Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Challenges and opportunities in childhood cancer drug development

Abstract

Advances made in the treatment of childhood malignancies over the past four decades have resulted in overall 5-year survival rates of approximately 80%. However, despite these advances, several childhood cancers still have unacceptably low cure rates, and, even when treatment is successful, the acute and long-term morbidity of current therapy can be substantial. The development of molecularly targeted anticancer drugs offers the prospect of more effective therapy with fewer side effects, but will require increasing partnership between governments, and the academic and private sectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Childhood cancer survival rates.
Figure 2: Developmental changes that affect the pharmacokinetics of drugs in infants, children and adolescents.

Similar content being viewed by others

References

  1. Farber, S. et al. Temporary remissions in acute leukemia in children produced by folic acid antagonist 4-aminopteroylglutamic acid (aminopterin). N. Engl. J. Med. 28, 787–793 (1948).

    Article  Google Scholar 

  2. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  Google Scholar 

  3. Adamson, P. C. & Blaney, S. M. New approaches to drug development in pediatric oncology. Cancer J. 11, 324–330 (2005).

    Article  CAS  Google Scholar 

  4. Bhatia, S. & Meadows, A. T. Long-term follow-up of childhood cancer survivors: future directions for clinical care and research. Pediatr. Blood Cancer 46, 143–148 (2006).

    Article  Google Scholar 

  5. Oeffinger, K. C. et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355, 1572–1582 (2006).

    Article  CAS  Google Scholar 

  6. Meric-Bernstam, F. & Mills, G. B. Overcoming implementation challenges of personalized cancer therapy. Nature Rev. Clin. Oncol. 9, 542–548 (2012).

    Article  CAS  Google Scholar 

  7. Schmitt, M. W., Prindle, M. J. & Loeb, L. A. Implications of genetic heterogeneity in cancer. Ann. NY Acad. Sci. 1267, 110–116 (2012).

    Article  CAS  Google Scholar 

  8. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  Google Scholar 

  9. Park, B. J., Whichard, Z. L. & Corey, S. J. Dasatinib synergizes with both cytotoxic and signal transduction inhibitors in heterogeneous breast cancer cell lines-lessons for design of combination targeted therapy. Cancer Lett. 320, 104–110 (2012).

    Article  CAS  Google Scholar 

  10. Shimizu, T. et al. The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin. Cancer Res. 18, 2316–2325 (2012).

    Article  CAS  Google Scholar 

  11. Survey: Medicines in development for cancer. PhRMA [online] (2011).

  12. The National Academies Press. Safe and Effective Medicines for Children: Pediatric Studies Conducted Under the Best Pharmaceuticals for Children Act and the Pediatric Research Equity Act (Washington D.C., 2012).

  13. Pui, C.-H. et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. New Engl. J. Med. 360, 2730–2741 (2009).

    Article  CAS  Google Scholar 

  14. Law, L. W. Effects of combinations of antileukemic agents on an acute lymphocytic leukemia of mice. Cancer Res. 12, 871–878 (1952).

    CAS  PubMed  Google Scholar 

  15. Goldie, J. H. & Coldman, A. J. The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res. 44, 3643–3653 (1984).

    CAS  PubMed  Google Scholar 

  16. Skipper, H. E., Schabel, F. M. Jr & Wilcox, W. S. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of leukaemia. Cancer Chemother. Rep. 35, 1–111 (1964).

    CAS  PubMed  Google Scholar 

  17. Pinkel, D., Simone, J., Hustu, H. O. & Aur, R. J. Nine years' experience with “total therapy” of childhood acute lymphocytic leukemia. Pediatrics 50, 246–251 (1972).

    CAS  PubMed  Google Scholar 

  18. Capizzi, R. L., Summers, W. P. & Bertino, J. R. L-asparaginase induced alteration of amethopterin (methotrexate) activity in mouse leukemia L5178Y. Ann. NY Acad. Sci. 186, 302–311 (1971).

    Article  CAS  Google Scholar 

  19. Capizzi, R. L. Schedule-dependent synergism and antagonism between methotrexate and L-asparaginase. Biochem. Pharmacol. 23, S151–S161 (1974).

    Google Scholar 

  20. Lobel, J. S., O'Brien, R. T., McIntosh, S., Aspnes, G. T. & Capizzi, R. L. Methotrexate and asparaginase combination chemotherapy in refractory acute lymphoblastic leukemia of childhood. Cancer 43, 1089–1094 (1979).

    Article  CAS  Google Scholar 

  21. Capizzi R. L. Asparaginase-methotrexate in combination chemotherapy: schedule-dependent differential effects on normal versus neoplastic. Cancer Treat. Rep. 65, 115–121 (1981).

    CAS  PubMed  Google Scholar 

  22. Pinkel, D. et al. Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer. 27, 247–256 (1971).

    Article  CAS  Google Scholar 

  23. Hryniuk, W. & Bush, H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J. Clin. Oncol. 2, 1281–1288 (1984).

    Article  CAS  Google Scholar 

  24. Hryniuk, W. & Levine, M. N. Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J. Clin. Oncol. 4, 1162–1170 (1986).

    Article  CAS  Google Scholar 

  25. Cheung, N. V. & Heller, G. Chemotherapy dose intensity correlates strongly with response, median survival, and median progression-free survival in metastatic neuroblastoma. J. Clin. Oncol. 9, 1050–1058 (1991).

    Article  CAS  Google Scholar 

  26. Gaynon, P. S. et al. Association of delivered drug dose and outcome for children with acute lymphoblastic leukemia and unfavorable presenting features. Med. Pediatr. Oncol. 19, 221–227 (1991).

    Article  CAS  Google Scholar 

  27. Bacci, G. et al. The importance of dose-intensity in neoadjuvant chemotherapy of osteosarcoma: a retrospective analysis of high-dose methotrexate, cisplatinum and adriamycin used preoperatively. J. Chemother. 2, 127–135 (1990).

    Article  CAS  Google Scholar 

  28. Smith, M. A., Ungerleider, R. S., Horowitz, M. E. & Simon, R. Influence of doxorubicin dose intensity on response and outcome for patients with osteogenic sarcoma and Ewing's sarcoma. J. Natl Cancer Inst. 83, 1460–1470 (1991).

    Article  CAS  Google Scholar 

  29. Womer, R. B. et al. Randomized comparison of every-two-week v. every-three-week chemotherapy in Ewing sarcoma family tumors (ESFT). J Clin Oncol. Abstr. 26, 10504 (2008).

    Article  Google Scholar 

  30. Strother, D. et al. Feasibility of four consecutive high-dose chemotherapy cycles with stem-cell rescue for patients with newly diagnosed medulloblastoma or supratentorial primitive neuroectodermal tumor after craniospinal radiotherapy: results of a collaborative study. J. Clin. Oncol. 19, 2696–2704 (2001).

    Article  CAS  Google Scholar 

  31. Welte, K. et al. A randomized phase-III study of the efficacy of granulocyte colony-stimulating factor in children with high-risk acute lymphoblastic leukemia. Berlin-Frankfurt-Munster Study Group. Blood 87, 3143–3150 (1996).

    CAS  PubMed  Google Scholar 

  32. Burdach, S. E. et al. Granulocyte-macrophage-colony stimulating factor for prevention of neutropenia and infections in children and adolescents with solid tumors. Results of a prospective randomized study. Cancer 76, 510–516 (1995).

    Article  CAS  Google Scholar 

  33. Hawkins, D. S. et al. Peripheral blood stem cell support reduces the toxicity of intensive chemotherapy for children and adolescents with metastatic sarcomas. Cancer 95, 1354–1365 (2002).

    Article  CAS  Google Scholar 

  34. Smith, M. A. et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J. Clin. Oncol. 28, 2625–2634 (2010).

    Article  Google Scholar 

  35. Malogolowkin, M. H. et al. Intensified platinum therapy is an ineffective strategy for improving outcome in pediatric patients with advanced hepatoblastoma. J. Clin. Oncol. 24, 2879–2884 (2006).

    Article  CAS  Google Scholar 

  36. Michel, G. et al. Use of recombinant human granulocyte colony-stimulating factor to increase chemotherapy dose-intensity: a randomized trial in very high-risk childhood acute lymphoblastic leukemia. J. Clin. Oncol. 18, 1517–1524 (2000).

    Article  CAS  Google Scholar 

  37. Crist, W. M. et al. Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J. Clin. Oncol. 19, 3091–3102 (2001).

    Article  CAS  Google Scholar 

  38. Reulen R. C. et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA 304, 172–179 (2010).

    Article  CAS  Google Scholar 

  39. Survey: Medicines in development for cancer. PhRMA [online] (2006).

  40. Zhang, J. et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334 (2012).

    Article  CAS  Google Scholar 

  41. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  Google Scholar 

  42. Schultz, K. R. et al. Improved early event-free survival' with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study. J. Clin. Oncol. 27, 5175–5181 (2009).

    Article  CAS  Google Scholar 

  43. Henderson, E. S. Treatment of acute leukemia. Ann. Intern. Med. 69, 628–632 (1968).

    Article  CAS  Google Scholar 

  44. Monga, M. & Sausville, E. A. Developmental therapeutics program at the NCI: molecular target and drug discovery process. Leukemia 16, 520–526 (2002).

    Article  CAS  Google Scholar 

  45. Kung, A. L. Practices and pitfalls of mouse cancer models in drug discovery. Adv. Cancer Res. 96, 191–212 (2007).

    Article  CAS  Google Scholar 

  46. Voskoglou-Nomikos, T., Pater, J. L. & Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 9, 4227–4239 (2003).

    PubMed  Google Scholar 

  47. Carol, H. et al. Initial testing of the MDM2 inhibitor RG7112 by the pediatric preclinical testing program. Pediatr. Blood Cancer. 2 Jul 2012 (doi:10.1002/pbc.24235).

  48. Smith, M. A. et al. Evaluation of arsenic trioxide by the pediatric preclinical testing program with a focus on Ewing sarcoma. Pediatr. Blood Cancer 59, 753–755 (2012).

    Article  Google Scholar 

  49. Gillis, J. & Loughlan, P. Not just small adults: the metaphors of paediatrics. Arch. Dis. Child. 92, 946–947 (2007).

    Article  Google Scholar 

  50. Kearns, G. L. et al. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N. Engl. J. Med. 349, 1157–1167 (2003).

    Article  CAS  Google Scholar 

  51. Balis, F. M. et al. Pharmacokinetics and pharmacodynamics of oral methotrexate and mercaptopurine in children with lower risk acute lymphoblastic leukemia: a joint children's cancer group and pediatric oncology branch study. Blood 92, 3569–3577 (1998).

    CAS  PubMed  Google Scholar 

  52. Crom, W. R. et al. Pharmacokinetics of anticancer drugs in children. Clin. Pharmacokinet. 12, 168–213 (1987).

    Article  CAS  Google Scholar 

  53. Panetta, J. C., Iacono, L. C., Adamson, P. C. & Stewart, C. F. The importance of pharmacokinetic limited sampling models for childhood cancer drug development. Clin. Cancer Res. 9, 5068–5077 (2003).

    CAS  PubMed  Google Scholar 

  54. Relling, M. V. et al. Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J. Clin. Oncol. 22, 3930–3936 (2004).

    Article  Google Scholar 

  55. Rocha, J. C. et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 105, 4752–4758 (2005).

    Article  CAS  Google Scholar 

  56. Pinto, N., Cohn, S. L. & Dolan, M. E. Using germline genomics to individualize pediatric cancer treatments. Clin. Cancer Res. 18, 2791–2800 (2012).

    Article  CAS  Google Scholar 

  57. Hunger, S. P., Raetz, E. A., Loh, M. L. & Mullighan, C. G. Improving outcomes for high-risk ALL: translating new discoveries into clinical care. Pediatr. Blood Cancer 56, 984–993 (2011).

    Article  Google Scholar 

  58. Kang, H. et al. Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115, 1394–1405 (2010).

    Article  CAS  Google Scholar 

  59. Mullighan, C. G. et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 106, 9414–9418 (2009).

    Article  CAS  Google Scholar 

  60. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    Article  CAS  Google Scholar 

  61. Mullighan, C. G. New strategies in acute lymphoblastic leukemia: translating advances in genomics into clinical practice. Clin. Cancer Res. 17, 396–400 (2011).

    Article  CAS  Google Scholar 

  62. Adamson, P. C., Bagatell, R., Balis, F. M. & Blaney, S. M. in Principles and Practice of Pediatric Oncology (eds Pizzo, P. A. & Poplack, D.G.) 6th edn 279–255 (Lippincott Williams & Wilkins, 2011).

    Google Scholar 

  63. Alcorn, J. & McNamara, P. J. Phamacokinetics in the newborn. Adv Drug. Delivery Rev. 55, 667–686 (2003).

    Article  CAS  Google Scholar 

  64. de Wildt, S. N., Johnson, T. N. & Choonara, I. The effect of age on drug metabolism. Paediatric Perinatal Drug Ther. 5, 101–106 (2003).

    Article  CAS  Google Scholar 

  65. Bissinger, R. L. Renal physiology part 1: structure and function. Neonatal Netw. 14, 9–20 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robin E. Norris or Peter C. Adamson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Children's Oncology Group

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, R., Adamson, P. Challenges and opportunities in childhood cancer drug development. Nat Rev Cancer 12, 776–782 (2012). https://doi.org/10.1038/nrc3370

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3370

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer