Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer

A Corrigendum to this article was published on 23 March 2017

This article has been updated

Key Points

  • Molecular alterations fostering the progression of colorectal cancers are acquired early in the carcinogenesis process, and there is inter-connectivity among genomic drivers (gene mutations and chromosomal instability), transcriptomic subtypes (microsatellite instability immune, canonical, metabolic or mesenchymal) and immune signatures (highly immunogenic, poorly immunogenic or inflamed and immune tolerant).

  • Primary and metastatic samples display major similarities at the genomic level: novel gene alterations are usually related to chemotherapy or targeted therapy pressure. More studies on inter-metastatic spatial heterogeneity, molecular shifts at the transcriptomic level and changes in microenvironment markers are needed.

  • Until recently, the evolution of biomarkers for targeted therapies in colorectal cancer has been restrictive, with the identification of multiple negative predictive factors determining the response to epidermal growth factor receptor (EGFR) monoclonal antibodies. At progression to these agents, there is convergent reactivation of MAPK pathway

  • Emerging positive predictive markers for targeted therapies include infrequent genomic events, such as BRAFV600E mutations, ERBB2 amplifications, anaplastic lymphoma kinase (ALK) and neurotrophic receptor tyrosine kinase (NTRK) fusions and alterations in upstream nodes of the WNT pathway, such as ring finger protein 43 (RNF43), zinc and ring finger 3 (ZNRF3) and R-spondin (RSPO) genes. For immune checkpoint inhibitors, promising biomarkers include microsatellite instability and DNA polymerase-ε (POLE) mutations

  • Biomarker–drug co-development has evolved to accommodate a 'multi-molecular, multi-drug' perspective of precision medicine. Novel contexts of vulnerability are likely to be identified, leading to drug-repurposing strategies and combination therapies to halt tumour evolution and tackle minimal residual disease.

Abstract

Critical driver genomic events in colorectal cancer have been shown to affect the response to targeted agents that were initially developed under the 'one gene, one drug' paradigm of precision medicine. Our current knowledge of the complexity of the cancer genome, clonal evolution patterns under treatment pressure and pharmacodynamic effects of target inhibition support the transition from a one gene, one drug approach to a 'multi-gene, multi-drug' model when making therapeutic decisions. Better characterization of the transcriptomic subtypes of colorectal cancer, encompassing tumour, stromal and immune components, has revealed convergent pathway dependencies that mandate a 'multi-molecular' perspective for the development of therapies to treat this disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of CRC subtypes.
Figure 2: Colorectal carcinogenesis and transcriptomic subtypes.
Figure 3: Immune characterization of colorectal cancer in light of genomic and transcriptomic subtypes.
Figure 4: Genomic landscape before and after anti-EGFR therapy in advanced colorectal cancer.
Figure 5: Evolution of precision medicine paradigms in colorectal cancer.

Similar content being viewed by others

Change history

  • 06 March 2017

    In this article a source of grant funding for one of the authors was omitted from the Acknowledgements section. The online version of the article has been corrected to include: "The work of R.D. was supported by the Grant for Oncology Innovation under the project 'Next generation of clinical trials with matched targeted therapies in colorectal cancer'".

References

  1. Ferlay, J. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer 49, 1374–1403 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R., Desantis, C. & Jemal, A. Colorectal cancer statistics, 2014. CA Cancer J. Clin. 64, 104–117 (2014).

    Article  PubMed  Google Scholar 

  3. Welch, H. G. & Robertson, D. J. Colorectal cancer on the decline — why screening can't explain it all. N. Engl. J. Med. 374, 1605–1607 (2016).

    Article  PubMed  Google Scholar 

  4. Cremolini, C. et al. First-line chemotherapy for mCRC — a review and evidence-based algorithm. Nat. Rev. Clin. Oncol. 12, 607–619 (2015). Evidence for a new patient-oriented algorithm to guide clinicians' decisions on the best choice of upfront therapy for metastatic CRC.

    Article  CAS  PubMed  Google Scholar 

  5. Dienstmann, R., Salazar, R. & Tabernero, J. Overcoming resistance to anti-EGFR therapy in colorectal cancer. Am. Soc. Clin. Oncol. Educ. Book https://dx.doi.org/10.14694/EdBook_AM.2015.35.e149 (2015).

  6. Fearon, E. R. Molecular genetics of colorectal cancer. Ann. Rev. Pathol. 6, 479–507 (2011).

    Article  CAS  Google Scholar 

  7. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  8. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012). The Cancer Genome Atlas genome-scale analysis of 276 samples, including exome sequencing, and analysis of DNA copy number, promoter methylation and expression of mRNA and microRNA.

  12. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015). This article uncovers the importance of driver gene mutations and copy number alterations by using genome editing technology in human intestinal epithelium organoids.

    Article  CAS  PubMed  Google Scholar 

  14. Pino, M. S. & Chung, D. C. The chromosomal instability pathway in colon cancer. Gastroenterology 138, 2059–2072 (2010).

    Article  PubMed  CAS  Google Scholar 

  15. Vilar, E. & Tabernero, J. Molecular dissection of microsatellite instable colorectal cancer. Cancer Discov. 3, 502–511 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rex, D. K. et al. Serrated lesions of the colorectum: review and recommendations from an expert panel. Am. J. Gastroenterol. 107, 1315–1329 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Giannakis, M. et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 46, 1264–1266 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Amatu, A. et al. Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer. Br. J. Cancer. 113, 1730–1734 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Le Rolle, A. F. et al. Identification and characterization of RET fusions in advanced colorectal cancer. Oncotarget 6, 28929–28937 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Stransky, N., Cerami, E., Schalm, S., Kim, J. L. & Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun. 5, 4846 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Budinska, E. et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J. Pathol. 231, 63–76 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Sousa E Melo, F. et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 19, 614–618 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Marisa, L. et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 10, e1001453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez-Villamil, B. et al. Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer 12, 260 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Roepman, P. et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int. J. Cancer 134, 552–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Sadanandam, A. et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19, 619–625 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Schlicker, A. et al. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med. Genomics 5, 66 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015). Cross-comparison of six independent gene expression-based classification systems revealed marked interconnectivity coalescing into four consensus molecular subtypes with distinguished biological features.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Dunne, P. D. et al. Challenging the cancer molecular stratification dogma: intratumoral heterogeneity undermines consensus molecular subtypes and potential diagnostic value in colorectal cancer. Clin. Cancer Res. 22, 4095–4104 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555–1559 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Brunelli, L., Caiola, E., Marabese, M., Broggini, M. & Pastorelli, R. Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells. Oncotarget 5, 4722–4731 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kamphorst, J. J. et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882–8887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kerr, E. M., Gaude, E., Turrell, F. K., Frezza, C. & Martins, C. P. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531, 110–113 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Fessler, E. et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol. Med. 8, 745–760 (2016). In a model system for sessile serrated adenomas, BRAFV600E mutation and high TGFβ levels are shown to play an important part in the development of mesenchymal CMS4 tumours.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tosolini, M. et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res. 71, 1263–1271 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Galon, J. et al. Cancer classification using the Immunoscore: a worldwide task force. J. Transl Med. 10, 205 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Galon, J. et al. Validation of the Immunoscore (IM) as a prognostic marker in stage I/II/III colon cancer: results of a worldwide consortium-based analysis of 1,336 patients. J. Clin. Oncol. 34, abstr.3500 (2016).

    Article  Google Scholar 

  44. Saito, T. et al. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med. 22, 679–684 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Angelova, M. et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 16, 64 (2015). Comprehensive analyses of immunophenotypes and the anti-genome of CRC identify non-hypermutated tumours as being enriched with immunosuppressive cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Becht, E. et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin. Cancer Res. 22, 4057–4066 (2016). This study shows that immunocharacterization of consensus molecular subtypes associates immunosuppressive CRC with a mesenchymal gene-expression signature.

    Article  CAS  PubMed  Google Scholar 

  48. Gatalica, Z. et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol. Biomarkers Prev. 23, 2965–2970 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Maby, P. et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 75, 3446–3455 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Chun, E. et al. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep. 12, 244–257 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012). Barrier deterioration induced by initiating genomic alterations in CRC results in adenoma invasion by microbial products that trigger tumour-elicited inflammation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mlecnik, B. et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl Med. 8, 327ra26 (2016). Supervised analyses of metastatic versus primary CRC samples show microenvironment factors (immunoscore and lymphatic invasion) as key determinants of relapse.

    Article  CAS  PubMed  Google Scholar 

  53. Yashiro, M. Ulcerative colitis-associated colorectal cancer. World J. Gastroenterol. 20, 16389–16397 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luke, J. J. Correlation of WNT/β-catenin pathway activation with immune exclusion across most human cancers. J. Clin. Oncol. 34, abstr. 3004 (2016).

    Article  Google Scholar 

  55. Reilley, M. et al. Immunologic profiling of consensus molecular subtype stratified colorectal cancer primary and liver metastectomy specimens: implications for immune targeting of proficient mismatch repair CRC. J. Clin. Oncol. 34, abstr. 3520 (2016).

    Article  Google Scholar 

  56. Brannon, A. R. et al. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol. 15, 454 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kopetz, S. et al. Mutation and copy number discordance in primary versus metastatic colorectal cancer (mCRC). J. Clin. Oncol. 32, abstr. 3509 (2014).

    Article  Google Scholar 

  58. Arena, S. et al. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin. Cancer Res. 21, 2157–2166 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl Med. 6, 224ra24 (2014). This article shows that circulating tumour DNA has high accuracy for detection of emerging KRAS -mutated clones during anti-EGFR therapy in advanced CRC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Morelli, M. P. et al. Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann. Oncol. 26, 731–736 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Siravegna, G. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 21, 795–801 (2015). This study identifies novel resistance mechanisms to EGFR mAbs and clonal dynamics during and after therapy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Russo, M. et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 6, 147–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Mohan, S. et al. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet. 10, e1004271 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Price, T. J. et al. Prevalence and outcomes of patients (pts) with EGFR S492R ectodomain mutations in ASPECCT: panitumumab (pmab) versus cetuximab (cmab) in pts with chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer (mCRC). J. Clin. Oncol. 33, abstr. 740 (2015).

    Article  Google Scholar 

  66. Bertotti, A. et al. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature 526, 263–267 (2015). This study shows that therapeutic resistance to EGFR blockade can be overcome in tumour graft models through combinatorial therapies targeting actionable genes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Esposito, C. et al. The S492R EGFR ectodomain mutation is never detected in KRAS wild-type colorectal carcinoma before exposure to EGFR monoclonal antibodies. Cancer Biol. Ther. 14, 1143–1146 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Roessler, S. et al. Integrative genomic and transcriptomic characterization of matched primary and metastatic liver and colorectal carcinoma. Int. J. Biol. Sci. 11, 88–98 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Stange, D. E. et al. Expression of an ASCL2 related stem cell signature and IGF2 in colorectal cancer liver metastases with 11p15.5 gain. Gut 59, 1236–1244 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Sun, Y. L. et al. Expression of HGF and Met in human tissues of colorectal cancers: biological and clinical implications for synchronous liver metastasis. Int. J. Med. Sci. 10, 548–559 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Munoz-Bellvis, L. et al. Unique genetic profile of sporadic colorectal cancer liver metastasis versus primary tumors as defined by high-density single-nucleotide polymorphism arrays. Mod. Pathol. 25, 590–601 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Bertotti, A. et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).

    Article  PubMed  CAS  Google Scholar 

  73. Bardelli, A. et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 3, 658–673 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dienstmann, R. et al. Safety and activity of the first-in-class Sym004 anti-EGFR antibody mixture in patients with refractory colorectal cancer. Cancer Discov. 5, 598–609 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Sartore-Bianchi, A. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 17, 738–746 (2016).

    Article  PubMed  CAS  Google Scholar 

  76. Sveen, A. et al. Intra-patient inter-metastatic genetic heterogeneity in colorectal cancer as a key determinant of survival after curative liver resection. PLoS Genet. 12, e1006225 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015). In this study, genomic profiling of individual glands from colorectal tumours uncovers a new model for intra-tumour heterogeneity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kopetz, S. et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J. Clin. Oncol. 33, 4032–4038 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zimmer, L. et al. Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RASRAF mutations. Clin. Cancer Res. 20, 4251–4261 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Van Cutsem, E. et al. Updated results of the MEK inhibitor trametinib (T), BRAF inhibitor dabrafenib (D), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E mutated (BRAFm) metastatic colorectal cancer (mCRC). Ann. Oncol. 26, iv119 (2015).

    Article  Google Scholar 

  81. Guinney, J. et al. Modeling RAS phenotype in colorectal cancer uncovers novel molecular traits of RAS dependency and improves prediction of response to targeted agents in patients. Clin. Cancer Res. 20, 265–272 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Tian, S. et al. A combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves colorectal cancer classification and cetuximab treatment prediction. Gut 62, 540–549 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Van Cutsem, E. et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J. Clin. Oncol. 33, 692–700 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Douillard, J. Y. et al. Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 369, 1023–1034 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Sorich, M. J. et al. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann. Oncol. 26, 13–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Dono, M. et al. Low percentage of KRAS mutations revealed by locked nucleic acid polymerase chain reaction: implications for treatment of metastatic colorectal cancer. Mol. Med. 18, 1519–1526 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  87. Laurent-Puig, P. et al. Clinical relevance of KRAS-mutated subclones detected with picodroplet digital PCR in advanced colorectal cancer treated with anti-EGFR therapy. Clin. Cancer Res. 21, 1087–1097 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Dienstmann, R. & Cervantes, A. Heterogeneity of driver genes and therapeutic implications in colorectal cancer. Ann. Oncol. 26, 1523–1525 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Kavuri, S. M. et al. HER2 activating mutations are targets for colorectal cancer treatment. Cancer Discov. 5, 832–841 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. De Roock, W. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 11, 753–762 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Weickhardt, A. J. et al. Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer. J. Clin. Oncol. 30, 1505–1512 (2012).

    Article  PubMed  CAS  Google Scholar 

  92. Kearns, J. D. et al. Enhanced targeting of the EGFR network with MM-151, an oligoclonal anti-EGFR antibody therapeutic. Mol. Cancer Ther. 14, 1625–1636 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Montagut, C. et al. Identification of a mutation in the extracellular domain of the Epidermal Growth Factor Receptor conferring cetuximab resistance in colorectal cancer. Nat. Med. 18, 221–223 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Juric, D. et al. Safety and pharmacokinetics/pharmacodynamics of the first-in-class dual action HER3/EGFR antibody MEHD7945A in locally advanced or metastatic epithelial tumors. Clin. Cancer Res. 21, 2462–2470 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sclafani, F. et al. A randomized phase II/III study of dalotuzumab in combination with cetuximab and irinotecan in chemorefractory, KRAS wild-type, metastatic colorectal cancer. J. Natl Cancer Inst. 107, djv258 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Van Cutsem, E. et al. Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin. Cancer Res. 20, 4240–4250 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Rimassa, L. et al. Phase II study of tivantinib (ARQ 197) in combination with cetuximab in EGFR inhibitor-resistant, MET-high, KRAS wild-type (KRASwt) metastatic colorectal cancer (mCRC). Ann. Oncol. 26, iv108–iv116 (2015).

    Article  Google Scholar 

  98. Iida, M. et al. Sym004, a novel EGFR antibody mixture, can overcome acquired resistance to cetuximab. Neoplasia 15, 1196–1206 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Hobor, S. et al. TGFα and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells. Clin. Cancer Res. 20, 6429–6438 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Kawakami, H. et al. The anti-HER3 antibody patritumab abrogates cetuximab resistance mediated by heregulin in colorectal cancer cells. Oncotarget 5, 11847–11856 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Luraghi, P. et al. MET signaling in colon cancer stem-like cells blunts the therapeutic response to EGFR inhibitors. Cancer Res. 74, 1857–1869 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Misale, S. et al. Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers. Nat. Commun. 6, 8305 (2015). EGFR–MEK combined blockade prevents development of resistance in 'all wild-type' advanced CRC by triggering apoptosis in minor KRAS -mutated clones.

    Article  PubMed  CAS  Google Scholar 

  103. Deming, D. A. et al. A phase I study of selumetinib (AZD6244/ARRY-142866), a MEK1/2 inhibitor, in combination with cetuximab in refractory solid tumors and KRAS mutant colorectal cancer. Invest. New Drugs 34, 168–175 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Brule, S. Y. et al. Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in NCIC CO.17. Eur. J. Cancer 51, 1405–1414 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Venook, A. P. et al. Impact of primary tumor location on overall survival and progression-free survival in patients with metastatic colorectal cancer: analysis of CALGB/SWOG 80405 (Alliance). J. Clin. Oncol. 34, abstr. 3504 (2016).

    Article  Google Scholar 

  106. Lee, M. S. et al. Association of primary site and molecular features with progression-free survival and overall survival of metastatic colorectal cancer after anti-epidermal growth factor receptor therapy. J. Clin. Oncol. 34, abstr. 3506 (2016).

    Article  Google Scholar 

  107. Missiaglia, E. et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann. Oncol. 25, 1995–2001 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Laurent-Puig, P. et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J. Clin. Oncol. 27, 5924–5930 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Zanella, E. R. et al. IGF2 is an actionable target that identifies a distinct subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies. Sci. Transl Med. 7, 272ra12 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Trinh, A. et al. Practical and robust identification of molecular subtypes in colorectal cancer by immunohistochemistry. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.ccr-16-0680 (2016). Development and validation of a panel of five immunohistochemical markers to identify CRC gene-expression subtypes. This panel showed a poor prognosis for patients with mesenchymal-like tumours, as well as the benefit of adding cetuximab to bevacizumab and chemotherapy in patients with RAS wild-type cancers of the epithelial-like subtypes.

  111. Oliveras-Ferraros, C. et al. Stem cell property epithelial-to-mesenchymal transition is a core transcriptional network for predicting cetuximab (Erbitux) efficacy in KRAS wild-type tumor cells. J. Cell. Biochem. 112, 10–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Elez, E. et al. Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomised phase I/II POSEIDON trial. Ann. Oncol. 26, 132–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Do, K. et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest. New Drugs 33, 720–728 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, Y. et al. Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov. 3, 870–879 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kim, H. S. et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 155, 552–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Skoulidis, F. et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 5, 860–877 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Yun, J. et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350, 1391–1396 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Gross, M. I. et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890–901 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Ventura, R. et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2, 806–822 (2015).

    Article  Google Scholar 

  120. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Song, N. et al. Clinical outcome from oxaliplatin treatment in stage II/III colon cancer according to intrinsic subtypes: secondary analysis of NSABP C-07/NRG oncology randomized clinical trial. JAMA Oncol. 2, 1162–1169 (2016). This retrospective biomarker analysis of a randomized clinical trial (NSABP C-07) finds that patients with tumours harbouring an 'enterocyte' subtype have the highest benefit from oxaliplatin as adjuvant chemotherapy in stage III disease. An adapted version of the CMS classifier robustly identifies CMS4 mesenchymal patients with poor prognosis.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015). TGFβ derived from cancer-associated fibroblasts increases the frequency of tumour-initiating cells, and TGFβ-signalling inhibitors block the crosstalk between cancer cells and the microenvironment, halting disease progression in preclinical models.

    Article  CAS  PubMed  Google Scholar 

  123. MoTriColor. Molecularly guided trials with specific treatment strategies in patients with advanced newly molecular defined subtypes of colorectal cancer. CORDIS http://cordis.europa.eu/project/rcn/193328_es.html (2015).

  124. Sonoshita, M. et al. Promotion of colorectal cancer invasion and metastasis through activation of NOTCH-DAB1-ABL-RHOGEF protein TRIO. Cancer Discov. 5, 198–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Dunne, P. D. et al. AXL is a key regulator of inherent and chemotherapy-induced invasion and predicts a poor clinical outcome in early-stage colon cancer. Clin. Cancer Res. 20, 164–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Schaer, D. et al. Targeting the TGFb pathway with galunisertib, a TGFbRI SMI, promotes antitumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint inhibition. Cancer Immunol. Res. 4, A091 (2016).

    Google Scholar 

  127. Triplett, T. A. et al. STAT3 signaling is required for optimal regression of large established tumors in mice treated with anti-OX40 and TGFβ receptor blockade. Cancer Immunol. Res. 3, 526–535 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Young, K. H. et al. TGFβ inhibition prior to hypofractionated radiation enhances efficacy in preclinical models. Cancer Immunol. Res. 2, 1011–1022 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, G. et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 6, 80–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Zheng, H. et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 22, 4119–4132 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Tesniere, A. et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ebert, P. J. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Bendell, J. C. et al. Clinical activity and safety of cobimetinib and atezolizumab in colorectal cancer. J. Clin. Oncol. 34, abstr. 3502 (2016).

    Article  Google Scholar 

  136. Perez, E. A. et al. Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group N9831 Adjuvant Trastuzumab Trial. J. Clin. Oncol. 33, 701–708 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Dienstmann, R., Rodon, J. & Tabernero, J. Optimal design of trials to demonstrate the utility of genomically-guided therapy: putting precision cancer medicine to the test. Mol. Oncol. 9, 940–950 (2015).

    Article  PubMed  Google Scholar 

  138. Alberts, S. R. et al. Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. JAMA 307, 1383–1393 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Taieb, J. et al. Oxaliplatin, fluorouracil, and leucovorin with or without cetuximab in patients with resected stage III colon cancer (PETACC-8): an open-label, randomised phase 3 trial. Lancet Oncol. 15, 862–873 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Allegra, C. J. et al. Bevacizumab in stage II–III colon cancer: 5-year update of the National Surgical Adjuvant Breast and Bowel Project C-08 trial. J. Clin. Oncol. 31, 359–364 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. de Gramont, A. et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol. 13, 1225–1233 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Corcoran, R. B. et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. J. Clin. Oncol. 33, 4023–4031 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Ahronian, L. G. et al. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov. 5, 358–367 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Oddo, D. et al. Molecular landscape of acquired resistance to targeted therapy combinations in BRAF-mutant colorectal cancer. Cancer Res. 76, 4504–4515 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012). BRAFV600E inhibition in colorectal cancer cells causes a rapid feedback activation of EGFR, supporting the continued proliferation of cancer cells in the presence of the inhibitor. This proliferation can be abrogated if BRAFV600E inhibitors are combined with anti-EGFR therapy.

    Article  CAS  PubMed  Google Scholar 

  147. Tabernero, J. et al. Phase 2 results: encorafenib (ENCO) and cetuximab (CETUX) with or without alpelisib (ALP) in patients with advanced BRAF-mutant colorectal cancer (BRAFm CRC). J. Clin. Oncol. 34, abstr. 3544 (2016).

    Article  Google Scholar 

  148. Ramanathan, R. K. et al. Low overexpression of HER-2/neu in advanced colorectal cancer limits the usefulness of trastuzumab (Herceptin) and irinotecan as therapy. A phase II trial. Cancer Invest. 22, 858–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Medico, E. et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat. Commun. 6, 7002 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Sartore-Bianchi, A. et al. Sensitivity to entrectinib associated with a novel LMNA-NTRK1 gene fusion in metastatic colorectal cancer. J. Natl Cancer Inst. 108, djv306 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015). Tumour organoids from patients with CRC are amenable to high-throughput drug screens, allowing detection of gene–drug interactions such as RNF43 mutations and porcupine inhibitors.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Madan, B. et al. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 35, 2197–2207 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Janku, F. et al. Phase I study of WNT974, a first-in-class Porcupine inhibitor, in advanced solid tumors. Mol. Cancer Ther. 14, abstr.C45 (2015).

    Article  CAS  Google Scholar 

  154. Storm, E. E. et al. Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature 529, 97–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Overman, M. J. et al. Nivolumab ± ipilimumab in treatment of patients with metastatic colorectal cancer with and without high microsatellite instability: CheckMate-142 interim results. J. Clin. Oncol. 34, abstr. 3501 (2016).

    Article  Google Scholar 

  157. Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in colorectal cancer. Cell Rep. 15, 857–865 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Tie, J. K. et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann. Oncol. 26, 1715–1722 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Tie, J. K. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl Med. 8, 346ra92 (2016). This prospective trial implementing massively parallel sequencing-based assays in stage II colon cancer shows the ability of circulating tumour DNA to accurately detect minimal residual disease after surgery.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

R.D. and J.T. acknowledge the FERO Foundation for supporting research in gastrointestinal malignancies and the Cellex Foundation for providing research facilities and equipment. The work of R.D., S.T. and J.T. was supported by the European Union's Horizon 2020 research and innovation programme 2014–2020 under grant agreement number 635342 (MoTriColor project). The work of S.T. was supported by the University of Leuven (grant GOA/12/2106), the Research Foundation Flanders and the Belgian National Cancer Plan. The work of L.V. was supported by grants from KWF Kankerbestrijding (Dutch Cancer Society) (UVA2014-7245), the European Research Council (ERG-StG 638193) and the Netherlands Organisation for Health Research and Development (Vidi 016.156.308). The work of J.G. was supported by grant U54CA149237 from the US National Cancer Institute. The work of S.C. was supported by the generous philanthropic contributions to the University of Texas MD Anderson Moon Shots Program and Cancer Center Sipport Grants grant 3 P30 CA016672 41. The work of R.D. was supported by the Grant for Oncology Innovation under the project 'Next generation of clinical trials with matched targeted therapies in colorectal cancer'.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Dienstmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Early-stage

Tumours that remain localized and have not spread to other parts of the body.

Advanced-stage

Tumours that became metastatic and have spread to other parts of the body.

Sporadic background

Tumours that have no identifiable inherited gene involved in the carcinogenesis process.

Sessile serrated adenomas

Pre-malignant flat (or sessile) polyps, predominantly seen in the right side of the colon. They have been identified as the main precursor lesion in the serrated carcinogenesis process.

Desmoplastic reaction

At histopathological examination, pervasive growth of dense fibrous connective tissue around the tumour.

Trabecular

At histopathological examination, tumours composed of cells structured in a nested pattern.

Mucinous

At histopathological examination, tumours characterized by abundant extracellular accumulation of mucus bound to neoplastic epithelium or stroma.

Papillary

At histopathological examination, tumours demonstrating prominent papillae with fibrovascular cores.

Late-stage neoplasms

Localized tumours that have grown more deeply into nearby tissue or have spread to regional lymph nodes.

Rechallenge

Reintroduction of the same therapy after a drug holiday following disease progression during therapy.

Metachronous disease

Tumours that became metastatic after the diagnosis and treatment of localized disease (usually later than 6 months).

Selective sweeps

These occur when a rare or previously non-existing allele that increases the fitness of the cell — relative to other clonal populations — expands rapidly in frequency as a result of natural selection.

Underpowered

A study with low statistical power of detecting a true effect of practical importance.

Caecum

The first segment of the right colon, an intraperitoneal pouch that connects the ileum with the ascending colon.

Splenic flexure

The first segment of the left colon, a sharp bend under the spleen where the transverse colon joins the descending colon.

Adjuvant

Therapy applied after initial surgical treatment for cancer to avoid tumour relapse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dienstmann, R., Vermeulen, L., Guinney, J. et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 17, 79–92 (2017). https://doi.org/10.1038/nrc.2016.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.126

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer