Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting neoantigens to augment antitumour immunity

A Corrigendum to this article was published on 24 August 2017

This article has been updated

Key Points

  • Somatic mutations can cause tumours to express mutant proteins that are tumour specific and not expressed on normal cells (neoantigens). In the subset of human tumours with a viral aetiology, the proteins encoded by viral genes are another type of neoantigen.

  • Neoantigens are an attractive immune target because their selective expression on tumours may minimize immune tolerance as well as the risk of autoimmunity. Therefore, neoantigen-specific therapies may be more effective and less toxic than therapies targeting tumour-associated antigens.

  • Neoantigens serve a crucial role in the naturally occurring antitumour T cell response, and are also the most important tumour antigens in certain cancers for which immune checkpoint inhibitors have shown clinical efficacy.

  • As neoantigens are unique and not shared between different patients, neoantigen-targeted therapy will probably need to be on an individual basis. A personalized approach to targeting neoantigens has only recently been possible as a result of major advances in genomics and bioinformatics, including massively parallel sequencing and epitope prediction algorithms.

  • Two therapeutic platforms that could be used to target neoantigens are adoptive cell therapy (ACT) using neoantigen-specific T cell products, and personalized vaccines encoding predicted neoantigens.

  • Neoantigen-specific therapies will probably need to be combined with other therapies such as immune checkpoint inhibitors to overcome immunosuppressive mechanisms in the tumour microenvironment that inhibit neoantigen-specific immune responses.

Abstract

The past decade of cancer research has been marked by a growing appreciation of the role of immunity in cancer. Mutations in the tumour genome can cause tumours to express mutant proteins that are tumour specific and not expressed on normal cells (neoantigens). These neoantigens are an attractive immune target because their selective expression on tumours may minimize immune tolerance as well as the risk of autoimmunity. In this Review we discuss the emerging evidence that neoantigens are recognized by the immune system and can be targeted to increase antitumour immunity. We also provide a framework for personalized cancer immunotherapy through the identification and selective targeting of individual tumour neoantigens, and present the potential benefits and obstacles to this approach of targeted immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumour antigen processing and presentation on MHC class I.
Figure 2: Correlation of tumour somatic mutation frequency with objective response rates to immune checkpoint blockade.
Figure 3: Cancers acquire immune tolerance.
Figure 4: A framework for identifying and targeting tumour neoantigens.

Similar content being viewed by others

Change history

  • 24 August 2017

    In the legend of Figure 2 of this article there was an error in the formula for the objective response rate (ORR). The formula should read ORR (%) = 8 x ln(x) + 9. This has now been corrected in the online version.

References

  1. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    CAS  PubMed  Google Scholar 

  2. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Segal, N. H. et al. Epitope landscape in breast and colorectal cancer. Cancer Res. 68, 889–892 (2008).

    CAS  PubMed  Google Scholar 

  4. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  5. O'Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    CAS  PubMed  Google Scholar 

  6. Sledge, G. W. The challenge and promise of the genomic era. J. Clin. Oncol. 30, 203–209 (2012).

    PubMed  Google Scholar 

  7. Lu, Y.-C. & Robbins, P. F. Cancer immunotherapy targeting neoantigens. Semin. Immunol. 28, 22–27 (2016).

    CAS  PubMed  Google Scholar 

  8. Gubin, M. M. et al. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J. Clin. Invest. 125, 3413–3421 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Ward, J. P., Gubin, M. M. & Schreiber, R. D. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv. Immunol. 130, 25–74 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Feng, H., Shuda, M., Chang, Y. & Moore, P. S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gillison, M. L. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl Cancer Inst. 92, 709–720 (2000).

    CAS  PubMed  Google Scholar 

  12. Walboomers, J. M. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

    CAS  PubMed  Google Scholar 

  13. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014).

    CAS  PubMed  Google Scholar 

  14. Simpson, A. J. G., Caballero, O. L., Jungbluth, A., Chen, Y.-T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625 (2005).

    CAS  PubMed  Google Scholar 

  15. Trimble, C. L. et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386, 2078–2088 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nedergaard, M. K., Hedegaard, C. J. & Poulsen, H. S. Targeting the epidermal growth factor receptor in solid tumor malignancies. BioDrugs 26, 83–99 (2012).

    CAS  PubMed  Google Scholar 

  17. Sampson, J. H. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28, 4722–4729 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wedén, S. et al. Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras. Int. J. Cancer 128, 1120–1128 (2011).

    PubMed  Google Scholar 

  20. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, L. et al. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J. Clin. Invest. 125, 3384–3391 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Melero, I. et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014).

    CAS  PubMed  Google Scholar 

  23. Stone, J. D., Harris, D. T. & Kranz, D. M. TCR affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr. Opin. Immunol. 33, 16–22 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Aleksic, M. et al. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur. J. Immunol. 42, 3174–3179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian, S., Maile, R., Collins, E. J. & Frelinger, J. A. CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J. Immunol. 179, 2952–2960 (2007).

    CAS  PubMed  Google Scholar 

  26. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Germeau, C. et al. High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J. Exp. Med. 201, 241–248 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Joseph, C. G. et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343, 152–157 (2014). This study showed that even neoantigen-specific T cells against a mutated tumour protein can be cross-reactive with the non-mutated version of the antigen and can induce autoimmunity.

    CAS  PubMed  Google Scholar 

  34. Gross, L. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res. 3, 326–333 (1943).

    Google Scholar 

  35. De Plaen, E. et al. Immunogenic (tum) variants of mouse tumor P815: cloning of the gene of tum-antigen P91A and identification of the tum-mutation. Immunology 85, 2274–2278 (1988). This study demonstrated that antitumour T cells can recognize aberrant peptides derived from tumour-specific mutations.

    CAS  Google Scholar 

  36. Lurquin, C. et al. Structure of the gene of tum transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58, 293–303 (1989).

    CAS  PubMed  Google Scholar 

  37. Monach, P. A., Meredith, S. C., Siegel, C. T. & Schreiber, H. A unique tumor antigen produced by a single amino acid substitution. Immunity 2, 45–59 (1995).

    CAS  PubMed  Google Scholar 

  38. Coulie, P. G. et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc. Natl Acad. Sci. USA 92, 7976–7980 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wölfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995). This study analysed the naturally occurring antitumour T cell response against melanoma in a patient to demonstrate that immunoreactivity against neoantigens predominates over the response to TAAs.

    PubMed  Google Scholar 

  40. Zhou, X. et al. Diverse CD8+ T-cell responses to renal cell carcinoma antigens in patients treated with an autologous granulocyte–macrophage colony-stimulating factor gene-transduced renal tumor cell vaccine. Cancer Res. 65, 1079–1088 (2005).

    CAS  PubMed  Google Scholar 

  41. Lennerz, V. et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc. Natl Acad. Sci. USA 102, 16013–16018 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, J., Dudley, M. E., Rosenberg, S. A. & Robbins, P. F. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J. Immunother. 28, 53–62 (2005).

    PubMed  PubMed Central  Google Scholar 

  43. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dummer, R. et al. A randomized controlled comparison of pembrolizumab and chemotherapy in patients with ipilimumab-refractory melanoma. J. Transl Med. 13, O5 (2015).

    PubMed Central  Google Scholar 

  48. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2014).

    PubMed  Google Scholar 

  49. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    CAS  PubMed  Google Scholar 

  50. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sundar, R., Cho, B.-C., Brahmer, J. R. & Soo, R. A. Nivolumab in NSCLC: latest evidence and clinical potential. Ther. Adv. Med. Oncol. 7, 85–96 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    PubMed  Google Scholar 

  55. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Abdul-Hassan Tawbi, H. et al. Safety and efficacy of PD-1 blockade using pembrolizumab in patients with advanced soft tissue (STS) and bone sarcomas (BS): results of SARC028 — a multicenter phase II study. J. Clin. Oncol. 34, abstr. 11006 (2016).

    Google Scholar 

  57. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015). This paper provided support for the role of somatic mutations in the response to immune checkpoint inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosenberg, S. A. Interleukin 2 for patients with renal cancer. Nat. Clin. Pract. Oncol. 4, 497 (2007).

    PubMed  PubMed Central  Google Scholar 

  63. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    CAS  PubMed  Google Scholar 

  64. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Goh, G. et al. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget 7, 3403–3415 (2016). This study showed that in a subset of MCCs with a viral aetiology, neoantigens derived from viral proteins can serve as strong immune stimulants and may be an attractive target for cancer immunotherapy.

    PubMed  Google Scholar 

  66. Nghiem, P. T. et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N. Engl. J. Med. 374, 2542–2552 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lipson, E. J. et al. PD-L1 expression in the Merkel cell carcinoma microenvironment: association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol. Res. 1, 54–63 (2013).

    CAS  PubMed  Google Scholar 

  68. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Folgiero, V. et al. IDO1 involvement in mTOR pathway: a molecular mechanism of resistance to mTOR targeting in medulloblastoma. Oncotarget 7, 52900–52911 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Zhang, L., Gajewski, T. F. & Kline, J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 114, 1545–1552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fukuno, K. et al. Expression of indoleamine 2,3-dioxygenase in leukemic cells indicates an unfavorable prognosis in acute myeloid leukemia patients with intermediate-risk cytogenetics. Leuk. Lymphoma 56, 1398–1405 (2015).

    CAS  PubMed  Google Scholar 

  72. Mussai, F. et al. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 122, 749–758 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Stone, R. M. et al. Low dose interleukin-2 following intensification therapy with high dose cytarabine for acute myelogenous leukemia in first complete remission. Am. J. Hematol. 83, 771–777 (2008).

    CAS  PubMed  Google Scholar 

  74. Meloni, G. et al. Interleukin-2 may induce prolonged remissions in advanced acute myelogenous leukemia. Blood 84, 2158–2163 (1994).

    CAS  PubMed  Google Scholar 

  75. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015). This study supports the idea that most tumours have neoantigens that are recognizable by the immune system and are potentially susceptible to immune-targeting interventions.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    CAS  PubMed  Google Scholar 

  77. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    CAS  PubMed  Google Scholar 

  78. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  79. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  80. Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Screpanti, V., Wallin, R. P. A., Grandien, A. & Ljunggren, H.-G. Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol. Immunol. 42, 495–499 (2005).

    CAS  PubMed  Google Scholar 

  82. Champsaur, M. & Lanier, L. L. Effect of NKG2D ligand expression on host immune responses. Immunol. Rev. 235, 267–285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases — elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. MacKie, R. M., Reid, R. & Junor, B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N. Engl. J. Med. 348, 567–568 (2003).

    PubMed  Google Scholar 

  86. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–917 (2007).

    CAS  PubMed  Google Scholar 

  87. Khong, H. T. & Restifo, N. P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat. Immunol. 3, 999–1005 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yannakou, C. K., Came, N., Bajel, A. R. & Juneja, S. CD19 negative relapse in B-ALL treated with blinatumomab therapy: avoiding the trap. Blood 126, 4983–4983 (2015).

    Google Scholar 

  90. Gardner, R. et al. Acquisition of a CD19 negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T cell therapy. Blood 127, 2406–2410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Uyttenhove, B. C., Maryanski, J. & Boon, T. Escape of mouse mastocytoma. J. Exp. Med. 157, 1040–1052 (1983). This work showed for the first time that as tumours progress, they lose immunogenicity and antigenicity through the immunoselection of clones expressing weaker antigens, a process that has been termed immunoediting.

    CAS  PubMed  Google Scholar 

  92. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274 (2003).

    CAS  PubMed  Google Scholar 

  94. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Tseng, D. et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl Acad. Sci. USA 110, 11103–11108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pardoll, D. Cancer and the immune system: basic concepts and targets for intervention. Semin. Oncol. 42, 523–538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Singer, K., Gottfried, E., Kreutz, M. & Mackensen, A. Suppression of T-cell responses by tumor metabolites. Cancer Immunol. Immunother. 60, 425–431 (2011).

    CAS  PubMed  Google Scholar 

  99. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sharma, M. D. et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest. 117, 2570–2582 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Serafini, P., Borrello, I. & Bronte, V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin. Cancer Biol. 16, 53–65 (2006).

    CAS  PubMed  Google Scholar 

  102. Munn, D. H. et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114, 280–290 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mao, Y., Poschke, I. & Kiessling, R. Tumour-induced immune suppression: role of inflammatory mediators released by myelomonocytic cells. J. Intern. Med. 276, 154–170 (2014).

    CAS  PubMed  Google Scholar 

  104. Corzo, C. A. et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182, 5693–5701 (2009).

    CAS  PubMed  Google Scholar 

  105. Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).

    CAS  PubMed  Google Scholar 

  106. Willimsky, G. et al. Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. J. Exp. Med. 205, 1687–1700 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kammertoens, T., Qin, Z., Briesemeister, D., Bendelac, A. & Blankenstein, T. B-cells and IL-4 promote methylcholanthrene-induced carcinogenesis but there is no evidence for a role of T/NKT-cells and their effector molecules (Fas-ligand, TNF-α, perforin). Int. J. Cancer 131, 1499–1508 (2012).

    CAS  PubMed  Google Scholar 

  108. Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA 106, 19096–19101 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Nielsen, M., Lundegaard, C., Lund, O. & Kes¸mir, C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57, 33–41 (2005).

    CAS  PubMed  Google Scholar 

  111. Larsen, M. V. et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8, 424 (2007).

    PubMed  PubMed Central  Google Scholar 

  112. Peters, B., Bulik, S., Tampe, R., Van Endert, P. M. & Holzhütter, H.-G. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J. Immunol. 171, 1741–1749 (2003).

    CAS  PubMed  Google Scholar 

  113. Nielsen, M. & Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 8, 33 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Nielsen, M. et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE 2, e796 (2007).

    PubMed  PubMed Central  Google Scholar 

  115. Rammensee, H.-G., Bachmann, J., Emmerich, N. P. N., Bachor, O. A. & Stevanovic´, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

    CAS  PubMed  Google Scholar 

  116. Biesecker, L. G. & Green, R. C. Diagnostic clinical genome and exome sequencing. N. Engl. J. Med. 370, 2418–2425 (2014).

    PubMed  Google Scholar 

  117. Bjorkman, P. J. et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512 (1987).

    CAS  PubMed  Google Scholar 

  118. Babbitt, B. P., Allen, P. M., Matsueda, G., Haber, E. & Unanue, E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317, 359–361 (1985).

    CAS  PubMed  Google Scholar 

  119. Nielsen, M., Lund, O., Buus, S. & Lundegaard, C. MHC class II epitope predictive algorithms. Immunology 130, 319–328 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 9, 641–645 (2014). This case report demonstrated proof of principle for treating cancer with neoantigen-directed immunotherapy.

    Google Scholar 

  122. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    CAS  PubMed  Google Scholar 

  123. Carreno, B. M. et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015). This study demonstrated that vaccination can induce neoantigen-specific T cell responses that are not naturally occurring.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Robbins, P. F. et al. Mining exomic sequencing data to identify mutaded antigens recognized by adoptively transferred tumor-reactive cells. Nat. Med. 19, 747–752 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fritsch, E. F. et al. HLA-binding properties of tumor neoepitopes in humans. Cancer Immunol. Res. 2, 522–529 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Van Buuren, M. M., Calis, J. J. & Schumacher, T. N. High sensitivity of cancer exome-based CD8 T cell neo-antigen identification. Oncoimmunology 3, e28836 (2014).

    PubMed  PubMed Central  Google Scholar 

  127. Duan, F. et al. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J. Exp. Med. 211, 2231–2248 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Bargou, R. et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321, 974–977 (2008).

    CAS  PubMed  Google Scholar 

  129. Baeuerle, P. A. & Reinhardt, C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 69, 4941–4944 (2009).

    CAS  PubMed  Google Scholar 

  130. Topp, M. S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66 (2015).

    CAS  PubMed  Google Scholar 

  131. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Dao, T. et al. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat. Biotechnol. 33, 1079–1086 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Strønen, E. et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 352, 1337–1341 (2016).

    PubMed  Google Scholar 

  135. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

  136. Cheever, M. A. et al. The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15, 5323–5337 (2009).

    PubMed  PubMed Central  Google Scholar 

  137. Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5, 471–484 (2006).

    CAS  PubMed  Google Scholar 

  138. Baird, J. R. et al. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 76, 50–61 (2016).

    CAS  PubMed  Google Scholar 

  139. Lutz, E. R. et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol. Res. 2, 616–631 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Soares, K. C. et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J. Immunother. 38, 1–11 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, B. et al. Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin. Cancer Res. 15, 1623–1634 (2009).

    CAS  PubMed  Google Scholar 

  143. Fu, J. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl Med. 7, 283ra52 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Duraiswamy, J., Kaluza, K. M., Freeman, G. J. & Coukos, G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 73, 3591–3603 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Spranger, S. et al. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J. Immunother. Cancer 2, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Leone, R. D., Lo, Y.-C. & Powell, J. D. A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput. Struct. Biotechnol. J. 13, 265–272 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ebert, P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).

    CAS  PubMed  Google Scholar 

  150. Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).

    CAS  PubMed  Google Scholar 

  151. Bach, P. B. & Pearson, S. D. Payer and policy maker steps to support value-based pricing for drugs. JAMA 314, 2503–2504 (2015).

    CAS  PubMed  Google Scholar 

  152. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ali, S. & Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nat. Rev. Cancer 2, 101–112 (2002).

    PubMed  Google Scholar 

  154. Quintás-Cardama, A. et al. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113, 1619–1630 (2009).

    PubMed  PubMed Central  Google Scholar 

  155. Turner, N. C. et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 373, 209–219 (2015).

    CAS  PubMed  Google Scholar 

  156. Larkin, J. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371, 1867–1876 (2014).

    PubMed  Google Scholar 

  157. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

  158. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    CAS  PubMed  Google Scholar 

  159. Le, D. T. et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin. Cancer Res. 18, 858–868 (2012).

    CAS  PubMed  Google Scholar 

  160. Argani, P. et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin. Cancer Res. 7, 3862–3868 (2001).

    CAS  PubMed  Google Scholar 

  161. Thomas, A. M. et al. Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J. Exp. Med. 200, 297–306 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Chomez, P. et al. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 61, 5544–5551 (2001).

    CAS  PubMed  Google Scholar 

  163. Gnjatic, S. et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv. Cancer Res. 95, 1–30 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Bloomberg–Kimmel Institute for Cancer Immunotherapy and the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care at Johns Hopkins University, Baltimore, Maryland, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Jaffee.

Ethics declarations

Competing interests

Under a licensing agreement between Aduro BioTech, Inc. and the Johns Hopkins University and E.M.J., the University is entitled to milestone payments and royalty on sales of certain cancer vaccine products (E.M.J.). The other authors have no conflict to disclose.

PowerPoint slides

Glossary

Passenger mutations

Mutations that have no effect on the fitness of the cell, and are therefore not implicated in oncogenesis.

Driver mutations

Mutations that cause a selective advantage to a cell clone and are therefore causally implicated in oncogenesis.

Nonsynonymous mutations

Point mutations and missense mutations that alter the amino acid sequence of proteins.

Major histocompatibility complex

(MHC). Cell surface proteins that bind to short sequences of amino acids (epitopes) and display them on the cell surface for recognition by the immune system. MHC class I is present on the surface of virtually all nucleated cells including tumour cells and presents intracellular antigens to CD8+ T cells; MHC class II is present on antigen presenting cells and presents exogenous antigens to CD4+ T helper cells.

Neoantigens

Mutations in the tumour genome can cause tumours to express mutant proteins that are tumour specific and not expressed on normal cells — referred to as neoantigens.

Objective response rates

(ORRs). ORR is a common efficacy end point used in clinical trials of cancer therapies in solid tumours, usually defined as the percentage of patients who experience at least a 30% decrease in tumour diameter on an imaging scan.

Central and peripheral tolerance

A state in which immune cells are unresponsive to antigens as a result of clonal deletion of autoreactive B cells and T cells, as well as the dampening of potentially autoreactive B cells and T cells through regulatory immune cells and subsequent downregulation of costimulatory molecules.

Chimeric antigen receptor (CAR) T cells

T cells that are modified to express an antigen recognition domain of a specific antibody fused to an intracellular signalling domain.

Adoptive cell therapy

(ACT). An immunotherapy treatment in which antitumour lymphocytes are identified, expanded in vitro and then infused into a patient with cancer. The administered antitumour lymphocytes can be autologous (patient's own) or allogeneic (donor).

Microsatellite instability

(MSI). Increased propensity for changes in microsatellite (short tandem repeat) sequences resulting from defects in DNA mismatch repair.

Immunogenic

The ability to induce an immune response.

Adjuvant

An immunostimulatory agent designed to enhance the immune response to a vaccine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarchoan, M., Johnson, B., Lutz, E. et al. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17, 209–222 (2017). https://doi.org/10.1038/nrc.2016.154

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.154

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer