Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanistic links between COPD and lung cancer

Key Points

  • Numerous epidemiological studies have consistently demonstrated an increased incidence of lung cancer in patients who have chronic obstructive pulmonary disease (COPD).

  • The emphysema component of COPD, which is characterized by excessive inflammation and matrix destruction, is sufficient to confer an increased risk for lung cancer. Taken together, the epidemiological literature suggests that entities involved in the airways and airspace components of COPD are both operative in increasing lung cancer risk.

  • Both COPD and lung cancer involve a substantial role for genetic susceptibility to disease, as only a minority of chronic cigarette smokers will develop one, or both, of the diseases. Several single nucleotide polymorphisms (SNPs) in candidate gene families (for example, detoxifying enzymes, proteinases, anti-proteinases and cytokines) have been implicated in disease pathogenesis for both COPD and lung cancer, and may confer a proportion of the risk.

  • The oxidant and noxious stress encountered in the lungs of cigarette smokers is overwhelming. These species cause sufficient damage to some epithelial cells such that they undergo apoptosis, resulting in emphysema. They additionally represent genotoxic stress capable of DNA adduct formation, thereby promoting the earliest stages of carcinogenesis.

  • Inflammatory cell infiltrates are common to both COPD and lung cancer. Their quantity and quality must be taken in context. Inflammation encountered in emphysema is typically cytotoxic and destructive to matrix structures. Such cells would not be expect to promote the growth of an existing tumour, but would provide the necessary genotoxic stress for tumour initiation. Once formed, small tumours polarize immune cells to alternatively activated phenotypes, which promote tumour growth and angiogenesis.

  • Matrix-degrading enzymes, especially those capable of degrading elastin (elastases) are essential for the development of emphysema. Many of these enzymes have been shown to promote lung tumour growth by a variety of mechanisms, including enhanced cellular proliferation and increased angiogenesis, which permits endovascular invasion. Therefore, these enzymes are likely to represent a proportion of the link between emphysema and lung cancer.

  • As operative mechanisms linking COPD to lung cancer are discovered, the opportunity for chemoprevention will arise. Ideally, new therapies will be developed that have the ability to retard COPD progression while reducing lung cancer risk.

Abstract

Numerous epidemiological studies have consistently linked the presence of chronic obstructive pulmonary disease (COPD) to the development of lung cancer, independently of cigarette smoking dosage. The mechanistic explanation for this remains poorly understood. Progress towards uncovering this link has been hampered by the heterogeneous nature of the two disorders: each is characterized by multiple sub-phenotypes of disease. In this Review, I discuss the nature of the link between the two diseases and consider specific mechanisms that operate in both COPD and lung cancer, some of which might represent either chemopreventive or chemotherapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candidate mechanisms linking COPD to lung cancer.
Figure 2: Fields at risk.
Figure 3: Immune cell profiles in COPD and lung cancer.

Similar content being viewed by others

References

  1. Peto, R., Chen, Z. M. & Boreham, J. Tobacco-the growing epidemic. Nature Med. 5, 15–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Youlden, D. R., Cramb, S. M. & Baade, P. D. The International Epidemiology of Lung Cancer: geographical distribution and secular trends. J. Thorac. Oncol. 3, 819–831 (2008).

    Article  PubMed  Google Scholar 

  3. Wasswa-Kintu, S., Gan, W. Q., Man, S. F., Pare, P. D. & Sin, D. D. Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis. Thorax 60, 570–575 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Skillrud, D. M., Offord, K. P. & Miller, R. D. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann. Intern. Med. 105, 503–507 (1986). The first study to show increased lung cancer incidence in patients with COPD.

    Article  CAS  PubMed  Google Scholar 

  5. Tockman, M. S., Anthonisen, N. R., Wright, E. C. & Donithan, M. G. Airways obstruction and the risk for lung cancer. Ann. Intern. Med. 106, 512–518 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Lange, P., Nyboe, J., Appleyard, M., Jensen, G. & Schnohr, P. Ventilatory function and chronic mucus hypersecretion as predictors of death from lung cancer. Am. Rev. Respir. Dis. 141, 613–617 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Speizer, F. E., Fay, M. E., Dockery, D. W. & Ferris, B. G. Jr. Chronic obstructive pulmonary disease mortality in six U.S. cities. Am. Rev. Respir. Dis. 140, S49–S55 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Sin, D. D., Anthonisen, N. R., Soriano, J. B. & Agusti, A. G. Mortality in COPD: role of comorbidities. Eur. Respir. J. 28, 1245–1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Young, R. P. et al. COPD prevalence is increased in lung cancer, independent of age, sex and smoking history. Eur. Respir. J. 34, 380–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Pauwels, R. A., Buist, A. S., Calverley, P. M., Jenkins, C. R. & Hurd, S. S. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am. J. Respir. Crit. Care Med. 163, 1256–1276 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Shapiro, S. D. & Ingenito, E. P. The pathogenesis of chronic obstructive pulmonary disease: advances in the past 100 years. Am. J. Respir. Cell. Mol. Biol. 32, 367–372 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Mannino, D. M. Epidemiology and global impact of chronic obstructive pulmonary disease. Semin. Respir. Crit. Care Med. 26, 204–210 (2005).

    Article  PubMed  Google Scholar 

  13. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  14. Travis, W. D. et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc. Am. Thorac. Soc. 8, 381–385 (2011).

    Article  PubMed  Google Scholar 

  15. Sun, S., Schiller, J. H. & Gazdar, A. F. Lung cancer in never smokers--a different disease. Nature Rev. Cancer 7, 778–790 (2007).

    Article  CAS  Google Scholar 

  16. Punturieri, A., Szabo, E., Croxton, T. L., Shapiro, S. D. & Dubinett, S. M. Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J. Natl Cancer Inst. 101, 554–559 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wilson, D. O. et al. Association of radiographic emphysema and airflow obstruction with lung cancer. Am. J. Respir. Crit. Care Med. 178, 738–744 (2008). Definitive study showing that the presence of radiographic emphysema confers lung cancer risk.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ueda, K. et al. Computed tomography-diagnosed emphysema, not airway obstruction, is associated with the prognostic outcome of early-stage lung cancer. Clin. Cancer Res. 12, 6730–6736 (2006).

    Article  PubMed  Google Scholar 

  19. de Torres, J. P. et al. Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest 132, 1932–1938 (2007).

    Article  PubMed  Google Scholar 

  20. Li, Y. et al. Effect of emphysema on lung cancer risk in smokers: a computed tomography-based assessment. Cancer Prev. Res. 4, 43–50 (2011).

    Article  Google Scholar 

  21. Zulueta, J. J. et al. Emphysema scores predict death from COPD and lung cancer. Chest 141, 1216–1223 (2012).

    Article  PubMed  Google Scholar 

  22. Wilson, D. O. et al. Quantitative computed tomography analysis, airflow obstruction, and lung cancer in the pittsburgh lung screening study. J. Thorac. Oncol. 6, 1200–1205 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maldonado, F. et al. Are airflow obstruction and radiographic evidence of emphysema risk factors for lung cancer? A nested case-control study using quantitative emphysema analysis. Chest 138, 1295–1302 (2010).

    Article  PubMed  Google Scholar 

  24. Taraseviciene-Stewart, L. & Voelkel, N. F. Molecular pathogenesis of emphysema. J. Clin. Invest. 118, 394–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barnes, P. J. Chronic obstructive pulmonary disease. N. Engl. J. Med. 343, 269–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Berk, D. R., Bentley, D. D., Bayliss, S. J., Lind, A. & Urban, Z. Cutis laxa: a review. J. Am. Acad. Dermatol. 66, 842.e1–842.e17 (2012).

    Article  Google Scholar 

  27. Brantly, M., Nukiwa, T. & Crystal, R. G. Molecular basis of α-1-antitrypsin deficiency. Am. J. Med. 84, 13–31 (1988).

    Article  PubMed  Google Scholar 

  28. Shapiro, S. D., Endicott, S. K., Province, M. A., Pierce, J. A. & Campbell, E. J. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J. Clin. Invest. 87, 1828–1834 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heidelberger, K. P. α-1-antitrypsin deficiency: a review; 1963–1975. Ann. Clin. Lab Sci. 6, 110–117 (1976).

    CAS  PubMed  Google Scholar 

  30. Shapiro, S. D. The pathogenesis of emphysema: the elastase:antielastase hypothesis 30 years later. Proc. Assoc. Am. Physicians 107, 346–352 (1995).

    CAS  PubMed  Google Scholar 

  31. Gross, P., Pfitzer, E. A., Tolker, E., Babyak, M. A. & Kaschak, M. Experimental emphysema: its production with papain in normal and silicotic rats. Arch. Environ. Health 11, 50–58 (1965).

    Article  CAS  PubMed  Google Scholar 

  32. Larsson, C. Natural history and life expectancy in severe α1-antitrypsin deficiency, Pi Z. Acta Med. Scand. 204, 345–351 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, P. et al. α1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. Arch. Intern. Med. 168, 1097–1103 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang, P. et al. α1-antitrypsin and neutrophil elastase imbalance and lung cancer risk. Chest 128, 445–452 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Petrache, I. et al. A novel antiapoptotic role for α1-antitrypsin in the prevention of pulmonary emphysema. Am. J. Respir. Crit. Care Med. 173, 1222–1228 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demeo, D. L. et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am. J. Hum. Genet. 78, 253–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Cho, M. H. et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nature Genet. 42, 200–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Pillai, S. G. et al. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 182, 1498–1505 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008). One of the original studies linking polymorphisms in CHRNA3 and CHRNA5 to cigarette consumption, nicotine dependence and lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hung, R. J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Amos, C. I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nature Genet. 40, 616–622 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Belinsky, S. A. et al. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res. 62, 2370–2377 (2002).

    CAS  PubMed  Google Scholar 

  43. Belinsky, S. A. Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis 26, 1481–1487 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, H. T. et al. Defective expression of transforming growth factor β receptor type II is associated with CpG methylated promoter in primary non-small cell lung cancer. Clin. Cancer Res. 10, 2359–2367 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Zochbauer-Muller, S. et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 61, 249–255 (2001).

    CAS  PubMed  Google Scholar 

  46. Ohtani-Fujita, N. et al. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8, 1063–1067 (1993).

    CAS  PubMed  Google Scholar 

  47. Dammann, R., Takahashi, T. & Pfeifer, G. P. The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene 20, 3563–3567 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Belinsky, S. A. et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl Acad. Sci. USA 95, 11891–11896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qiu, W. et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am. J. Respir. Crit. Care Med. 185, 373–381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kasahara, Y. et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest. 106, 1311–1319 (2000). The semimal report highlighting the importance of cellular apoptosis in the pathogenesis of emphysema.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aoshiba, K., Yokohori, N. & Nagai, A. Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am. J. Respir. Cell. Mol. Biol. 28, 555–562 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Shapiro, S. D. Vascular atrophy and VEGFR-2 signaling: old theories of pulmonary emphysema meet new data. J. Clin. Invest. 106, 1309–1310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). The definitive review on the key features that define malignancy.

    Article  CAS  PubMed  Google Scholar 

  54. Steiling, K., Ryan, J., Brody, J. S. & Spira, A. The field of tissue injury in the lung and airway. Cancer Prev. Res. 1, 396–403 (2008).

    Article  CAS  Google Scholar 

  55. Slaughter, D. P., Southwick, H. W. & Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6, 963–968 (1953).

    Article  CAS  PubMed  Google Scholar 

  56. Franklin, W. A. et al. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J. Clin. Invest. 100, 2133–2137 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chang, Y. L. et al. Clonality and prognostic implications of p53 and epidermal growth factor receptor somatic aberrations in multiple primary lung cancers. Clin. Cancer Res. 13, 52–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Wistuba, I. I. et al. Molecular damage in the bronchial epithelium of current and former smokers. J. Natl Cancer Inst. 89, 1366–1373 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Tang, X. et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res. 65, 7568–7572 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Ji, H. et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene 25, 2105–2112 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447–458 (2004). This is the seminal report of RAS-induced expression of IL-8. This work confirms that cancers have the ability to manipulate host immune cell function to their benefit.

    Article  CAS  PubMed  Google Scholar 

  62. Spira, A. et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nature Med. 13, 361–366 (2007). This study validates the concept that cells residing in the field of risk can predict the presence of distal cancers on the basis of their genetic profiles.

    Article  CAS  PubMed  Google Scholar 

  63. Gustafson, A. M. et al. Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci. Transl. Med. 2, 26ra25 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001). This is the initial report of the LSL- Kras mouse that develops lung adenoma and adenocarcinoma. It is the mouse model that is most commonly used to study lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, C. F. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Yatabe, Y., Borczuk, A. C. & Powell, C. A. Do all lung adenocarcinomas follow a stepwise progression? Lung Cancer 74, 7–11 (2011).

    Article  PubMed  Google Scholar 

  67. Karimi, R., Tornling, G., Grunewald, J., Eklund, A. & Skold, C. M. Cell recovery in bronchoalveolar lavage fluid in smokers is dependent on cumulative smoking history. PLoS ONE 7, e34232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Merchant, R. K., Schwartz, D. A., Helmers, R. A., Dayton, C. S. & Hunninghake, G. W. Bronchoalveolar lavage cellularity. The distribution in normal volunteers. Am. Rev. Respir. Dis. 146, 448–453 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004). Definitive study characterizing the quality and quantity of airway inflammation in patients with COPD.

    Article  CAS  PubMed  Google Scholar 

  70. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grumelli, S. et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med. 1, e8 (2004). Seminal study providing a mechanistic basis for the role of lymphocytes in COPD pathogenesis in humans.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Shaykhiev, R. et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J. Immunol. 183, 2867–2883 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Kunz, L. I. et al. Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD. Respir. Res. 12, 34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maeno, T. et al. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J. Immunol. 178, 8090–8096 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Mio, T. et al. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am. J. Respir. Crit. Care Med. 155, 1770–1776 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Shan, M. et al. Lung myeloid dendritic cells coordinately induce TH1 and TH17 responses in human emphysema. Sci. Transl. Med. 1, 4ra10 (2009).

    Article  PubMed  CAS  Google Scholar 

  77. Chen, K. et al. IL-17RA is required for CCL2 expression, macrophage recruitment, and emphysema in response to cigarette smoke. PLoS ONE 6, e20333 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer 6, 24–37 (2006).

    Article  CAS  Google Scholar 

  79. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  Google Scholar 

  81. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moghaddam, S. J. et al. Promotion of lung carcinogenesis by chronic obstructive pulmonary disease-like airway inflammation in a K-ras-induced mouse model. Am. J. Respir. Cell. Mol. Biol. 40, 443–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Gallina, G. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 116, 2777–2790 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, M. L. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl Acad. Sci. USA 102, 419–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Whiteside, T. L. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin. Cancer Biol. 16, 3–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, L. et al. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J. Exp. Med. 206, 1457–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haqqani, A. S., Sandhu, J. K. & Birnboim, H. C. Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia 2, 561–568 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dinarello, C. A. The paradox of pro-inflammatory cytokines in cancer. Cancer Metastasis Rev. 25, 307–313 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Takahashi, H., Ogata, H., Nishigaki, R., Broide, D. H. & Karin, M. Tobacco smoke promotes lung tumorigenesis by triggering IKKβ- and JNK1-dependent inflammation. Cancer Cell 17, 89–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, J. Y., Wang, Y. & Prakash, C. Xenobiotic-metabolizing enzymes in human lung. Curr. Drug Metab. 7, 939–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Dix, T. A. & Marnett, L. J. Metabolism of polycyclic aromatic hydrocarbon derivatives to ultimate carcinogens during lipid peroxidation. Science 221, 77–79 (1983).

    Article  CAS  PubMed  Google Scholar 

  93. Feyler, A. et al. Point: myeloperoxidase −463G a polymorphism and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 11, 1550–1554 (2002).

    CAS  PubMed  Google Scholar 

  94. Nguyen, T., Nioi, P. & Pickett, C. B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284, 13291–13295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rangasamy, T. et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Invest. 114, 1248–1259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Satoh, H. et al. Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 31, 1833–1843 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Kensler, T. W. et al. Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis 33, 101–107 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Shureiqi, I. & Baron, J. A. Curcumin chemoprevention: the long road to clinical translation. Cancer Prev. Res. 4, 296–298 (2011).

    Article  CAS  Google Scholar 

  99. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nature Rev. Cancer 12, 564–571 (2012).

    Article  CAS  Google Scholar 

  101. Solis, L. M. et al. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin. Cancer Res. 16, 3743–3753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Z. et al. The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 102, 647–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Atkinson, J. J. et al. The role of matrix metalloproteinase-9 in cigarette smoke-induced emphysema. Am. J. Respir. Crit. Care Med. 183, 876–884 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Russell, R. E. et al. Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 26, 602–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Russell, R. E. et al. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L867–L873 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Vignola, A. M. et al. Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am. J. Respir. Crit. Care Med. 158, 1945–1950 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Itoh, T. et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58, 1048–1051 (1998).

    CAS  PubMed  Google Scholar 

  111. Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Lu, X. et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev. 23, 1882–1894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. D'Armiento, J., Dalal, S. S., Okada, Y., Berg, R. A. & Chada, K. Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell 71, 955–961 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Joos, L. et al. The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum. Mol. Genet. 11, 569–576 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. & Shapiro, S. D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997). This was the first study to combine cigarette smoke exposure and gene-targeted mice, which is now commonplace. It was also the first study to demonstrate a key role for MMP12 in cigarette smoke-induced emphysema.

    Article  CAS  PubMed  Google Scholar 

  117. Hunninghake, G. M. et al. MMP12, lung function, and COPD in high-risk populations. N. Engl. J. Med. 361, 2599–2608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Acuff, H. B. et al. Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res. 66, 7968–7975 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Houghton, A. M. et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 66, 6149–6155 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Cornelius, L. A. et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J. Immunol. 161, 6845–6852 (1998).

    CAS  PubMed  Google Scholar 

  121. Kuhn, C., Yu, S. Y., Chraplyvy, M., Linder, H. E. & Senior, R. M. The induction of emphysema with elastase. II. Changes in connective tissue. Lab Invest. 34, 372–380 (1976).

    CAS  PubMed  Google Scholar 

  122. Shapiro, S. D. et al. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am. J. Pathol. 163, 2329–2335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Houghton, A. M. et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Med. 16, 219–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Foekens, J. A. et al. The prognostic value of polymorphonuclear leukocyte elastase in patients with primary breast cancer. Cancer Res. 63, 337–341 (2003).

    CAS  PubMed  Google Scholar 

  125. Akizuki, M. et al. Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia 9, 260–264 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Houghton, A. M. et al. Elastin fragments drive disease progression in a murine model of emphysema. J. Clin. Invest. 116, 753–759 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mydel, P. et al. Neutrophil elastase cleaves laminin-332 (laminin-5) generating peptides that are chemotactic for neutrophils. J. Biol. Chem. 283, 9513–9522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Weathington, N. M. et al. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nature Med. 12, 317–323 (2006). Seminal study demonstrating the importance of matrix fragments (independently of cytokines and chemokines) on the recruitment and maintenance of inflammatory cell infiltrates in the setting of lung injury.

    Article  CAS  PubMed  Google Scholar 

  129. Aberle, D. R. et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011). This study reports the results of a large, multi-centre, randomized, placebo-controlled clinical trial, which demonstrated a 20% reduction in lung cancer mortality from the use of chest CT screening.

    Article  PubMed  Google Scholar 

  130. Tammemagi, C. M. et al. Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation. J. Natl Cancer Inst. 103, 1058–1068 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Parimon, T. et al. Inhaled corticosteroids and risk of lung cancer among patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175, 712–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Calverley, P. M. et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 775–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Stolina, M. et al. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J. Immunol. 164, 361–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Khuri, F. R. et al. Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin. Cancer Res. 7, 861–867 (2001).

    CAS  PubMed  Google Scholar 

  135. Greenhough, A. et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30, 377–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Mao, J. T. et al. Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prev. Res. 4, 984–993 (2011).

    Article  CAS  Google Scholar 

  137. Solomon, S. D. et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 352, 1071–1080 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Heasley, L. E. et al. Induction of cytosolic phospholipase A2 by oncogenic Ras in human non-small cell lung cancer. J. Biol. Chem. 272, 14501–14504 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Keith, R. L. et al. Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice. Cancer Res. 64, 5897–5904 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Keith, R. L. et al. Oral iloprost improves endobronchial dysplasia in former smokers. Cancer Prev. Res. 4, 793–802 (2011).

    Article  CAS  Google Scholar 

  141. Nocturnal Oxygen Therapy Trial Group. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Ann. Intern. Med. 93, 391–398 (1980).

  142. Ito, K. et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967–1976 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Adcock, I. M., Chung, K. F., Caramori, G. & Ito, K. Kinase inhibitors and airway inflammation. Eur. J. Pharmacol. 533, 118–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Shepherd, F. A. et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Woodruff, P. G. et al. Safety and efficacy of an inhaled epidermal growth factor receptor inhibitor (BIBW 2948 BS) in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 181, 438–445 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Hammerman, P. S. et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

    Article  CAS  Google Scholar 

  148. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Witschi, H. et al. The carcinogenicity of environmental tobacco smoke. Carcinogenesis 18, 575–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Hubbard, R., Venn, A., Lewis, S. & Britton, J. Lung cancer and cryptogenic fibrosing alveolitis. A population-based cohort study. Am. J. Respir. Crit. Care Med. 161, 5–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Sandford, A. J., Weir, T. D., Spinelli, J. J. & Pare, P. D. Z and S mutations of the α1-antitrypsin gene and the risk of chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 20, 287–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Yang, P. et al. α1-antitrypsin deficiency allele carriers among lung cancer patients. Cancer Epidemiol. Biomarkers Prev. 8, 461–465 (1999).

    CAS  PubMed  Google Scholar 

  153. Zhu, Y., Spitz, M. R., Lei, L., Mills, G. B. & Wu, X. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances lung cancer susceptibility. Cancer Res. 61, 7825–7829 (2001).

    CAS  PubMed  Google Scholar 

  154. Cheng, S. L., Yu, C. J. & Yang, P. C. Genetic polymorphisms of cytochrome p450 and matrix metalloproteinase in chronic obstructive pulmonary disease. Biochem. Genet. 47, 591–601 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Dialyna, I. A., Miyakis, S., Georgatou, N. & Spandidos, D. A. Genetic polymorphisms of CYP1A1, GSTM1 and GSTT1 genes and lung cancer risk. Oncol. Rep. 10, 1829–1835 (2003).

    CAS  PubMed  Google Scholar 

  156. Xiao, D. et al. Relationship between polymorphisms of genes encoding microsomal epoxide hydrolase and glutathione S-transferase P1 and chronic obstructive pulmonary disease. Chin. Med. J. 117, 661–667 (2004).

    CAS  PubMed  Google Scholar 

  157. Park, J. Y., Chen, L., Wadhwa, N. & Tockman, M. S. Polymorphisms for microsomal epoxide hydrolase and genetic susceptibility to COPD. Int. J. Mol. Med. 15, 443–448 (2005).

    CAS  PubMed  Google Scholar 

  158. Benhamou, S., Reinikainen, M., Bouchardy, C., Dayer, P. & Hirvonen, A. Association between lung cancer and microsomal epoxide hydrolase genotypes. Cancer Res. 58, 5291–5293 (1998).

    CAS  PubMed  Google Scholar 

  159. Kao, R. C., Wehner, N. G., Skubitz, K. M., Gray, B. H. & Hoidal, J. R. Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J. Clin. Invest. 82, 1963–1973 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zheng, T. et al. Role of cathepsin S-dependent epithelial cell apoptosis in IFN-γ-induced alveolar remodeling and pulmonary emphysema. J. Immunol. 174, 8106–8115 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Yang, Y. et al. Cathepsin S mediates gastric cancer cell migration and invasion via a putative network of metastasis-associated proteins. J. Proteome Res. 9, 4767–4778 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Yang, Z. & Cox, J. L. Cathepsin L increases invasion and migration of B16 melanoma. Cancer Cell Int. 7, 8 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Golovatch, P. et al. Role for cathepsin K in emphysema in smoke-exposed guinea pigs. Exp. Lung Res. 35, 631–645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Brooks, P. C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin α v β 3. Cell 85, 683–693 (1996).

    Article  CAS  PubMed  Google Scholar 

  165. Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Balbin, M. et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genet. 35, 252–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Kudo, Y. et al. Matrix Metalloproteinase-13 (MMP-13) Directly and indirectly promotes tumor angiogenesis. J. Biol. Chem. 287, 38716–38728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Deshmukh, H. S. et al. Matrix metalloproteinase-14 mediates a phenotypic shift in the airways to increase mucin production. Am. J. Respir. Crit. Care Med. 180, 834–845 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hotary, K., Li, X. Y., Allen, E., Stevens, S. L. & Weiss, S. J. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 20, 2673–2686 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. McGarry Houghton.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

A. McGarry Houghton's homepage

Glossary

Proximal lung cancers

Proximal refers to cancers arising in the large airways (bronchi) that are easily accessible by bronchoscopy. These lesions are most commonly squamous cell carcinoma or small-cell lung cancer by histology.

Distal lung cancers

Distal cancers arising in the peripheral zones of the lung are more difficult to sample using bronchoscopy. These lesions are most commonly adenocarcinoma by histology.

A1AT

There are more than 75 known mutations in SERPINA1. The normal allele has been designated M. The most commonly encountered abnormal alleles are Z and S. A1AT deficiency is most commonly seen in ZZ or SZ subjects. Common carrier states include MZ and MS.

Bronchoalveolar lavage

(BAL). To sample the contents of the distal lung, physicians insert a bronchoscope into the smallest airway in which it can fit. Once 'wedged' into position, saline is infused into the lung, followed by suctioning to return the fluid, which now contains cells and proteins.

Medicare

A national health insurance programme in the United States, and the largest payer of health care services in the United States.

ß-agonist

Inhaled drug that stimulates the ß-adrenergic receptors located on airway epithelial cells. Their stimulation results in the dilation of the airways. Commonly used for the treatment of asthma and chronic obstructive pulmonary disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houghton, A. Mechanistic links between COPD and lung cancer. Nat Rev Cancer 13, 233–245 (2013). https://doi.org/10.1038/nrc3477

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3477

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer