARAF and CRAF protein kinases, although very rare, have been reported as oncogenic drivers in some human cancers. In addition to point mutation, gene fusion events are reported to activate BRAF and CRAF.

  • Numerous non-V600E alterations in BRAF have been reported in cancer and in a rare developmental disorder. Many of these promote kinase activity by relieving autoinhibitory mechanisms or promote activation of other RAF isoforms in a RAS-dependent manner.

  • ATP-competitive BRAF kinase inhibitors are currently under investigation for the treatment of BRAF-mutated cancers. However, to date, efficacy is limited to a subset of melanomas owing to primary or adaptive resistance mechanisms in colorectal and thyroid cancers that reactivate signalling downstream of receptor tyrosine kinases.

  • In clinical trials of BRAF-mutated melanoma, BRAF inhibitors tend to induce high rates of response that show transient durability due to the onset of drug-resistant disease.

  • Acquired resistance to BRAF-V600E inhibitors is strikingly complex but frequently involves reactivation of MEK–ERK MAP kinase signalling. Drug resistance due to overexpression of oncogenic BRAF-V600E leads to 'oncogene overdose' following cessation of drug administration — a phenomenon that could be clinically exploitable to forestall the onset of drug resistance.

  • The efficacy of RAF inhibitors in tumours with other RAF mutations is mostly unknown, although preclinical studies indicate varied responses that are inhibitor-specific and depend on the biochemical mechanism of oncogene activation.

Abstract

The identification of mutationally activated BRAF in many cancers altered our conception of the part played by the RAF family of protein kinases in oncogenesis. In this Review, we describe the development of BRAF inhibitors and the results that have emerged from their analysis in both the laboratory and the clinic. We discuss the spectrum of RAF mutations in human cancer and the complex interplay between the tissue of origin and the response to RAF inhibition. Finally, we enumerate mechanisms of resistance to BRAF inhibition that have been characterized and postulate how strategies of RAF pathway inhibition may be extended in scope to benefit not only the thousands of patients who are diagnosed annually with BRAF-mutated metastatic melanoma but also the larger patient population with malignancies harbouring mutationally activated RAF genes that are ineffectively treated with the current generation of BRAF kinase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BRAF and CRAF mutations in cancer.
Figure 2: Biochemistry of RAF inhibitors in BRAF-V600E and BRAF wild-type cells.
Figure 3: Loss of feedback inhibition and activation of the PI3K pathway mediates primary resistance to BRAF-V600E inhibition.
Figure 4: Mechanisms of acquired resistance to BRAF-V600E inhibition that lead to reactivation of the MAP kinase pathway.
Figure 5: Intermittent BRAF inhibitor therapy to forestall the onset of drug-resistant melanoma.

Similar content being viewed by others

References

  1. Rapp, U. R. et al. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc. Natl Acad. Sci. USA 80, 4218–4222 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jansen, H. W., Ruckert, B., Lurz, R. & Bister, K. Two unrelated cell-derived sequences in the genome of avian leukemia and carcinoma inducing retrovirus MH2. EMBO J. 2, 1969–1975 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moelling, K., Heimann, B., Beimling, P., Rapp, U. R. & Sander, T. Serine- and threonine-specific protein kinase activities of purified gag-mil and gag-raf proteins. Nature 312, 558–561 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Bonner, T. I. et al. Structure and biological activity of human homologs of the raf/mil oncogene. Mol. Cell. Biol. 5, 1400–1407 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonner, T. et al. The human homologs of the raf (mil) oncogene are located on human chromosomes 3 and 4. Science 223, 71–74 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Mark, G. E., MacIntyre, R. J., Digan, M. E., Ambrosio, L. & Perrimon, N. Drosophila melanogaster homologs of the raf oncogene. Mol. Cell. Biol. 7, 2134–2140 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han, M., Golden, A., Han, Y. & Sternberg, P. W. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363, 133–140 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Kozak, C., Gunnell, M. A. & Rapp, U. R. A new oncogene, c-raf, is located on mouse chromosome 6. J. Virol. 49, 297–299 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jansen, H. W., Trachmann, C. & Bister, K. Structural relationship between the chicken protooncogene c-mil and the retroviral oncogene v-mil. Virology 137, 217–224 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Jansen, H. W. et al. Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature 307, 281–284 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Kyriakis, J. M. et al. Raf-1 activates MAP kinase-kinase. Nature 358, 417–421 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Moodie, S. A., Willumsen, B. M., Weber, M. J. & Wolfman, A. Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658–1661 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Van Aelst, L., Barr, M., Marcus, S., Polverino, A. & Wigler, M. Complex formation between RAS and RAF and other protein kinases. Proc. Natl Acad. Sci. USA 90, 6213–6217 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002). This is the first report of BRAF mutations in human cancers.

    Article  CAS  PubMed  Google Scholar 

  15. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Garnett, M. J. & Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6, 313–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004). This is the first paper to describe the crystal structure of the BRAF-V600E kinase domain and the biochemical mechanism of oncogene activation.

    Article  CAS  PubMed  Google Scholar 

  18. Brastianos, P. K. et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nature Genet. 46, 161–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Cerami, E. et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  20. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. New Engl. J. Med. 364, 2305–2315 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Choueiri, T. K. et al. BRAF mutations in metanephric adenoma of the kidney. Eur. Urol. 62, 917–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cancer Statistics Working Group, U.S. United States Cancer Statistics: 1999–2010 Incidence and Mortality Web-based Report. (U.S. Department of Health and Human Services, 2013).

  23. Garnett, M. J., Rana, S., Paterson, H., Barford, D. & Marais, R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell 20, 963–969 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010). This is a demonstration of paradoxical activation of the MAP kinase pathway by RAF inhibitors or a Braf allele with impaired catalytic activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holderfield, M. et al. RAF inhibitors activate the MAPK pathway by relieving inhibitory autophosphorylation. Cancer Cell 23, 594–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genet. 41, 544–552 (2009). This paper demonstrates the oncogenic potential for BRAF-V600E-driven melanoma and synergy with Pten loss to promote metastasis in a mouse model.

    Article  CAS  PubMed  Google Scholar 

  28. Dhomen, N. et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. McFadden, D. G. et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc. Natl Acad. Sci. USA 111, E1600–E1609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Knauf, J. A. et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 65, 4238–4245 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Charles, R. P., Iezza, G., Amendola, E., Dankort, D. & McMahon, M. Mutationally activated BRAFV600E elicits papillary thyroid cancer in the adult mouse. Cancer Res. 71, 3863–3871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Charles, R. P., Silva, J., Iezza, G., Phillips, W. A. & McMahon, M. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis. Mol. Cancer Res. http://dx.doi.org/10.1158/1541-7786.mcr-14-0158-t (2014).

  33. Carragher, L. A. et al. V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol. Med. 2, 458–471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rad, R. et al. A genetic progression model of BrafV600E-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell 24, 15–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Collisson, E. A. et al. A central role for RAF→MEK→ ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov. 2, 685–693 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, J. et al. B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer. Cancer Res. 72, 4765–4776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huillard, E. et al. Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proc. Natl Acad. Sci. USA 109, 8710–8715 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mito, J. K. et al. Oncogene-dependent control of miRNA biogenesis and metastatic progression in a model of undifferentiated pleomorphic sarcoma. J. Pathol. 229, 132–140 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Kamata, T. et al. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720. Mol. Cancer Res. 11, 1530–1541 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Imielinski, M. et al. Oncogenic and sorafenib-sensitive ARAF mutations in lung adenocarcinoma. J. Clin. Invest. 124, 1582–1586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pandit, B. et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genet. 39, 1007–1012 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Razzaque, M. A. et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nature Genet. 39, 1013–1017 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Roberts, A. E., Allanson, J. E., Tartaglia, M. & Gelb, B. D. Noonan syndrome. Lancet 381, 333–342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emuss, V., Garnett, M., Mason, C. & Marais, R. Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res. 65, 9719–9726 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Light, Y., Paterson, H. & Marais, R. 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. Mol. Cell. Biol. 22, 4984–4996 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dhillon, A. S., Meikle, S., Yazici, Z., Eulitz, M. & Kolch, W. Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J. 21, 64–71 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kubicek, M. et al. Dephosphorylation of Ser-259 regulates Raf-1 membrane association. J. Biol. Chem. 277, 7913–7919 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Dumaz, N. et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 66, 9483–9491 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Simon, R. et al. High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy number alterations in urinary bladder cancer. Cancer Res. 61, 4514–4519 (2001).

    CAS  PubMed  Google Scholar 

  52. Nowell, P. C. & Hungerford, D. A. A minute chromosome in human chronic granulocytic leukemia. Science 142, 1497 (1960).

    Google Scholar 

  53. Palanisamy, N. et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nature Med. 16, 793–798 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Ciampi, R. et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest. 115, 94–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cin, H. et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 121, 763–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Badiali, M. et al. KIAA1549-BRAF fusions and IDH mutations can coexist in diffuse gliomas of adults. Brain Pathol. 22, 841–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones, D. T. et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genet. 45, 927–932 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Jones, D. T. et al. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28, 2119–2123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ikawa, S. et al. B-raf, a new member of the raf family, is activated by DNA rearrangement. Mol. Cell. Biol. 8, 2651–2654 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stanton, V. P. Jr., Nichols, D. W., Laudano, A. P. & Cooper, G. M. Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol. Cell. Biol. 9, 639–647 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kerkhoff, E. & Rapp, U. R. Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol. Cell. Biol. 17, 2576–2586 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Botton, T. et al. Recurrent BRAF kinase fusions in melanocytic tumors offer an opportunity for targeted therapy. Pigment Cell. Melanoma Res. 26, 845–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Hutchinson, K. E. et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin. Cancer Res. 19, 6696–6702 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Jones, D. T. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pfister, S. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Invest. 118, 1739–1749 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heidecker, G. et al. Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol. Cell. Biol. 10, 2503–2512 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rushworth, L. K., Hindley, A. D., O'Neill, E. & Kolch, W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol. Cell. Biol. 26, 2262–2272 (2006). This paper describes the biochemical characterization and function of RAF dimerization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Sievert, A. J. et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc. Natl Acad. Sci. USA 110, 5957–5962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lyons, J. F., Wilhelm, S., Hibner, B. & Bollag, G. Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer 8, 219–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Abou-Alfa, G. K. et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 24, 4293–4300 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. New Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Joseph, E. W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl Acad. Sci. USA 107, 14903–14908 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bollag, G. et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nature Rev. Drug Discov. 11, 873–886 (2012). This is a review of the discovery, development and initial clinical results of vemurafenib.

    Article  CAS  Google Scholar 

  77. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Doma, E. et al. Skin tumorigenesis stimulated by Raf inhibitors relies upon Raf functions that are dependent and independent of ERK. Cancer Res. 73, 6926–6937 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. McKay, M. M., Ritt, D. A. & Morrison, D. K. RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling. Curr. Biol. 21, 563–568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brennan, D. F. et al. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472, 366–369 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Long, G. V. et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J. Clin. Oncol. 29, 1239–1246 (2011).

    Article  PubMed  Google Scholar 

  83. Sosman, J. A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. New Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. McArthur, G. A. et al. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ascierto, P. A. et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J. Clin. Oncol. 31, 3205–3211 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Hauschild, A. et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380, 358–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. New Engl. J. Med. 367, 107–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Dietrich, S. et al. Continued response off treatment after BRAF inhibition in refractory hairy cell leukemia. J. Clin. Oncol. 31, e300–e303 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Anforth, R., Fernandez-Penas, P. & Long, G. V. Cutaneous toxicities of RAF inhibitors. Lancet Oncol. 14, e11–e18 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. New Engl. J. Med. 366, 207–215 (2012). This paper documents the ability of BRAF inhibitors to promote skin tumorigenesis from initiated, HRAS-mutated keratinocytes.

    Article  CAS  PubMed  Google Scholar 

  92. Oberholzer, P. A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Lacouture, M. E. et al. Analysis of dermatologic events in vemurafenib-treated patients with melanoma. Oncologist 18, 314–322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Holderfield, M. et al. Vemurafenib cooperates with HPV to promote initiation of cutaneous tumors. Cancer Res, 74, 2238–2245 (2014).

    Article  CAS  Google Scholar 

  95. Gibney, G. T., Messina, J. L., Fedorenko, I. V., Sondak, V. K. & Smalley, K. S. Paradoxical oncogenesis—the long-term effects of BRAF inhibition in melanoma. Nat. Rev. Clin. Oncol. 10, 390–399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Abdel-Wahab, O. et al. Efficacy of Intermittent Combined RAF and MEK Inhibition in a Patient with Concurrent BRAF- and NRAS-Mutant Malignancies. Cancer Discov. http://dx.doi.org/10.1158/2159-8290.cd-13-1038 (2014). This paper shows the clinical usefulness of intermittent RAF inhibitor therapy in a patient with simultaneous NRAS-mutated leukaemia and BRAF-mutated melanoma.

  97. Callahan, M. K. et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. New Engl. J. Med. 367, 2316–2321 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Andrews, M. C. et al. BRAF inhibitor-driven tumor proliferation in a KRAS-mutated colon carcinoma is not overcome by MEK1/2 inhibition. J. Clin. Oncol. 31, e448–e451 (2013).

    Article  PubMed  Google Scholar 

  99. Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kopetz, S. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J. Clin. Oncol. 28, 3534 (2010).

    Article  Google Scholar 

  101. Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012). This paper shows that a loss of feedback from ERK MAP kinase to EGFR signalling can lead to rapid adaptive resistance to the cytotoxic effects of vemurafenib in BRAF-mutated colorectal cancer cells.

    CAS  PubMed  Google Scholar 

  103. Samuels, M. L. & McMahon, M. Inhibition of platelet-derived growth factor- and epidermal growth factor-mediated mitogenesis and signaling in 3T3 cells expressing delta Raf-1:ER, an estradiol-regulated form of Raf-1. Mol. Cell. Biol. 14, 7855–7866 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Montero-Conde, C. et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 3, 520–533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Trejo, C. L., Juan, J., Vicent, S., Sweet-Cordero, A. & McMahon, M. MEK1/2 inhibition elicits regression of autochthonous lung tumors induced by KRASG12D or BRAFV600E. Cancer Res. 72, 3048–3059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Trejo, C. L. et al. Mutationally activated PIK3CAH1047R cooperates with BRAFV600E to promote lung cancer progression. Cancer Res. 73, 6448–6461 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Azam, M., Seeliger, M. A., Gray, N. S., Kuriyan, J. & Daley, G. Q. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nature Struct. Mol. Biol. 15, 1109–1118 (2008).

    Article  CAS  Google Scholar 

  108. Whittaker, S. et al. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci. Transl. Med. 2, 35ra41 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Nazarian, R. et al. Melanomas acquire resistance to B-RAFV600E inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Emery, C. M. et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc. Natl Acad. Sci. USA 106, 20411–20416 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Montagut, C. et al. Elevated CRAF potential mechanism acquired resistance BRAF inhibition in melanoma. Cancer Res. 68, 4853–4861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Su, F. et al. Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res. 72, 969–978 (2012).

    Article  PubMed  Google Scholar 

  114. Karreth, F. A., DeNicola, G. M., Winter, S. P. & Tuveson, D. A. C-Raf inhibits MAPK activation and transformation by B-RafV600E. Mol. Cell 36, 477–486 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schimke, R. T., Alt, F. W., Kellems, R. E., Kaufman, R. J. & Bertino, J. R. Amplification of dihydrofolate reductase genes in methotrexate-resistant cultured mouse cells. Cold Spring Harb. Symp. Quant. Biol. 42, (Pt. 2) 649–657 (1978).

    Article  CAS  PubMed  Google Scholar 

  117. Shi, H. et al. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nature Commun. 3, 724 (2012).

    Article  CAS  Google Scholar 

  118. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011). Of the multiple mechanisms of vemurafenib resistance, this paper demonstrates the clinical relevance of altered patterns of oncogene mRNA splicing as a mechanism for drug resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Abel, E. V. et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J. Clin. Invest. 123, 2155–2168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Haq, R. et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl Acad. Sci. USA 110, 4321–4326 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Smith, M. P. et al. Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J. Natl Cancer Inst. 105, 33–46 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Johannessen, C. M. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 505–509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. New Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, K. B. et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J. Clin. Oncol. 31, 482–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Wagle, N. et al. MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition. Cancer Discov. 4, 61–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Morris, E. J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 3, 742–750 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Woods, D. et al. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5598–5611 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013). This paper demonstrates the phenomenon of oncogene overdose and the usefulness of intermittent dosing of vemurafenib in the preclinical setting to forestall the onset of drug resistance in patient-derived xenografts of melanoma.

    Article  CAS  PubMed  Google Scholar 

  133. Zhu, J., Woods, D., McMahon, M. & Bishop, J. M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995). This highly influential review succinctly surveys how differences in the magnitude and duration of RTK-mediated activation of RAF–MEK–ERK signalling could be integrated by cells to elicit profoundly different biological responses.

    Article  CAS  PubMed  Google Scholar 

  135. Old, W. M. et al. Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol. Cell 34, 115–131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Blasco, R. B. et al. c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell 19, 652–663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Karreth, F. A., Frese, K. K., DeNicola, G. M., Baccarini, M. & Tuveson, D. A. C-Raf is required for the initiation of lung cancer by K-RasG12D. Cancer Discov. 1, 128–136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ehrenreiter, K. et al. Raf-1 addiction in Ras-induced skin carcinogenesis. Cancer Cell 16, 149–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Freeman, A. K., Ritt, D. A. & Morrison, D. K. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol. Cell 49, 751–758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ascierto, P. A. et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 14, 249–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genet. 44, 1006–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  144. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. The Cancer Genome Atlas Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  147. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006). This is a survey of BRAF-mutated and RAS-mutated cancer cell lines treated with MEK inhibitors.

    Article  CAS  PubMed  Google Scholar 

  148. Holderfield, M., Nagel, T. E. & Stuart, D. D. Mechanism and consequences of RAF kinase activation by small-molecule inhibitors. Br. J. Cancer http://dx.doi.org/10.1038/bjc.2014.139 (2014).

  149. Deuker, M. M. & McMahon, M. Oncogene addiction and overdose: intermittent treatment in models of drug-resistant braf-mutated melanoma. The Melanoma Letter, 32, No. 1 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank McCormick or Martin McMahon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holderfield, M., Deuker, M., McCormick, F. et al. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 14, 455–467 (2014). https://doi.org/10.1038/nrc3760

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing