Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB)—a practical epidemiological and diagnostic tool

Abstract

Combining multiplex PCR, sequentially, with reverse line blot hybridization (mPCR/RLB) is a convenient, objective way to identify up to 43 targets in 43 individual specimens simultaneously (using a 45-lane membrane format). It is more flexible and less expensive than DNA microarray. The number of targets is adequate for epidemiological and most clinical diagnostic applications; based on the same target (43) and specimen numbers (43), it is much more practical than conventional uniplex PCR (uPCR) and mPCR. We have used the protocol to identify and subtype bacteria, viruses and fungi and identify pathogens in clinical specimens; potentially, it could be used for many other applications, such as detection of mutations in, or identification of alleles of, eukaryotic genes. Development of each assay involves (i) careful primer and probe design, based on literature and sequence database searches, which are critical to success of the assay; and (ii) bench-top evaluation, using known samples, controls and dilution series, to confirm sensitivity, specificity and reproducibility. The assay takes about one and half working days to complete; about 4 h for the mPCR and 6 h for the RLB, including a total of 4 h 'hands-on' time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mPCR/RLB principles relevant to PROCEDURE steps.
Figure 2
Figure 3
Figure 4: Relative locations of primers and probes.
Figure 5: An actual example of mPCR/RLB results, on X-ray film, for S. agalactiae—identification of capsular serotype and detection of nine antibiotic resistance-related genes.

Similar content being viewed by others

References

  1. Henegariu, O., Heerema, N.A., Dlouhy, S.R., Vance, G.H. & Vogt, P.H. Multiplex PCR: Critical parameters and step-by-step protocol. Biotechniques 23, 504–511 (1997).

    Article  CAS  Google Scholar 

  2. Markoulatos, P., Siafakas, N. & Moncany, M. Multiplex polymerase chain reaction: A practical approach. J. Clin. Lab Anal. 16, 47–51 (2002).

    Article  CAS  Google Scholar 

  3. Gold, B. Origin and utility of the reverse dot-blot. Expert. Rev. Mol. Diagn. 3, 143–152 (2003).

    Article  CAS  Google Scholar 

  4. Kaufhold, A. et al. Rapid typing of group A Streptococci by the use of DNA amplification and non-radioactive allele-specific oligonucleotide probes. FEMS Microbiol. Lett. 119, 19–25 (1994).

    Article  CAS  Google Scholar 

  5. Kamerbeek, J. et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35, 907–914 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vinje, J. & Koopmans, M.P. Simultaneous detection and genotyping of “Norwalk–like viruses” by oligonucleotide array in a reverse line blot hybridisation format. J. Clin. Microbiol. 38, 2595–2601 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. van den Brule, A.J. et al. GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J. Clin. Microbiol. 40, 779–787 (2002).

    Article  CAS  Google Scholar 

  8. Oura, C.A., Bishop, R.P., Wampande, E.M., Lubega, G.W. & Tait, A. Application of a reverse line blot assay to the study of haemoparasites in cattle in Uganda. Int. J. Parasitol. 34, 603–613 (2004).

    Article  CAS  Google Scholar 

  9. Playford, E.G. et al. Simultaneous detection and identification of Candida, Aspergillus, and Cryptococcus species by reverse line blot hybridization. J. Clin. Microbiol. 44, 876–880 (2006).

    Article  CAS  Google Scholar 

  10. Cao, K., Chopek, M. & Fernandez-Vina,, M.A. High and intermediate resolution DNA typing systems for class I HLA-A, B, C genes by hybridization with sequence-specific oligonucleotide probes (SSOP). Rev. Immunogenet. 1, 177–208 (1999).

    CAS  PubMed  Google Scholar 

  11. Bunschoten, A., Tiemersma, E., Schouls, L. & Kampman, E. Simultaneous determination of polymorphism in N-acetyltransferase 1 and 2 genes by reverse line blot hybridization. Anal. Biochem. 285, 156–162 (2000).

    Article  CAS  Google Scholar 

  12. Goguet de la Salmoniere, Y.O. et al. High-throughput method for detecting genomic-deletion polymorphisms. J. Clin. Microbiol. 42, 2913–2918 (2004).

    Article  Google Scholar 

  13. Wen, L. et al. Use of a serotype-specific DNA microarray for identification of group B Streptococcus (Streptococcus agalactiae). J. Clin. Microbiol. 44, 1447–1452 (2006).

    Article  CAS  Google Scholar 

  14. Wang, Q. et al. Development of a DNA microarray to identify the Streptococcus pneumoniae serotypes contained in the 23-valent pneumococcal polysaccharide vaccine and closely related serotypes. J. Microbiol. Methods 67 (2006).

  15. Foxman, B., Zhang, L., Koopman, J.S., Manning, S.D. & Marrs, C.F. Choosing an appropriate bacterial typing technique for epidemiologic studies. Epidemiol. Perspect. Innov. 2, 10–17 (2005).

    Article  Google Scholar 

  16. Elnifro, E.M., Ashshi, A.M., Cooper, R.J. & Klapper, P.E. Multiplex PCR: optimization and application in diagnostic virology. Clin. Microbiol. Rev. 13, 559–570 (2000).

    Article  CAS  Google Scholar 

  17. Kong, F., Ma, L. & Gilbert, G.L. Simultaneous detection and serotype identification of Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization. J. Med. Microbiol. 54, 1133–1138 (2005).

    Article  CAS  Google Scholar 

  18. Kong, F., Brown, M., Sabananthan, A., Zeng, X. & Gilbert, G.L. Multiplex PCR-based reverse line blot hybridization assay to identify 23 Streptococcus pneumoniae polysaccharide vaccine serotypes. J. Clin. Microbiol. 44, 1887–1891 (2006).

    Article  CAS  Google Scholar 

  19. Kong, F., Gowan, S., Martin, D., James, G. & Gilbert, G.L. Serotype identification of group B streptococci by PCR and sequencing. J. Clin. Microbiol. 40, 216–226 (2002).

    Article  CAS  Google Scholar 

  20. Nakatani, S.M. et al. Efficient method for mycobacterial DNA extraction in blood cultures aids rapid PCR identification of Mycobacterium tuberculosis and Mycobacterium avium. Eur. J. Clin. Microbiol. Infect. Dis. 23, 851–854 (2004).

    Article  CAS  Google Scholar 

  21. Boom, R. et al. Detection and quantitation of human cytomegalovirus DNA in faeces. J. Virol. Methods 84, 1–14 (2000).

    Article  CAS  Google Scholar 

  22. Choi, K.H. et al. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2, 443–448 (2005).

    Article  CAS  Google Scholar 

  23. Wang, H., Kong, F., Jelfs, P., James, G. & Gilbert, G.L. Simultaneous detection and identification of common cell culture contaminant and pathogenic mollicutes strains by reverse line blot hybridization. Appl. Environ. Microbiol. 70, 1483–1486 (2004).

    Article  CAS  Google Scholar 

  24. Xiong, L., Kong, F., Zhou, H. & Gilbert, G.L. Use of PCR and reverse line blot hybridization assay for rapid simultaneous detection and serovar identification of Chlamydia trachomatis. J. Clin. Microbiol. 44, 1413–1418 (2006).

    Article  CAS  Google Scholar 

  25. Xiong, L., Kong, F., Yang, Y., Cheng, J. & Gilbert, G.L. Use of PCR and reverse line blot hybridization macroarray based on 16S–23S rRNA gene internal transcribed spacer sequences for rapid identification of 34 Mycobacterium species. J. Clin. Microbiol. 44, 3544–3550 (2006).

    Article  CAS  Google Scholar 

  26. Zhao, Z., Kong, F. & Gilbert, G.L. Reverse line blot assay for direct identification of seven Streptococcus agalactiae major surface protein antigen genes. Clin. Vaccine Immunol. 13, 145–149 (2006).

    Article  CAS  Google Scholar 

  27. Zeng, X., Kong, F., Morgan, J. & Gilbert, G.L. Evaluation of a multiplex PCR-based reverse line blot-hybridization assay for identification of serotype and surface protein antigens of Streptococcus agalactiae. J. Clin. Microbiol. 44, 3822–3825 (2006).

    Article  CAS  Google Scholar 

  28. Zeng, X., Kong, F., Wang, H., Darbar, A. & Gilbert, G.L. Simultaneous detection of nine antibiotic resistance-related genes in Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization assay. Antimicrob. Agents Chemother. 50, 204–209 (2006).

    Article  CAS  Google Scholar 

  29. O'Sullivan, M.V., Cai, Y., Kong, F., Zeng, X. & Gilbert, G.L. The influence of disk separation distance on the accuracy of disk approximation testing for inducible clindamycin resistance in Staphylococcus spp. J. Clin. Microbiol. 44, 4072–4076 (2006).

    Article  CAS  Google Scholar 

  30. Mokrousov, I. et al. Multicenter evaluation of reverse line blot assay for detection of drug resistance in Mycobacterium tuberculosis clinical isolates. J. Microbiol. Methods 57, 323–335 (2004).

    Article  CAS  Google Scholar 

  31. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  32. Jarman, S.N. Amplicon: software for designing PCR primers on aligned DNA sequences. Bioinformatics 20, 1644–1645 (2004).

    Article  CAS  Google Scholar 

  33. Vallone, P.M. & Butler, J.M. AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques 37, 226–231 (2004).

    Article  CAS  Google Scholar 

  34. Rachlin, J., Ding, C., Cantor, C. & Kasif, S. MuPlex: multi-objective multiplex PCR assay design. Nucleic Acids Res. 33, W544–W547 (2005).

    Article  CAS  Google Scholar 

  35. Kaplinski, L., Andreson, R., Puurand, T. & Remm, M. MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics 21, 1701–1702 (2005).

    Article  CAS  Google Scholar 

  36. Vora, G.J., Meador, C.E., Stenger, D.A. & Andreadis, J.D. Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Appl. Environ. Microbiol. 70, 3047–3054 (2004).

    Article  CAS  Google Scholar 

  37. Loy, A. & Bodrossy, L. Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin. Chim. Acta 363, 106–119 (2006).

    Article  CAS  Google Scholar 

  38. Rachlin, J., Ding, C., Cantor, C. & Kasif, S. Computational tradeoffs in multiplex PCR assay design for SNP genotyping. BMC Genomics 6, 102 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors (F.K. and G.L.G.) wish to thank Peter Jelfs, Gregory James and staff of the reference laboratories at CIDM for support and assistance; Ping Zhu for design of the RLB reading template and, with Kathryn Shaw, for contribution to the figures; Mitchell Brown, Kathryn Shaw, Michelle McKechnie, Danny Ko, Fei Zhou, Zhongsheng Tong and Qinning Wang for help with editing and checking the manuscript; Vitali Sintchenko, Heather Gidding, Sharon Chen, Xianyu Zeng, Yongwei Cai, Zutao Zhao, Yajuan Wang, Meng Xiao, Xu Wang, Jon Iredell, Bin Wang and Frank Lin for helpful comments; Hui Wang, Geoffrey Playford, Ying Sun, Archana Sabananthan, Lin Ma, Yonghong Yang, Likuan Xiong and Weixiong He for contributions to development of individual assays. F.K. also would like to thank Zhenfang Ma for her continuous support and encouragement for his research and writing over many years.

Author information

Authors and Affiliations

Authors

Contributions

F.K. performed the experiments and wrote the manuscript; G.L.G. supervised the research and the writing of the manuscript.

Corresponding author

Correspondence to Gwendolyn L Gilbert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

We have designed a reading template with the Y-axis for probes; the legend can be modified according to targets of assay. This step makes reading the blot much easier. The template matches the 45 lanes and users can download the template, type in the probe names in the left column and print on A4 paper. X-ray films are placed on the template to match the probe/specimen numbers with hybridization signals. (PDF 416 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, F., Gilbert, G. Multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB)—a practical epidemiological and diagnostic tool. Nat Protoc 1, 2668–2680 (2006). https://doi.org/10.1038/nprot.2006.404

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.404

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing