Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insulin and insulin-like growth factor signalling in neoplasia

An Erratum to this article was published on 30 January 2009

Key Points

  • Insulin and insulin-like growth factor (IGF) signalling systems are ancient and involve regulation of physiology in ways beyond their well-known medically recognized roles concerning regulation of carbohydrate metabolism and growth.

  • There is substantial experimental and clinical evidence that cancer cells express insulin and IGF1 receptors, and that these receptors are important activators of the Akt and mitogen-activated protein kinase signalling networks in neoplastic tissue.

  • Population studies provide substantial direct and circumstantial evidence that cancer risk and cancer prognosis are influenced by IGF1 and insulin levels.

  • Preclinical evaluation of drug candidates that target IGF1 and/or insulin signalling has revealed antineoplastic activity.

  • At least 10 different drug candidates are being evaluated in clinical trials; early results have justified expansion of clinical trial programmes.

  • Energy metabolism is an important topic in cancer research. IGF1 and insulin might have roles, along with other regulators, in mediating effects of perturbations of whole organism energy balance (for example, dietary excess, caloric restriction and exercise) on cellular energy physiology.

Abstract

Insulin and insulin-like growth factors (IGFs) are well known as key regulators of energy metabolism and growth. There is now considerable evidence that these hormones and the signal transduction networks they regulate have important roles in neoplasia. Epidermiological, clinical and laboratory research methods are being used to investigate novel cancer prevention and treatment strategies related to insulin and IGF signalling. Pharmacological strategies under study include the use of novel receptor-specific antibodies, receptor kinase inhibitors and AMP-activated protein kinase activators such as metformin. There is evidence that insulin and IGF signalling may also be relevant to dietary and lifestyle factors that influence cancer risk and cancer prognosis. Recent results are encouraging and have justified the expansion of many translational research programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of key findings related to the roles of insulin and insulin-like growth factors (IGFs) in neoplasia.
Figure 2: Key elements of insulin-like growth factor (IGF) signalling at the cellular and whole organism levels.
Figure 3: Anti-ligand, anti-receptor and receptor tyrosine kinase inhibition approaches to targeting.
Figure 4: An example of an objective response to monotherapy with an insulin-like growth factor 1 receptor (IGF1R)-specific antibody.
Figure 5: Endocrine response to IGF1R blockade.
Figure 6: Metformin actions that are relevant to neoplasia.

Similar content being viewed by others

References

  1. Steiner, D. F., Chan, S. J., Welsh, J. M. & Kwok, S. C. Structure and evolution of the insulin gene. Annu. Rev. Genet. 19, 463–484 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. De Meyts, P. Insulin and its receptor: structure, function and evolution. Bioessays 26, 1351–1362 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Dong, M. Q. et al. Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317, 660–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Toyoshima, Y. et al. The role of insulin receptor signaling in zebrafish embryogenesis. Endocrinol. 7 Aug 2008 (doi:10.1210/en.2008-0329).

  5. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005). Genetic evidence from a knockout model that advances understanding of the mechanism of action of metformin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dowling, R. J., Zakikhani, M., Fantus, I. G., Pollak, M. & Sonenberg, N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67, 10804–10812 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. & Pollak, M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273 (2006). This report provides evidence that metformin does not act as an 'insulin sensitizer' for neoplastic cells in vitro ; rather it reduces mitogenic activity of insulin by an AMPK-dependent mechanism.

    Article  CAS  PubMed  Google Scholar 

  8. Bowker, S. L., Majumdar, S. R., Veugelers, P. & Johnson, J. A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29, 254–258 (2006).

    Article  PubMed  Google Scholar 

  9. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005). This population study provides hypothesis-generating evidence for an unexpected reduction of cancer risk associated with use of metformin among diabetic subjects.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pollak, M. N., Schernhammer, E. S. & Hankinson, S. E. Insulin-like growth factors and neoplasia. Nature Rev. Cancer 4, 505–518 (2004).

    Article  CAS  Google Scholar 

  11. Chitnis, M. M., Yuen, J. S. P., Protheroe, A. S., Pollak, M. & Macaulay, V. M. The type 1 insulin-like growth factor receptor pathway. Clin. Cancer Res. 14, 6364–6370 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Sachdev, D. & Yee, D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol. Cancer Ther. 6, 1–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Kroemer, G. & Pouyssegur, J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell. Metab. 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Shaw, R. J. Glucose metabolism and cancer. Curr. Opin. Cell Biol. 18, 598–608 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Brogiolo, W. et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Teleman, A. A., Hietakangas, V., Sayadian, A. C. & Cohen, S. M. Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell. Metab. 7, 21–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Benyoucef, S., Surinya, K. H., Hadaschik, D. & Siddle, K. Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem. J. 403, 603–613 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Belfiore, A. The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer. Curr. Pharm. Des. 13, 671–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Eccles, S. A. et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 68, 2850–2860 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Lang, S. A. et al. Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1α autocrine loop, and reduces orthotopic tumor growth. Clin. Cancer Res. 13, 6459–6468 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Martins, A. S. et al. A pivotal role for heat shock protein 90 in Ewing sarcoma resistance to anti-insulin-like growth factor 1 receptor treatment: in vitro and in vivo study. Cancer Res. 68, 6260–6270 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. De Souza, A. T. et al. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nature Genet. 11, 447–449 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Hellawell, G. O. et al. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res. 62, 2942–2950 (2002).

    CAS  PubMed  Google Scholar 

  25. Cox, M. et al. Insulin receptor expression by human prostate cancers. Prostate 10 Sep 2008 (doi:10.1002/pros.20852).

  26. Law, J. H. et al. Phosphorylated insulin-like growth factor-1/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res. (in the press).

  27. Osborne, C. K., Bolan, G., Monaco, M. E. & Lippman, M. E. Hormone responsive human breast cancer in long-term tissue culture: effect of insulin. Proc. Natl Acad. Sci. USA 73, 4536–4540 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frasca, F. et al. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch. Physiol. Biochem. 114, 23–37 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Arcaro, A. et al. Novel role for insulin as an autocrine growth factor for malignant brain tumour cells. Biochem. J. 406, 57–66 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohsugi, M. et al. Reduced expression of the insulin receptor in mouse insulinoma (MIN6) cells reveals multiple roles of insulin signaling in gene expression, proliferation, insulin content, and secretion. J. Biol. Chem. 280, 4992–5003 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Kaneda, A. et al. Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk. Proc. Natl Acad. Sci. USA 104, 20926–20931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1272 (1997). A demonstration that overexpression of IGF2 is a common event in colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  33. Firth, S. M. & Baxter, R. C. Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Buckbinder, L. et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377, 646–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Rozen, F., Yang, X., Huynh, H. T. & Pollak, M. Antiproliferative action of vitamin-D-related compounds and insulin-like growth factor binding protein 5 accumulation. J. Natl Cancer Inst. 89, 652–656 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Huynh, H. T., Yang, X. F. & Pollak, M. Estradiol and antiestrogens regulate a growth inhibitory insulin-like growth factor binding protein 3 autocrine loop in human breast cancer cells. J. Biol. Chem. 271, 1016–1021 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Gucev, Z. S., Oh, Y., Kelley, K. M. & Rosenfeld, R. G. Insulin-like growth factor binding protein 3 mediates retinoic acid and transforming growth factor β2-induced growth inhibition in human breast cancer cells. Cancer Res. 56, 1545–1550 (1996).

    CAS  PubMed  Google Scholar 

  38. So, A. et al. Insulin-like growth factor binding protein-2 is a novel therapeutic target associated with breast cancer. Clin. Cancer Res. 14, 6944–6954 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Mehrian-Shai, R. et al. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc. Natl Acad. Sci. USA 104, 5563–5568 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levitt, R. J., Georgescu, M. M. & Pollak, M. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2. Biochem. Biophys. Res. Commun. 336, 1056–1061 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Perks, C. M., Vernon, E. G., Rosendahl, A. H., Tonge, D. & Holly, J. M. IGF-II and IGFBP-2 differentially regulate PTEN in human breast cancer cells. Oncogene 26, 5966–5972 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Holmes, K. M. et al. Integrin-linked kinase contributes to glioma progression in a glial-specific tumour mouse model. Proc. 99th Annu. Meet. Am. Assoc. Cancer Res., Abstr. 2909 (AACR, Philadelphia, 2008).

  43. Zhu, W. et al. IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature 454, 345–349 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Heuson, J. C. & Legros, N. Influence of insulin deprivation on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats subjected to alloxan diabetes and food restriction. Cancer Res. 32, 226–232 (1972).

    CAS  PubMed  Google Scholar 

  45. Hede, K. Doctors seek to prevent breast cancer recurrence by lowering insulin levels. J. Natl Cancer Inst. 100, 530–532 (2008).

    Article  PubMed  Google Scholar 

  46. Pollak, M., Perdue, J. F., Margolese, R. G., Baer, K. & Richard, M. Presence of somatomedin receptors on primary human breast and colon carcinomas. Cancer Lett. 38, 223–230 (1987). This paper provides the initial description of IGF1 binding sites on human tumour specimens, and proposed the possibility of therapies that target IGF1 receptors.

    Article  CAS  PubMed  Google Scholar 

  47. Myal, Y., Shiu, R. P., Bhaumick, B. & Bala, M. Receptor binding and growth-promoting activity of insulin-like growth factors in human breast cancer cells (T-47D) in culture. Cancer Res. 44, 5486–5490 (1984).

    CAS  PubMed  Google Scholar 

  48. Sell, C. et al. Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc. Natl Acad. Sci. USA 90, 11217–11221 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Majeed, N. et al. A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model. Oncogene 24, 4736–4740 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, X. F., Beamer, W., Huynh, H. T. & Pollak, M. Reduced growth of human breast cancer xenografts in hosts homozygous for the 'lit' mutation. Cancer Res. 56, 1509–1511 (1996). This is an early example of laboratory evidence for an influence of the host growth hormone–IGF1 axis on tumour growth in vivo.

    CAS  PubMed  Google Scholar 

  51. Wu, Y. et al. Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors. Cancer Res. 63, 4384–4388 (2003).

    CAS  PubMed  Google Scholar 

  52. Pollak, M., Blouin, M. J., Zhang, J. C. & Kopchick, J. J. Reduced mammary gland carcinogenesis in transgenic mice expressing a growth hormone anatgonist. Br. J. Cancer 85, 428–430 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Creighton, C. J. et al. Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. J. Clin. Oncol. 26, 4078–4085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goya, M. et al. Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors. Cancer Res. 64, 6252–6258 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Haluska, P. et al. In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res. 66, 362–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Ji, Q. S. et al. A novel, potent, and selective insulin-like growth factor-I receptor kinase inhibitor blocks insulin-like growth factor-I receptor signaling in vitro and inhibits insulin-like growth factor-I receptor dependent tumor growth in vivo. Mol. Cancer Ther. 6, 2158–2167 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Rowinsky, E. K. et al. IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin. Cancer Res. 13, 5549s–5555s (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Cohen, B. D. et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751, 871. Clin.Cancer Res. 11, 2063–2073 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Venkateswaran, V. et al. Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. J. Natl Cancer Inst. 99, 1793–1800 (2007). This paper provides experimental evidence consistent with a stimulatory effect of a high-sucrose diet on prostate cancer proliferation, mediated by diet-induced hyperinsulinaemia.

    Article  PubMed  Google Scholar 

  60. Jenkins, P. J. Cancers associated with acromegaly. Neuroendocrinology 83, 218–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Shevah, O. & Laron, Z. Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm. IGF Res. 17, 54–57 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Schernhammer, E. S. et al. Body shape throughout life and correlations with IGFs and GH. Endocr. Relat. Cancer 14, 721–732 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Vatten, L. J., Nilsen, S. T., Odegard, R. A., Romundstad, P. R. & Austgulen, R. Insulin-like growth factor-I and leptin in umbilical cord plasma and infant birth size at term. Pediatrics 109, 1131–1135 (2002).

    Article  PubMed  Google Scholar 

  64. McCormack, V. A. et al. Fetal growth and subsequent risk of breast cancer: results from long term follow up of Swedish cohort. BMJ 326, 248 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sandhu, M. S., Luben, R., Day, N. E. & Khaw, K. T. Self-reported birth weight and subsequent risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 11, 935–938 (2002).

    PubMed  Google Scholar 

  66. Tibblin, G., Eriksson, M., Cnattingius, S. & Ekbom, A. High birthweight as a predictor of prostate cancer risk. Epidemiology 6, 423–424 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Gunnell, D. et al. Height, leg length, and cancer risk: a systematic review. Epidemiol. Rev. 23, 313–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Ahlgren, M., Melbye, M., Wohlfahrt, J. & Sorensen, T. I. Growth patterns and the risk of breast cancer in women. N. Engl. J. Med. 351, 1619–1626 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Diorio, C. et al. Insulin-like growth factor-I, IGF-binding protein-3, and mammographic breast density. Cancer Epidemiol. Biomarkers Prev. 14, 1065–1073 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Byrne, C. et al. Plasma insulin-like growth factor-I, insulin-like growth factor-binding protein-3 and mammographic density. Cancer Res. 60, 3744–3748 (2000).

    CAS  PubMed  Google Scholar 

  71. Diorio, C., Brisson, J., Berube, S. & Pollak, M. Genetic polymorphisms involved in insulin-like growth factor (IGF) pathway in relation to mammographic breast density and IGF levels. Cancer Epidemiol. Biomarkers Prev. 17, 880–888 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Tamimi, R. M. et al. Common genetic variation in IGF1, IGFBP-1, and IGFBP-3 in relation to mammographic density: a cross-sectional study. Breast Cancer Res. 9, R18, (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Adams, T. D. et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Sjostrom, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  75. de la Torre, N. G. et al. Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. J. Clin. Endocrinol. Metab. 19 Aug 2008 (doi:10.1210/jc.2007-1370).

  76. Ma, J. et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I, and IGF-binding protein-3. J. Natl Cancer Inst. 91, 620–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Giovannucci, E. et al. A prospective study of plasma insulin-like growth factor-1 and binding protein-3 and risk of colorectal neoplasia in women. Cancer Epidemiol. Biomarkers Prev. 9, 345–349 (2000).

    CAS  PubMed  Google Scholar 

  78. Palmqvist, R. et al. Plasma insulin-like growth factor-1, insulin-like growth factor binding protein-3, and risk of colorectal cancer: a prospective study in northern Sweden. Gut 50, 642–646 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chan, J. M. et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279, 563–566 (1998). This was the first prospective population study to investigate the relationship between circulating IGF1 levels and cancer risk; the finding led to a renewed interest in IGF1 physiology in the context of neoplasia and stimulated both epidemiological and laboratory research.

    Article  CAS  PubMed  Google Scholar 

  80. Chan, J. M. et. al. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J. Natl Cancer Inst. 94, 1099–1106 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Harman, S. M., Metter, E. J., Blackman, M. R., Landis, P. K. & Carter, H. B. Serum levels of insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-3, and prostate-specific antigen as predictors of clinical prostate cancer. J. Clin. Endocrinol. Metab. 85, 4258–4265 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Stattin, P. et al. Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J. Natl Cancer Inst. 92, 1910–1917 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Schernhammer, E. S., Holly, J. M., Hunter, D. J., Pollak, M. N. & Hankinson, S. E. Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II. Endocr. Relat. Cancer 13, 583–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Kurmasheva, R. T. & Houghton, P. J. IGF-I mediated survival pathways in normal and malignant cells. Biochim. Biophys. Acta 1766, 1–22 (2006).

    CAS  PubMed  Google Scholar 

  85. Miller, A. B. Commentary: implications of the frequent occurrence of occult carcinoma of the prostate. Int. J. Epidemiol. 36, 282–284 (2007).

    Article  PubMed  Google Scholar 

  86. Cheng, I. et al. Common genetic variation in IGF1 and prostate cancer risk in the Multiethnic Cohort. J. Natl Cancer Inst. 98, 123–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Johansson, M. et al. Implications for prostate cancer of insulin-like growth factor-I (IGF-I) genetic variation and circulating IGF-I levels. J. Clin. Endocrinol. Metab. 92, 4820–4826 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Reeves, S. G. et al. IGF1 is a modifier of disease risk in hereditary non-polyposis colorectal cancer. Int. J. Cancer 123, 1339–1343 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl Acad. Sci. USA 105, 3438–3442 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma, J. et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol. 9, 1039–1047 (2008). This paper provides direct evidence for a relationship between plasma c-peptide levels, which reflect insulin secretion, and prostate cancer-specific death in men with this disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Goodwin, P. J. et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J. Clin. Oncol. 20, 42–51 (2002). This report provides early evidence for a relationship between high-fasting insulin levels and risk of relapse in breast cancer, a finding since confirmed by reference 94 and additional studies.

    Article  CAS  PubMed  Google Scholar 

  92. Freedland, S. J., Giovannucci, E. & Platz, E. A. Are findings from studies of obesity and prostate cancer really in conflict? Cancer Causes Control 17, 5–9 (2006).

    Article  PubMed  Google Scholar 

  93. Giovannucci, E. Metabolic syndrome, hyperinsulinemia, and colon cancer: a review. Am. J. Clin. Nutr. 86, s836–s842 (2007).

    Article  PubMed  Google Scholar 

  94. Pollak, M. et al. Insulin resistance, estimated by serum c-peptide level, is associated with reduced event-free survival for postmenopausal women in the NCIC MA14 adjuvant breast cancer trial. J. Clin. Oncol. 24 (June 20 Suppl.), 524 (2006).

    Google Scholar 

  95. Wolpin, B. M. et al. Insulin, the insulin-like growth factor axis, and mortality in patients with nonmetastatic colorectal cancer. J. Clin. Oncol. (in the press).

  96. Fuchs, C. S. et al. Plasma insulin-like growth factors, insulin-like binding protein-3 and outcome in metastatic colorectal cancer: results from intergroup trial N9741. Clin. Cancer Res. (in the press).

  97. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U. S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    Article  PubMed  Google Scholar 

  98. Lopez, T. & Hanahan, D. Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 1, 339–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Plymate, S. R. et al. An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clin. Cancer Res. 13, 6429–6439 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Pollak, M. N. et al. NCIC-CTG MA14 trial: Tamoxifen (tam) vs. tam + octreotide (oct) for adjuvant treatment of stage I or II postmenopausal breast cancer. J. Clin. Oncol. 26 (May 20 Suppl.), 532 (2008).

    Article  Google Scholar 

  101. Divisova, J. et al. The growth hormone receptor antagonist pegvisomant blocks both mammary gland development and MCF-7 breast cancer xenograft growth. Breast Cancer Res. Treat. 98, 315–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Lacy, M. Q. et al. Phase I, Pharmacokinetic and pharmacodynamic study of the anti-insulin like growth factor type 1 receptor monoclonal antibody CP-751,871 in patients with multiple myeloma. J. Clin. Oncol. 26, 3196–3203 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Haluska, P. et al. Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin. Cancer Res. 13, 5834–5840 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. De Bono, J. S. et al. Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor. Clin. Cancer Res. 13, 3611–3616 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Karp, D. D. et al. High activity of the anti-IGF-IR antibody CP-751,871 in combination with paclitaxel and carboplatin in squamous NSCLC. J. Clin. Oncol. 26 (May 20 Suppl.), 8015 (2008). This abstract updated the latest results of a phase II clinical trial study of a combination of an IGF1R-specific antibody with chemotherapy in the treatment of squamous lung cancer; the data contributed to the justification of large phase III clinical trial studies currently underway.

    Article  Google Scholar 

  106. Gualberto, A. et al. Characterization of NSCLC patients responding to anti-IGF-IR therapy. J. Clin. Oncol. 26 (May 20 Suppl.), 8000 (2008).

    Article  Google Scholar 

  107. Olmos, D. et al. Safety, pharmacokinetics and preliminary activity of the anti-IGF-IR antibody CP-751, 871 in patients with sarcoma. J. Clin. Oncol. 26 (May 20 Suppl.), 10501 (2008).

    Article  Google Scholar 

  108. Yin, D., et al. Population pharmacokinetics of CP-751,871, a monoclonal antibody against IGF-I receptor, in patients with multiple myeloma or solid tumors. J. Clin. Oncol. 26 (May 20 Suppl.), 2524 (2008).

    Article  Google Scholar 

  109. Tolcher, A. W. et al. A phase I pharmacokinetic and pharmacodynamic study of AMG 479, a fully human monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-1R), in advanced solid tumors. J. Clin. Oncol. 25 (Jun 20 Suppl.), 3002 (2007).

    Google Scholar 

  110. Sarantopoulos, J. et al. A phase IB study of AMG 479, a type 1 insulin-like growth factor receptor (IGF1R) antibody, in combination with panitumumab (P) or gemcitabine (G). J. Clin. Oncol. 26 (May 20 Suppl.), 3583 (2008).

    Article  Google Scholar 

  111. Moreau, P. et al. Phase I study of AVE1642 anti IGF-1R monoclonal antibody in patients with advanced multiple myeloma. Proceedings of ASH, abstract 1166 (2007).

  112. Tolcher, A. W. et al. A phase I study of AVE1642, a humanized monoclonal antibody IGF-1R antagonist, in patients with advanced solid tumor. J. Clin. Oncol. 26 (May 20 Suppl.), 3582 (2008).

    Article  Google Scholar 

  113. Higano, C. S. et al. A phase I, first in man study of weekly IMC-A12, a fully human insulin like growth factor-I receptor IgG1 monoclonal antibody, in patients with advanced solid tumors. J. Clin. Oncol. 25 (Jun 20 Suppl.), 3505 (2007).

    Google Scholar 

  114. Rothenberg, M. L. et al. Phase I dose-escalation study of the anti-IGF-IR recombinant human IgG1 monoclonal antibody (Mab) IMC-A12, administered every other week to patients with advanced solid tumors. Proc. AACR NCI EORTC Int. Conf. Mol. Targets Cancer Therapeut., abstract C84 (2007).

  115. Higano, C. et al. A phase I study of the recombinant human IgG1 anti-IGF-IR monoclonal antibody (Mab) IMC-A12, administered on a weekly basis to patients with advanced solid tumors: interim analysis. Proc. AACR NCI EORTC Int. Conf. Mol. Targets Cancer Therapeut., abstract B19 (2007).

  116. Hidalgo, M. et al. A phase I sudy of MK-0646, a humanized monoclonal antibody against the insulin-like growth factor receptor type 1 in advanced solid tumor patients in a q2 wk schedule. J. Clin. Oncol. 26 (May 20 Suppl.), 3520 (2008).

    Article  Google Scholar 

  117. Atzori, F. et al. A phase I, pharmacokinetic and pharmacodynamic study of weekly MK-0646, an insulin-like growth factor-1 receptor monoclonal antibody in patients with advanced solid tumors. J. Clin. Oncol. 26 (May 20 Suppl.), 3519 (2008).

    Article  Google Scholar 

  118. Rodon, J. et al. A phase I study of q3W R1507, a human monoclonal antibody IGF-1R antagonist in patients with advanced cancer. J. Clin. Oncol. 26 (May 20 Suppl.), 3590 (2007).

    Google Scholar 

  119. del Rincon, J. P. et al. Growth hormone regulation of p85α expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance. Diabetes 56, 1638–1646 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Zimmermann, K., et al. Balancing oral exposure with Cyp3A4 inhibition in benzimidazole-based IGF-IR inhibitors. Bioorg. Med. Chem. Lett. 18, 4075–4080 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Mulvihill, M. J. et al. Novel 2-phenylquinolin-7-yl-derived imidazo[1,5-a]pyrazines as potent insulin-like growth factor-I receptor (IGF-IR) inhibitors. Bioorg. Med. Chem. 16, 1359–1375 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Hofmann, F. & Garcia-Echeverria, C. Blocking the insulin-like growth factor-I receptor as a strategy for targeting cancer. Drug Discov. Today 10, 1041–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Vasilcanu, R. et al. Picropodophyllin induces downregulation of the insulin-like growth factor 1 receptor: potential mechanistic involvement of Mdm2 and b-arrestin1. Oncogene 27, 1629–1638 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. D'Ercole, A. J. & Ye, P. Expanding the mind: IGF-I and brain development. Endocrinol. 7 Aug 2008 (doi:10.1210/en.2008-0820).

  125. Zhang, H., Pelzer, A. M., Kiang, D. T. & Yee, D. Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin. Cancer Res. 67, 391–397 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Hardie, D. G. Neither LKB1 nor AMPK are the direct targets of metformin. Gastroenterology 131, 973 (2006).

    Article  PubMed  Google Scholar 

  127. Algire, C., Zakikhani, M., Blouin, M.-J., Shuai, J. H. & Pollak, M. Metformin attenuates the stimulatory effect of a high energy diet on in vivo H59 carcinoma growth. Endocr. Relat. Cancer 15, 833–839 (2008). The in vivo model described in this paper suggests that antineoplastic activity of metformin might be confined to metabolically-defined subsets of individuals.

    Article  CAS  PubMed  Google Scholar 

  128. Rattan, R., Giri, S., Singh, A. K. & Singh, I. 5-Aminoimidazole-4-carboxamide-1-b-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J. Biol. Chem. 280, 39582–39593 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell. Metab. 3, 403–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Blagosklonny, M. V. & Campisi, J. Cancer and aging: more puzzles, more promises? Cell Cycle 7, 2615–2618 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Gotlieb, W. H. et al. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol. Oncol. 110, 246–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Huang, X. et al. Important role of the LKB1–AMPK pathway in suppressing tumourigenesis in PTEN deficient mice. Biochem. J. 412, 211–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Ben Sahra, I. et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576–3586 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Anisimov, V. N. et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp. Gerontol. 40, 685–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Phoenix, K. N., Vumbaca, F. & Claffey, K. P. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERα negative MDA-MB-435 breast cancer model. Breast Cancer Res. Treat. 7 Feb 2008 (doi:10.1007/s10549-008-9916-5).

  136. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Liang, J. et al. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biol. 9, 218–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Borger, D. R., Gavrilescu, L. C., Bucur, M. C., Ivan, M. & Decaprio, J. A. AMP-activated protein kinase is essential for survival in chronic hypoxia. Biochem. Biophys. Res. Commun. 370, 230–234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Anisimov, V. N. et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7, 2769–2773 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Jiralerspong, S. et al. The effects of metformin on pathologic complete response rates in diabetic breast cancer patients receiving neoadjuvant systemic therapy. J. Clin. Oncol. 26 (May 20 Suppl.), 528 (2008).

    Article  Google Scholar 

  141. Wan, X., Harkavy, B., Shen, N., Grohar, P. & Helman, L. J. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26, 1932–1940 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006). This reference shows that rapamycin activates the Akt pathway by a mechanism not originally anticipated that might be dependent on IGF1 signalling, providing a rationale for combination therapies involving rapamycin analogues and IGF1 and/or insulin receptor-targeting agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lu, Y., Zi, X., Zhao, Y., Mascarenhas, D. & Pollak, M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J. Natl Cancer Inst. 93, 1852–1857 (2001). This paper provided early evidence for IGF1R-mediated resistance to other targeted therapies. It led to other reports that extended the findings, and contributed to the rationale for clinical trials now under way that co-target the IGF1R with other receptors, including members of the EGF receptor family.

    Article  CAS  PubMed  Google Scholar 

  144. Guix, M. et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J. Clin. Invest. 118, 2609–2619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Buck, E. et al. Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res. 68, 8322–8332 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Lisztwan, J., Pornon, A., Chen, B., Chen, S. & Evans, D. B. The aromatase inhibitor letrozole and inhibitors of insulin-like growth factor I receptor synergistically induce apoptosis in in vitro models of estrogen-dependent breast cancer. Breast Cancer Res. 10, R56 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Kopchick, J. J., Parkinson, C., Stevens, E. C. & Trainer, P. J. Growth hormone receptor antagonists: discovery, development, and use in patients with acromegaly. Endocr. Rev. 23, 623–646 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Cosaceanu, D. et al. Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene 26, 2423–2434 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Burtrum, D., Pytowski, B. & Ludwig, D. Abrogation of PTEN does not confer resistance to anti-IGF-IR targeted therapy in IGF responsive tumor cells. Proc. 98th Annu. Meet. Am. Assoc. Cancer Res., Abstr. 425 (AACR, Philadelphia, 2007).

  150. Jee, S. H. et al. Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293, 194–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Kling, J. Inhaled insulin's last gasp? Nature Biotechnol. 26, 479–480 (2008).

    Article  CAS  Google Scholar 

  152. Bouatia-Naji, N. et al. A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320, 1085–1088 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Folsom, A. R. et al. Variation in TCF7L2 and increased risk of colon cancer: the Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 31, 905–909 (2008).

    Article  PubMed  Google Scholar 

  154. Smith, M. R., Lee, H. & Nathan, D. M. Insulin sensitivity during combined androgen blockade for prostate cancer. J. Clin. Endocrinol. Metab. 91, 1305–1308 (2006). This paper provides solid clinical evidence for hyperinsulinaemia as a consequence of androgen deprivation.

    Article  CAS  PubMed  Google Scholar 

  155. Locke, J. A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  157. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Moore, T. et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prev. Res. 1, 65–76, (2008).

    Article  CAS  Google Scholar 

  159. Jiang, W., Zhu, Z. & Thompson, H. J. Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Res. 68, 5492–5499 (2008). This paper extends prior efforts to clarify the mechanisms underlying the protective effect of dietary energy restriction on neoplastic growth, documenting changes in gene expression within tumours as a function of host diet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kritchevsky, D. & Klurfeld, D. M. Influence of caloric intake on experimental carcinogenesis: a review. Adv. Exp. Med. Biol. 206, 55–68 (1986).

    CAS  PubMed  Google Scholar 

  161. Patel, A. C., Nunez, N. P., Perkins, S. N., Barrett, J. C. & Hursting, S. D. Effects of energy balance on cancer in genetically altered mice. J. Nutr. 134, 3394S–3398S, (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Carling, D. LKB1: a sweet side to Peutz-Jeghers syndrome? Trends Mol. Med. 12, 144–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Hardie, D. G. AMPK and Raptor: matching cell growth to energy supply. Mol. Cell 30, 263–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell. Metab. 1, 15–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Anisimov, V. N. et al. Metformin decelerates aging and development of mammary tumors in HER-2/neu transgenic mice. Bull. Exp. Biol. Med. 139, 721–723 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. & Schwartz, M. W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Inagaki, T. et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell. Metab. 8, 77–83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Giovannucci, E. et al. C. Nutritional predictors of insulin-like growth factor I and their relationships to cancer in men. Cancer Epidemiol. Biomarkers Prev. 12, 84–89 (2003).

    CAS  PubMed  Google Scholar 

  170. Bernstein, L. et al. Lifetime recreational exercise activity and breast cancer risk among black women and white women. J. Natl Cancer Inst. 97, 1671–1679 (2005).

    Article  PubMed  Google Scholar 

  171. Zhu, Z. et al. Effect of nonmotorized wheel running on mammary carcinogenesis: circulating biomarkers, cellular processes, and molecular mechanisms in rats. Cancer Epidemiol. Biomarkers Prev. 17, 1920–1929 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Narkar, V. A. et al. AMPK and PPARγ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Global action against cancer. (World Health Organization Press, Geneva, 2005).

  174. Marques-Vidal, P., Madeleine, G., Romain, S., Gabriel, A. & Bovet, P. Secular trends in height and weight among children and adolescents of the Seychelles, 1956–2006 BMC. Public Health 8, 166 (2008).

    PubMed  PubMed Central  Google Scholar 

  175. Cardoso, H. F. Secular changes in body height and weight of Portuguese boys over one century. Am. J. Hum. Biol. 20, 270–277 (2008).

    Article  PubMed  Google Scholar 

  176. Turcotte, E., Leblanc, M., Carpentier, A. & Benard, F. Optimization of whole-body positron emission tomography imaging by using delayed 2-deoxy-2-[F-18]fluoro-D-glucose injection following I. V. Insulin in diabetic patients. Mol. Imaging Biol. 8, 348–354 (2006).

    Article  PubMed  Google Scholar 

  177. Shang Y et al. Antixenograft tumor activity of a humanized anti-insulin-like growth factor-I receptor monoclonal antibody is associated with decreased AKT activation and glucose uptake. Mol. Cancer Ther. 7, 2599–2608 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Cornelissen, B., McLarty, K., Kersemans, V. & Reilly, R. M. The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of 111In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin). Nucl. Med. Biol. 35, 645–653 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Raju, T. N. A mysterious something: the discovery of insulin and the 1923 Nobel Prize for Frederick G. Banting (1891–1941) and John J. R. Macleod(1876–1935). Acta Paediatr. 95, 1155–1156 (2006).

    Article  PubMed  Google Scholar 

  180. Elias, J. J. Effect of insulin and cortisol on organ cultures of adult mouse mammary gland. Proc. Soc. Exp. Biol. Med. 101, 500–502 (1959).

    Article  CAS  PubMed  Google Scholar 

  181. Heuson, J. C., Coune, A. & Heimann, R. Cell proliferation induced by insulin in organ culture of rat mammary carcinoma. Exp. Cell Res. 45, 351–360 (1967).

    Article  CAS  PubMed  Google Scholar 

  182. Salmon, W. D. & Daughaday, W. H. A hormonally controlled serum factor which stimulated sulfate incorporation by cartilage in vitro. J. Lab. Clin. Med. 49, 825–836 (1957).

    CAS  PubMed  Google Scholar 

  183. Jansen, M. et al. Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature 306, 609–611 (1983).

    Article  CAS  PubMed  Google Scholar 

  184. Dull, T. J., Gray, A., Hayflick, J. S. & Ullrich, A. Insulin-like growth factor II precursor gene organization in relation to insulin gene family. Nature 310, 777–781 (1984).

    Article  CAS  PubMed  Google Scholar 

  185. Ullrich, A., Dull, T. J., Gray, A., Brosius, J. & Sures, I. Genetic variation in the human insulin gene. Science 209, 612–615 (1980).

    Article  CAS  PubMed  Google Scholar 

  186. Bell, G. I. et al. Sequence of the human insulin gene. Nature 284, 26–32 (1980).

    Article  CAS  PubMed  Google Scholar 

  187. Ullrich, A. et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5, 2503–2512 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ullrich, A., et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313, 756–761 (1985). Gave initial evidence for homology between the insulin and IGF1 receptors and characterized oncogenes. This key finding led to study of relationships between signalling systems controlling metabolism and those controlling proliferation.

    Article  CAS  PubMed  Google Scholar 

  189. Arteaga, C. L. et al. Blockade of the type l somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J. Clin. Invest. 84, 1418–1423 (1989). This report provided the first evidence that an IGF1R-specific antibody could reduce tumour growth rate in an animal model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Samani, A. A., Yakar, S., LeRoith, D. & Brodt, P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr. Rev. 28, 20–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Pandini, G., et al. Functional responses and in vivo anti-tumour activity of h7C10: a humanised monoclonal antibody with neutralising activity against the insulin-like growth factor-1 (IGF-1) receptor and insulin/IGF-1 hybrid receptors. Eur. J. Cancer 43, 1318–1327 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Osborne, R. Commercial interest waxes for IGF-1 blockers. Nature Biotechnol. 26, 719–720 (2008).

    Article  CAS  Google Scholar 

  193. Calle, E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature Rev. Cancer 4, 579–591 (2004).

    Article  CAS  Google Scholar 

  194. Hursting, S. D. et al. Energy balance and carcinogenesis: underlying pathways and targets for intervention. Curr. Cancer Drug Targets 7, 484–491 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank L. Lui for valuable assistance in manuscript preparation, and students and colleagues for useful discussions. I apologize to those whose work could not be cited due to space constraints. The author has received research support from the National Cancer Institute of Canada, the Canadian Breast Cancer Research Alliance, the Prostate Cancer Foundation (Santa Monica, California, USA), the Prostate Cancer Foundation of Canada, and the National Cancer Institute (Washington, DC, USA).

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Michael Pollak's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8, 915–928 (2008). https://doi.org/10.1038/nrc2536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing