Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The anaplastic lymphoma kinase in the pathogenesis of cancer

Key Points

  • Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase first identified in a chromosomal translocation associated with some anaplastic large cell lymphomas (ALCL), a subset of T-cell non-Hodgkin lymphomas.

  • The function of the full-length ALK receptor is still poorly characterized. Recent data suggest that ALK is involved in neuronal cell differentiation and regeneration, synapse formation and muscle cell migration.

  • Recently, the interest on ALK in oncology has increased considerably, following the discovery of ALK translocations in a fraction of non-small-cell lung cancers and in other solid tumours.

  • In cancers, all translocations involving ALK produce fusion proteins with constitutive tyrosine kinase activity that in most cases derives from spontaneous dimerization induced by the different fusion partners.

  • Constitutive ALK activity in cancers results in the activation of several downstream pathways that are shared with other tyrosine kinases. Many of these pathways have already been characterized.

  • Constitutive ALK signalling induces cell transformation in vitro and in vivo by controlling key cellular processes such as cell-cycle progression, survival, cell migration and cell shaping.

  • ALK represents an attractive target for innovative combination therapies based on selective small-molecule inhibitors of its tyrosine kinase activity or on its use as an oncoantigen for tumour vaccination.

Abstract

Tyrosine kinases are involved in the pathogenesis of most cancers. However, few tyrosine kinases have been shown to have a well-defined pathogenetic role in lymphomas. The anaplastic lymphoma kinase (ALK) is the oncogene of most anaplastic large cell lymphomas (ALCL), driving transformation through many molecular mechanisms. In this Review, we will analyse how translocations or deregulated expression of ALK contribute to oncogenesis and how recent genetic or pharmacological tools, aimed at neutralizing its activity, can represent the basis for the design of powerful combination therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ALK and Ras–ERK.
Figure 2: ALK and STATs.
Figure 3: ALK and PI3K.
Figure 4: ALK and CD30 signalling.

Similar content being viewed by others

References

  1. Jaffe, E. S., Harris, N. L., Stein, H. & Vardiman, J. W. World Health Organization Classification of Tumors: Tumors of the Haematopoietic and Lymphoid Tissues (International Agency for Research on Cancer, Lyon, 2001).

    Google Scholar 

  2. Stein, H. et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed–Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 66, 848–858 (1985).

    CAS  PubMed  Google Scholar 

  3. Stein, H. et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 96, 3681–3695 (2000).

    CAS  PubMed  Google Scholar 

  4. Sandlund, J. T. et al. Clinical features and treatment outcome for children with CD30+ large-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 12, 895–898 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Kadin, M. E. & Morris, S. W. The t(2;5) in human lymphomas. Leuk. Lymphoma 29, 249–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Rizvi, M. A., Evens, A. M., Tallman, M. S., Nelson, B. P. & Rosen, S. T. T-cell non-Hodgkin lymphoma. Blood 107, 1255–1264 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Savage, K. S. Peripheral T-cell lymphomas. Blood Rev. 4, 201–216 (2007).

    Article  CAS  Google Scholar 

  8. Fischer, P. et al. A Ki-1 (CD30)-positive human cell line (Karpas 299) established from a high-grade non-Hodgkin's lymphoma, showing a 2;5 translocation and rearrangement of the T-cell receptor β-chain gene. Blood 72, 234–240 (1988).

    CAS  PubMed  Google Scholar 

  9. Benz-Lemoine, E. et al. Malignant histiocytosis: a specific t(2;5)(p23;q35) translocation? Review of the literature. Blood 72, 1045–1047 (1988).

    CAS  PubMed  Google Scholar 

  10. Mason, D. Y. et al. CD30-positive large cell lymphomas ('Ki-1 lymphoma') are associated with a chromosomal translocation involving 5q35. Br. J. Haematol. 74, 161–168 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281–1284 (1994). This is the first paper to describe the cloning of the ALK gene in the chromosomal breakpoints that are associated with the balanced t(2;5)(p23;q35) chromosomal translocation in ALCL.

    Article  CAS  PubMed  Google Scholar 

  12. Medeiros, L. J. & Elenitoba-Johnson, K. S. Anaplastic large cell lymphoma. Am. J. Clin. Pathol. 127, 707–722 (2007).

    Article  PubMed  Google Scholar 

  13. Benharroch, D. et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood 91, 2076–2084 (1998).

    CAS  PubMed  Google Scholar 

  14. Ladanyi, M. & Cavalchire, G. Molecular variant of the NPM–ALK rearrangement of Ki-1 lymphoma involving a cryptic ALK splice site. Genes Chromosomes Cancer 15, 173–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Chan, P. K. & Chan, F. Y. Nucleophosmin/B23 (NPM) oligomer is a major and stable entity in HeLa cells. Biochim. Biophys. Acta 1262, 37–42 (1995).

    Article  PubMed  Google Scholar 

  16. Liu, Q. R. & Chan, P. K. Formation of nucleophosmin/B23 oligomers requires both the amino- and the carboxyl-terminal domains of the protein. Eur. J. Biochem. 200, 715–721 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Bischof, D., Pulford, K., Mason, D. Y. & Morris, S. W. Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol. Cell Biol. 17, 2312–2325 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grisendi, S., Mecucci, C., Falini, B. & Pandolfi, P. P. Nucleophosmin and cancer. Nature Rev. Cancer 6, 493–505 (2006).

    Article  CAS  Google Scholar 

  19. Hernandez, L. et al. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: identification of a new TFG-ALK(XL) chimeric gene with transforming activity. Am. J. Pathol. 160, 1487–1494 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colleoni, G. W. et al. ATIC-ALK: A novel variant ALK gene fusion in anaplastic large cell lymphoma resulting from the recurrent cryptic chromosomal inversion, inv(2)(p23q35). Am. J. Pathol. 156, 781–789 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma, Z. et al. Inv(2)(p23q35) in anaplastic large-cell lymphoma induces constitutive anaplastic lymphoma kinase (ALK) tyrosine kinase activation by fusion to ATIC, an enzyme involved in purine nucleotide biosynthesis. Blood 95, 2144–2149 (2000).

    CAS  PubMed  Google Scholar 

  22. Touriol, C. et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 95, 3204–3207 (2000).

    CAS  PubMed  Google Scholar 

  23. Tort, F. et al. Molecular characterization of a new ALK translocation involving moesin (MSN–ALK) in anaplastic large cell lymphoma. Lab. Invest. 81, 419–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Ventura, R. A. et al. Centrosome abnormalities in ALK-positive anaplastic large-cell lymphoma. Leukemia 18, 1910–1911 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Armstrong, F., Lamant, L., Hieblot, C., Delsol, G. & Touriol, C. TPM3–ALK expression induces changes in cytoskeleton organisation and confers higher metastatic capacities than other ALK fusion proteins. Eur. J. Cancer 43, 640–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Maes, B. et al. The NPM–ALK and the ATIC–ALK fusion genes can be detected in non-neoplastic cells. Am. J. Pathol. 158, 2185–2193 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trumper, L., Pfreundschuh, M., Bonin, F. V. & Daus, H. Detection of the t(2;5)-associated NPM/ALK fusion cDNA in peripheral blood cells of healthy individuals. Br. J. Haematol. 103, 1138–1144 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Basecke, J. et al. Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous leukemia. Blood 100, 2267–2268 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Bose, S., Deininger, M., Gora-Tybor, J., Goldman, J. M. & Melo, J. V. The presence of typical and atypical BCR–ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92, 3362–3367 (1998).

    CAS  PubMed  Google Scholar 

  30. Graninger, W. B., Seto, M., Boutain, B., Goldman, P. & Korsmeyer, S. J. Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. J. Clin. Invest. 80, 1512–1515 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Delsol, G. et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2;5 translocation. Blood 89, 1483–1490 (1997). First description of the presence of ALK protein in lymphomas that are different from ALCL, that is, large B-cell lymphomas.

    CAS  PubMed  Google Scholar 

  33. Kuefer, M. U. et al. Retrovirus-mediated gene transfer of NPM–ALK causes lymphoid malignancy in mice. Blood 90, 2901–2910 (1997). This paper demonstrates for the first time the direct pathogenetic role for the NPM–ALK fusion tyrosine kinase in human lymphomas by using a retroviral gene transfer mouse model.

    CAS  PubMed  Google Scholar 

  34. Lange, K. et al. Overexpression of NPM-ALK induces different types of malignant lymphomas in IL-9 transgenic mice. Oncogene 22, 517–527 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Chiarle, R. et al. NPM–ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101, 1919–1927 (2003). Development of the first mouse model of ALK-induced lymphomagenesis by targeted expression of human NPM–ALK in T cells.

    Article  CAS  PubMed  Google Scholar 

  36. Jager, R. et al. Mice transgenic for NPM-ALK develop non-Hodgkin lymphomas. Anticancer Res. 25, 3191–3196 (2005).

    PubMed  Google Scholar 

  37. Chiarle, R. et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nature Med. 11, 623–629 (2005). This is the first genetic study that directly shows, through gene ablation, that STAT3 is required for cellular transformation and/or for tumour survival and growth of lymphoid cells expressing NPM–ALK. It also suggests the basis for therapeutic strategies directed against STAT3 in ALCL.

    Article  CAS  PubMed  Google Scholar 

  38. Turner, S. D. & Alexander, D. R. What have we learnt from mouse models of NPM-ALK-induced lymphomagenesis? Leukemia 19, 1128–1134 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Turner, S. D., Tooze, R., Maclennan, K. & Alexander, D. R. Vav-promoter regulated oncogenic fusion protein NPM-ALK in transgenic mice causes B-cell lymphomas with hyperactive Jun kinase. Oncogene 22, 7750–7761 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Dirks, W. G. et al. Expression and functional analysis of the anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int. J. Cancer 100, 49–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007). First description of EML4 ALK fusion gene in a subset of lung cancers. These cancers are mutually exclusive from those that harbour EGFR mutations.

    Article  CAS  PubMed  Google Scholar 

  42. Perez-Pinera, P., Chang, Y., Astudillo, A., Mortimer, J. & Deuel, T. F. Anaplastic lymphoma kinase is expressed in different subtypes of human breast cancer. Biochem. Biophys. Res. Commun. 358, 399–403 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Griffin, C. A. et al. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 59, 2776–2780 (1999). Description of the first known fusion involving ALK in non-haematopoietic tumours.

    CAS  PubMed  Google Scholar 

  44. Lawrence, B. et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am. J. Pathol. 157, 377–384 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coffin, C. M., Hornick, J. L. & Fletcher, C. D. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am. J. Surg. Pathol. 31, 509–520 (2007).

    Article  PubMed  Google Scholar 

  46. Ma, Z. et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 37, 98–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Debelenko, L. V. et al. Identification of CARS–ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab. Invest. 83, 1255–1265 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Lamant, L. et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am. J. Pathol. 156, 1711–1721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Powers, C., Aigner, A., Stoica, G. E., McDonnell, K. & Wellstein, A. Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J. Biol. Chem. 277, 14153–14158 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Mathivet, T., Mazot, P. & Vigny, M. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full-length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)? Cell Signal 19, 2434–2443 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Stoica, G. E. et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J. Biol. Chem. 277, 35990–35998 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Perez-Pinera, P., Zhang, W., Chang, Y., Vega, J. A. & Deuel, T. F. Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase β/ζ signaling pathway: an alternative mechanism of receptor tyrosine kinase activation. J. Biol. Chem. 282, 28683–28690 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Pillay, K., Govender, D. & Chetty, R. ALK protein expression in rhabdomyosarcomas. Histopathology 41, 461–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Jazii, F. R. et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of β tropomyosin expression in esophageal cancer. World J. Gastroenterol. 12, 7104–7112 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Du, X. L. et al. Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J. Mol. Med. 85, 863–875 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Wellmann, A. et al. The activated anaplastic lymphoma kinase increases cellular proliferation and oncogene up-regulation in rat 1a fibroblasts. FASEB J. 11, 965–972 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Ambrogio, C. et al. p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood 106, 3907–3916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bai, R. Y., Dieter, P., Peschel, C., Morris, S. W. & Duyster, J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-γ to mediate its mitogenicity. Mol. Cell Biol. 18, 6951–6961 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bai, R. Y. et al. Nucleophosmin–anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96, 4319–4327 (2000). First identification of PI3K and Akt as downstream effectors of the NPM–ALK anti-apoptotic signalling pathway and their contribution to the molecular pathogenesis of ALCL.

    CAS  PubMed  Google Scholar 

  60. Zamo, A. et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21, 1038–1047 (2002). First report showing that JAK3 and STAT3 are constitutively activated in ALK-positive cells and that activation of STAT3 contributes to the growth and resistance to apoptosis of ALK-positive tumour cells.

    Article  CAS  PubMed  Google Scholar 

  61. Raetz, E. A. et al. The nucleophosmin-anaplastic lymphoma kinase fusion protein induces c-Myc expression in pediatric anaplastic large cell lymphomas. Am. J. Pathol. 161, 875–883 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujimoto, J. et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc. Natl Acad. Sci. USA 93, 4181–4186 (1996). First demonstration of the transforming properties of NPM–ALK in vitro in mouse fibroblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pulford, K., Morris, S. W. & Turturro, F. Anaplastic lymphoma kinase proteins in growth control and cancer. J. Cell Physiol. 199, 330–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Voena, C. et al. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res. 67, 4278–4286 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Sattler, M. et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1, 479–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Cussac, D. et al. Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity. Blood 103, 1464–1471 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Bacchiocchi, R. et al. Activation of α-diacylglycerol kinase is critical for the mitogenic properties of anaplastic lymphoma kinase. Blood 106, 2175–2182 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Honorat, J. F., Ragab, A., Lamant, L., Delsol, G. & Ragab-Thomas, J. SHP1 tyrosine phosphatase negatively regulates NPM–ALK tyrosine kinase signaling. Blood 107, 4130–4138 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Han, Y. et al. Restoration of shp1 expression by 5-aza-2′-deoxycytidine is associated with downregulation of JAK3/STAT3 signaling in ALK-positive anaplastic large cell lymphoma. Leukemia 20, 1602–1609 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Han, Y. et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM–ALK in ALK+ anaplastic large-cell lymphoma. Blood 108, 2796–2803 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Leventaki, V. et al. NPM–ALK oncogenic kinase promotes cell cycle progression through activation of JNK/c-Jun signaling in anaplastic large cell lymphoma. Blood 110, 1621–1630 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Ouyang, T. et al. Identification and characterization of a nuclear interacting partner of anaplastic lymphoma kinase (NIPA). J. Biol. Chem. 278, 30028–30036 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Bassermann, F. et al. Multisite phosphorylation of nuclear interaction partner of ALK (NIPA) at G2/M involves cyclin B1/Cdk1. J. Biol. Chem. 282, 15965–15972 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Bassermann, F. et al. NIPA defines an SCF-type mammalian E3 ligase that regulates mitotic entry. Cell 122, 45–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Gu, T. L. et al. NPM-ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood 103, 4622–4629 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Q. et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immunol. 168, 466–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Amin, H. M. et al. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene 22, 5399–5407 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Marzec, M. et al. Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. Lab. Invest. 85, 1544–1554 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Coluccia, A. M. et al. Bcl-XL down-regulation suppresses the tumorigenic potential of NPM/ALK in vitro and in vivo. Blood 103, 2787–2794 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Piva, R. et al. Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J. Clin. Invest. 116, 3171–3182 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nieborowska-Skorska, M. et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 61, 6517–6523 (2001).

    CAS  PubMed  Google Scholar 

  82. Ruchatz, H., Coluccia, A. M., Stano, P., Marchesi, E. & Gambacorti-Passerini, C. Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALK-transformed cells. Exp. Hematol. 31, 309–315 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Q., Wang, H. Y., Liu, X. & Wasik, M. A. STAT5A is epigenetically silenced by the tyrosine kinase NPM1–ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1–ALK expression. Nature Med. 13, 1341–1348 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Slupianek, A. et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 61, 2194–2199 (2001).

    CAS  PubMed  Google Scholar 

  85. Rassidakis, G. Z. et al. Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood 105, 827–829 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Slupianek, A. & Skorski, T. NPM/ALK downregulates p27Kip1 in a PI-3K-dependent manner. Exp. Hematol. 32, 1265–1271 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Marzec, M. et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 26, 5606–5614 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Vega, F. et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res. 66, 6589–6597 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Armstrong, F. et al. Differential effects of X–ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 23, 6071–6082 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Motegi, A., Fujimoto, J., Kotani, M., Sakuraba, H. & Yamamoto, T. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J. Cell Sci. 117, 3319–3329 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Horie, R. et al. The NPM–ALK oncoprotein abrogates CD30 signaling and constitutive NF-κB activation in anaplastic large cell lymphoma. Cancer Cell 5, 353–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Colomba, A. et al. Activation of Rac1 and the exchange factor Vav3 are involved in NPM–ALK signaling in anaplastic large cell lymphomas. Oncogene (2007).

  93. Bonzheim, I. et al. Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling. Blood 104, 3358–3360 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Kasprzycka, M., Marzec, M., Liu, X., Zhang, Q. & Wasik, M. A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl Acad. Sci. USA 103, 9964–9969 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Roncador, G. et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 19, 2247–2253 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Hsu, F. Y., Johnston, P. B., Burke, K. A. & Zhao, Y. The expression of CD30 in anaplastic large cell lymphoma is regulated by nucleophosmin-anaplastic lymphoma kinase-mediated JunB level in a cell type-specific manner. Cancer Res. 66, 9002–9008 (2006). This paper demonstrates for the first time the functional relationship between NPM–ALK and CD30, identifying JUNB as the mediator of NPM–ALK-dependent CD30 transcriptional regulation.

    Article  CAS  PubMed  Google Scholar 

  97. Watanabe, M. et al. JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and Reed–Sternberg cells of Hodgkin lymphoma. Cancer Res. 65, 7628–7634 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Horie, R. et al. Ligand-independent signaling by overexpressed CD30 drives NF-κB activation in Hodgkin–Reed–Sternberg cells. Oncogene 21, 2493–2503 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Wright, C. W., Rumble, J. M. & Duckett, C. S. CD30 activates both the canonical and alternative NF-κB pathways in anaplastic large cell lymphoma cells. J. Biol. Chem. 282, 10252–10262 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Ohno, H., Nishikori, M., Maesako, Y. & Haga, H. Reappraisal of BCL3 as a molecular marker of anaplastic large cell lymphoma. Int. J. Hematol. 82, 397–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Thompson, M. A. et al. Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum. Pathol. 36, 494–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Trempat, P. et al. Gene expression profiling in anaplastic large cell lymphoma and Hodgkin's disease. Leuk. Lymphoma 45, 2001–2006 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Lamant, L. et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 109, 2156–2164 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Piccaluga, P. P. et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J. Clin. Invest. 117, 823–834 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnol. 23, 94–101 (2005).

    Article  CAS  Google Scholar 

  106. Elenitoba-Johnson, K. S. et al. Proteomic identification of oncogenic chromosomal translocation partners encoding chimeric anaplastic lymphoma kinase fusion proteins. Proc. Natl Acad. Sci. USA 103, 7402–7407 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Crockett, D. K., Lin, Z., Elenitoba-Johnson, K. S. & Lim, M. S. Identification of NPM–ALK interacting proteins by tandem mass spectrometry. Oncogene 23, 2617–2629 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Lim, M. S. & Elenitoba-Johnson, K. S. Mass spectrometry-based proteomic studies of human anaplastic large cell lymphoma. Mol. Cell Proteomics 5, 1787–1798 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Fanale, M. A. & Younes, A. Monoclonal antibodies in the treatment of non-Hodgkin's lymphoma. Drugs 67, 333–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Li, R. & Morris, S. W. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med. Res. Rev. 10 August 2007 (doi: 10.1002/med.20109).

  111. Galkin, A. V. et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM–ALK. Proc. Natl Acad. Sci. USA 104, 270–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Wan, W. et al. Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood 107, 1617–1623 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Zou, H. Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007). This paper, and the preceding two, shows the development of the first small molecules with selective ALK inhibitory activity, which result in G1 cell-cycle arrest and inactivation of ERK1 and ERK2, STAT3 and Akt signaling pathways. These results suggest a therapeutic application for ALK-positive ALCL and possibly other solid and haematological tumours in which ALK activation is implicated in their pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  114. Piva, R. et al. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood 107, 689–697 (2006). Proof of principle that ALK is a viable target for therapeutic intervention and that its inactivation might be a pivotal approach for the treatment of ALK lymphomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ait-Tahar, K. et al. B and CTL responses to the ALK protein in patients with ALK-positive ALCL. Int. J. Cancer 118, 688–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Passoni, L. et al. In vivo T-cell immune response against anaplastic lymphoma kinase in patients with anaplastic large cell lymphomas. Haematologica 91, 48–55 (2006).

    CAS  PubMed  Google Scholar 

  117. Pulford, K. et al. Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma. Blood 96, 1605–1607 (2000).

    CAS  PubMed  Google Scholar 

  118. Lollini, P. L., Cavallo, F., Nanni, P. & Forni, G. Vaccines for tumour prevention. Nature Rev. Cancer 6, 204–216 (2006).

    Article  CAS  Google Scholar 

  119. Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nature Rev. Genet. 8, 173–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Englund, C. et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 425, 512–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Lee, H. H., Norris, A., Weiss, J. B. & Frasch, M. Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 425, 507–512 (2003). This paper and the preceding one are the first description of a physiological role of an ALK homologue in Drosophila melanogaster.

    Article  CAS  PubMed  Google Scholar 

  122. Bazigou, E. et al. Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 128, 961–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Liao, E. H., Hung., W., Abrams, B. & Zhen, M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430, 345–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Vernersson, E. et al. Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Expr. Patterns 6, 448–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Morris, S. W. et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14, 2175–2188 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Iwahara, T. et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14, 439–449 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Souttou, B., Carvalho, N. B., Raulais, D. & Vigny, M. Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. J. Biol. Chem. 276, 9526–9531 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Piccinini, G. et al. A ligand-inducible epidermal growth factor receptor/anaplastic lymphoma kinase chimera promotes mitogenesis and transforming properties in 3T3 cells. J. Biol. Chem. 277, 22231–22239 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Bilsland, J. G. et al. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology 9 May 2007 (doi: 10.1038/sj.npp.1301446).

  130. Yang, H. L. et al. The ligand Jelly Belly (Jeb) activates the Drosophila Alk RTK to drive PC12 cell differentiation, but is unable to activate the mouse ALK RTK. J. Exp. Zoolog. B Mol. Dev. Evol. 308, 269–282 (2007).

    Article  CAS  Google Scholar 

  131. Stoica, G. E. et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J. Biol. Chem. 276, 16772–16779 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Mi, R., Chen, W. & Hoke, A. Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc. Natl Acad. Sci. USA 104, 4664–4669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mourali, J. et al. Anaplastic lymphoma kinase is a dependence receptor whose proapoptotic functions are activated by caspase cleavage. Mol. Cell Biol. 26, 6209–6222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moog-Lutz, C. et al. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J. Biol. Chem. 280, 26039–26048 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Miyake, I. et al. Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene 21, 5823–5834 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Sebti, S. M. & Hamilton, A. D. Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy: lessons from mechanism and bench-to-bedside translational studies. Oncogene 19, 6584–6593 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Hudes, G. et al. Temsirolimus, interferon α, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Siddiquee, K. et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc. Natl Acad. Sci. USA 104, 7391–7396 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Changelian, P. S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci. STKE 2003, re5 (2003).

    PubMed  Google Scholar 

  142. Dijkers, P. F. et al. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J. Cell Biol. 156, 531–542 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hideshima, T. et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107, 4053–4062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shiota, M. et al. Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Blood 86, 1954–1960 (1995).

    CAS  PubMed  Google Scholar 

  145. Adam, P. et al. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am. J. Surg. Pathol. 27, 1473–1476 (2003).

    Article  PubMed  Google Scholar 

  146. Onciu, M. et al. ALK-positive plasmablastic B-cell lymphoma with expression of the NPM–ALK fusion transcript: report of 2 cases. Blood 102, 2642–2644 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Lamant, L., Dastugue, N., Pulford, K., Delsol, G. & Mariame, B. A new fusion gene TPM3–ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 93, 3088–3095 (1999).

    CAS  PubMed  Google Scholar 

  148. Siebert, R. et al. Complex variant translocation t(1;2) with TPM3–ALK fusion due to cryptic ALK gene rearrangement in anaplastic large-cell lymphoma. Blood 94, 3614–3617 (1999).

    CAS  PubMed  Google Scholar 

  149. Hernandez, L. et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG–ALK translocations. Blood 94, 3265–3268 (1999).

    CAS  PubMed  Google Scholar 

  150. Trinei, M. et al. A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC–ALK) in a case of ALK-positive anaplastic large cell lymphoma. Cancer Res. 60, 793–798 (2000).

    CAS  PubMed  Google Scholar 

  151. Bridge, J. A. et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am. J. Pathol. 159, 411–415 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Reichard, K. K., McKenna, R. W. & Kroft, S. H. ALK-positive diffuse large B-cell lymphoma: report of four cases and review of the literature. Mod. Pathol. 20, 310–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Tort, F., Campo, E., Pohlman, B. & Hsi, E. Heterogeneity of genomic breakpoints in MSN–ALK translocations in anaplastic large cell lymphoma. Hum. Pathol. 35, 1038–1041 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Meech, S. J. et al. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4--anaplastic lymphoma kinase gene fusion. Blood 98, 1209–1216 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Cools, J. et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 34, 354–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Lamant, L. et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 37, 427–432 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Stachurski, D. et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma with a complex karyotype and cryptic 3′ ALK gene insertion to chromosome 4 q22–24. Hum. Pathol. 38, 940–945 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Panagopoulos, I. et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int. J. Cancer 118, 1181–1186 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant number R01-CA64033, Sixth Research Framework Program of the European Union, Project RIGHT (LSHB-CT-2004-005276), Ministero dell'Università e Ricerca Scientifica (MUR), Ministero della Salute, Associazione Italiana per la Ricerca sul Cancro, Regione Piemonte, Compagnia di San Paolo Torino (Progetto Oncologia), Fondazione Cassa di Risparmio di Torino and Fondazione Guido Berlucchi per la Ricerca sul Cancro. Roberto Piva was supported by the MUR programme 'Incentivazione alla mobilità di studiosi residenti all'estero'. Claudia Voena was supported by a fellowship from the Fondazione Italiana per la Ricerca sul Cancro.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Chiarle or Giorgio Inghirami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

Morphology and dynamics of untreated anaplastic large cell lymphoma (ALCL) cells. Untreated human ALCL cells were photographed with confocal microscopy every 5 min. ALCL cells spontaneously display an activated-like T-cell morphology, with actin-rich membrane protrusions. The high dynamics of the membrane protrusions is a typical feature of ALCL cells. (MOV 7736 kb)

Supplementary information S2 (movie)

Changes in morphology and dynamics of anaplastic large cell lymphoma (ALCL) cells after anaplastic lymphoma kinase (ALK) inhibition. Human ALCL cells were treated with the specific ALK inhibitor and photographed with confocal microscopy every 5 min. On treatment with ALK inhibitor, ALCL cells first revert to a round, symmetrical shape and lose their membrane protrusions. Subsequently, after a prolonged treatment, ALCL cells undergo apoptosis. (MOV 4693 kb)

Related links

Related links

DATABASES

Atlas of Genetics and Cytogenetics in Oncology and Haematology

ALK

FURTHER INFORMATION

Allen Brain Atlas

ClinicalTrials.gov

European Association for Haematopathology

RNA Interference Technology as Human Therapeutic Tool

Glossary

Anaplasia

Loss of structural differentiation within a cell or group of cells, often with increased capacity for multiplication, as in a malignant tumour.

Histiocyte

A general term for cells of monocytic lineage. When histiocytes show evident phagocytic activity they are called macrophages. For tumours, the term histiocytic refers either to a proven or supposed derivation of the neoplastic cells from normal hystiocytes or to tumours in which neoplastic cells are mixed with abundant reactive histiocytes.

Pseudonuclear inclusions

A peculiar aspect of cells in which the nucleus appears to enclose a region of cytoplasm within a ring; such cells are called doughnut cells.

Immunoblastic or plasmablastic morphology

Morphology that resembles plasmablasts. Plasmablasts are cells that have the blastoid morphology of immunoblasts but have acquired the antigen profile of a plasma cell. They are large cells with abundant basophilic cytoplasm and round to oval nuclei with single or several prominent nucleoli.

Dependence receptor

A transmembrane protein that is capable of inducing cell death in the absence of the required stimulus but which blocks apoptosis following binding to their ligand. Expression of these receptors creates cellular states of dependence on the associated ligands.

WD domain

WD repeats are short amino-acid motifs terminating in Trp–Asp (W–D). WD domain-containing proteins have 4 to 16 repeating units and are implicated in signal transduction, transcription regulation, cell-cycle control and apoptosis.

Guanine nucleotide exchange factor

(GEF). A regulatory molecule that catalyses the exchange of GDP for GTP on GTPases in response to diverse extracellular stimuli, and ultimately regulates numerous cellular responses such as proliferation, differentiation and movement.

GTPase-activating protein

(GAP). A regulatory molecule that enhances the intrinsic GTPase activity of GTPase proteins.

Reed–Sternberg cell

Diagnostic giant cell of B lineage found in Hodgkin lymphoma. It is characterized by multiple or multilobulated nuclei and prominent eosinophilic nucleoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiarle, R., Voena, C., Ambrogio, C. et al. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8, 11–23 (2008). https://doi.org/10.1038/nrc2291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing