Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Melanocortin-4 receptor–regulated energy homeostasis

Abstract

The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components—two antagonistically acting ligands and two cognate receptors—this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetically modified Mc4r alleles.
Figure 2: Melanocortins and the motivational basis of feeding.
Figure 3: Functional topography of Mc4r function.

Similar content being viewed by others

References

  1. Guh, D.P. et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9, 88 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Olshansky, S.J. et al. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med. 352, 1138–1145 (2005).

    CAS  PubMed  Google Scholar 

  3. Gautron, L., Elmquist, J.K. & Williams, K.W. Neural control of energy balance: translating circuits to therapies. Cell 161, 133–145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Garfield, A.S., Lam, D.D., Marston, O.J., Przydzial, M.J. & Heisler, L.K. Role of central melanocortin pathways in energy homeostasis. Trends Endocrinol. Metab. 20, 203–215 (2009).

    CAS  PubMed  Google Scholar 

  5. Cone, R.D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

    CAS  PubMed  Google Scholar 

  6. Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73, 511–522 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Yang, Y., Atasoy, D., Su, H.H. & Sternson, S.M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Aponte, Y., Atasoy, D. & Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    CAS  PubMed  Google Scholar 

  9. Atasoy, D., Betley, J.N., Su, H.H. & Sternson, S.M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Krashes, M.J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33, 3624–3632 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dodd, G.T. et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160, 88–104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mandelblat-Cerf, Y. et al. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. Elife 4, e07122 (2015)10.7554/eLife.07122.

  14. Cone, R.D. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006).

    CAS  PubMed  Google Scholar 

  15. Girardet, C. & Butler, A.A. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim. Biophys. Acta 1842, 482–494 (2014).

    CAS  PubMed  Google Scholar 

  16. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    CAS  PubMed  Google Scholar 

  17. Yaswen, L., Diehl, N., Brennan, M.B. & Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med. 5, 1066–1070 (1999).

    CAS  PubMed  Google Scholar 

  18. Challis, B.G. et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36). Proc. Natl. Acad. Sci. USA 101, 4695–4700 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yeo, G.S. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    CAS  PubMed  Google Scholar 

  20. Vaisse, C., Clement, K., Guy-Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 20, 113–114 (1998).

    CAS  PubMed  Google Scholar 

  21. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998).

    CAS  PubMed  Google Scholar 

  22. Qian, S. et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol. Cell. Biol. 22, 5027–5035 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Luquet, S., Perez, F.A., Hnasko, T.S. & Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    CAS  PubMed  Google Scholar 

  24. Bewick, G.A. et al. Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J. 19, 1680–1682 (2005).

    CAS  PubMed  Google Scholar 

  25. Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    CAS  PubMed  Google Scholar 

  26. Aston-Jones, G. & Deisseroth, K. Recent advances in optogenetics and pharmacogenetics. Brain Res. 1511, 1–5 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Betley, J.N., Cao, Z.F., Ritola, K.D. & Sternson, S.M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dietrich, M.O., Zimmer, M.R., Bober, J. & Horvath, T.L. Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell 160, 1222–1232 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cowley, M.A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    CAS  PubMed  Google Scholar 

  31. Bagnol, D. et al. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J. Neurosci. 19, RC26 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, D. et al. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front. Neuroanat. 9, 40 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Mountjoy, K.G., Mortrud, M.T., Low, M.J., Simerly, R.B. & Cone, R.D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308 (1994).

    CAS  PubMed  Google Scholar 

  34. Kishi, T. et al. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J. Comp. Neurol. 457, 213–235 (2003).

    CAS  PubMed  Google Scholar 

  35. Garfield, A.S. et al. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 18, 863–871 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Krashes, M.J., Shah, B.P., Koda, S. & Lowell, B.B. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab. 18, 588–595 (2013).

    CAS  PubMed  Google Scholar 

  37. Molosh, A.I. et al. NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology 38, 1352–1364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Semjonous, N.M. et al. Coordinated changes in energy intake and expenditure following hypothalamic administration of neuropeptides involved in energy balance. Int. J. Obes. (Lond.) 33, 775–785 (2009).

    CAS  Google Scholar 

  39. Wittmann, G., Hrabovszky, E. & Lechan, R.M. Distinct glutamatergic and GABAergic subsets of hypothalamic pro-opiomelanocortin neurons revealed by in situ hybridization in male rats and mice. J. Comp. Neurol. 521, 3287–3302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jarvie, B.C. & Hentges, S.T. Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons. J. Comp. Neurol. 520, 3863–3876 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hentges, S.T., Otero-Corchon, V., Pennock, R.L., King, C.M. & Low, M.J. Proopiomelanocortin expression in both GABA and glutamate neurons. J. Neurosci. 29, 13684–13690 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Atasoy, D. et al. A genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nat. Neurosci. 17, 1830–1839 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    CAS  PubMed  Google Scholar 

  45. Lim, B.K., Huang, K.W., Grueter, B.A., Rothwell, P.E. & Malenka, R.C. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487, 183–189 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen, Y., Fu, W.Y., Cheng, E.Y., Fu, A.K. & Ip, N.Y. Melanocortin-4 receptor regulates hippocampal synaptic plasticity through a protein kinase A-dependent mechanism. J. Neurosci. 33, 464–472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Butler, A.A. et al. Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat. Neurosci. 4, 605–611 (2001).

    CAS  PubMed  Google Scholar 

  48. Ste Marie, L., Miura, G.I., Marsh, D.J., Yagaloff, K. & Palmiter, R.D. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc. Natl. Acad. Sci. USA 97, 12339–12344 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cui, H. & Lutter, M. The expression of MC4Rs in D1R neurons regulates food intake and locomotor sensitization to cocaine. Genes Brain Behav. 12, 658–665 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vaughan, C., Moore, M., Haskell-Luevano, C. & Rowland, N.E. Food motivated behavior of melanocortin-4 receptor knockout mice under a progressive ratio schedule. Peptides 27, 2829–2835 (2006).

    CAS  PubMed  Google Scholar 

  51. Farooqi, I.S. et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest. 106, 271–279 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Farooqi, I.S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    CAS  PubMed  Google Scholar 

  53. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005).

    CAS  PubMed  Google Scholar 

  54. Shah, B.P. et al. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc. Natl. Acad. Sci. USA 111, 13193–13198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Panaro, B.L. et al. The melanocortin-4 receptor is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab. 20, 1018–1029 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hatoum, I.J. et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J. Clin. Endocrinol. Metab. 97, E1023–E1031 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mirshahi, U.L. et al. The MC4R(I251L) allele is associated with better metabolic status and more weight loss after gastric bypass surgery. J. Clin. Endocrinol. Metab. 96, E2088–E2096 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Thiele, T.E. et al. Central infusion of melanocortin agonist MTII in rats: assessment of c-Fos expression and taste aversion. Am. J. Physiol. 274, R248–R254 (1998).

    CAS  PubMed  Google Scholar 

  59. Millington, G.W., Tung, Y.C., Hewson, A.K., O'Rahilly, S. & Dickson, S.L. Differential effects of α-, β- and γ2-melanocyte-stimulating hormones on hypothalamic neuronal activation and feeding in the fasted rat. Neuroscience 108, 437–445 (2001).

    CAS  PubMed  Google Scholar 

  60. Sims, J.S. & Lorden, J.F. Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav. Brain Res. 22, 265–281 (1986).

    CAS  PubMed  Google Scholar 

  61. Kim, M.S. et al. Hypothalamic localization of the feeding effect of agouti-related peptide and alpha-melanocyte-stimulating hormone. Diabetes 49, 177–182 (2000).

    CAS  PubMed  Google Scholar 

  62. Michaud, J.L. et al. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum. Mol. Genet. 10, 1465–1473 (2001).

    CAS  PubMed  Google Scholar 

  63. Holder, J.L. Jr. et al. Sim1 gene dosage modulates the homeostatic feeding response to increased dietary fat in mice. Am. J. Physiol. Endocrinol. Metab. 287, E105–E113 (2004).

    CAS  PubMed  Google Scholar 

  64. Tolson, K.P. et al. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity. Endocrinology 155, 2436–2444 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Kublaoui, B.M., Holder, J.L. Jr., Gemelli, T. & Zinn, A.R. Sim1 haploinsufficiency impairs melanocortin-mediated anorexia and activation of paraventricular nucleus neurons. Mol. Endocrinol. 20, 2483–2492 (2006).

    CAS  PubMed  Google Scholar 

  66. Morgan, D.A. et al. Regulation of glucose tolerance and sympathetic activity by MC4R signaling in the lateral hypothalamus. Diabetes 64, 1976–1987 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu, Y. et al. Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. Cell Metab. 18, 860–870 (2013).

    CAS  PubMed  Google Scholar 

  68. Cui, H. et al. Melanocortin 4 receptor signaling in dopamine 1 receptor neurons is required for procedural memory learning. Physiol. Behav. 106, 201–210 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Berglund, E.D. et al. Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci. 17, 911–913 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Monge-Roffarello, B. et al. The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R158–R166 (2014).

    CAS  PubMed  Google Scholar 

  72. Voss-Andreae, A. et al. Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology 148, 1550–1560 (2007).

    CAS  PubMed  Google Scholar 

  73. Vaughan, C.H., Shrestha, Y.B. & Bartness, T.J. Characterization of a novel melanocortin receptor-containing node in the SNS outflow circuitry to brown adipose tissue involved in thermogenesis. Brain Res. 1411, 17–27 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Song, C.K. et al. Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R417–R428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Richard, D. & Picard, F. Brown fat biology and thermogenesis. Front. Biosci. (Landmark Ed.) 16, 1233–1260 (2011).

    CAS  Google Scholar 

  76. Turer, A.T., Hill, J.A., Elmquist, J.K. & Scherer, P.E. Adipose tissue biology and cardiomyopathy: translational implications. Circ. Res. 111, 1565–1577 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    CAS  PubMed  Google Scholar 

  78. Song, C.K., Jackson, R.M., Harris, R.B.S., Richard, D. & Bartness, T.J. Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1467–R1476 (2005).

    CAS  PubMed  Google Scholar 

  79. Fan, W. et al. The central melanocortin system can directly regulate serum insulin levels. Endocrinology 141, 3072–3079 (2000).

    CAS  PubMed  Google Scholar 

  80. Greenfield, J.R. et al. Modulation of blood pressure by central melanocortinergic pathways. N. Engl. J. Med. 360, 44–52 (2009).

    CAS  PubMed  Google Scholar 

  81. Sutton, G.M. et al. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors. Endocrinology 147, 2183–2196 (2006).

    CAS  PubMed  Google Scholar 

  82. Sohn, J.W. et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 152, 612–619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuo, J.J., da Silva, A.A., Tallam, L.S. & Hall, J.E. Role of adrenergic activity in pressor responses to chronic melanocortin receptor activation. Hypertension 43, 370–375 (2004).

    CAS  PubMed  Google Scholar 

  84. Kuo, J.J., Silva, A.A. & Hall, J.E. Hypothalamic melanocortin receptors and chronic regulation of arterial pressure and renal function. Hypertension 41, 768–774 (2003).

    CAS  PubMed  Google Scholar 

  85. Ni, X.P., Butler, A.A., Cone, R.D. & Humphreys, M.H. Central receptors mediating the cardiovascular actions of melanocyte stimulating hormones. J. Hypertens. 24, 2239–2246 (2006).

    CAS  PubMed  Google Scholar 

  86. Tallam, L.S., Stec, D.E., Willis, M.A., da Silva, A.A. & Hall, J.E. Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension 46, 326–332 (2005).

    CAS  PubMed  Google Scholar 

  87. Greenfield, J.R. Melanocortin signalling and the regulation of blood pressure in human obesity. J. Neuroendocrinol. 23, 186–193 (2011).

    CAS  PubMed  Google Scholar 

  88. Li, P. et al. Melanocortin 3/4 receptors in paraventricular nucleus modulate sympathetic outflow and blood pressure. Exp. Physiol. 98, 435–443 (2013).

    CAS  PubMed  Google Scholar 

  89. Skibicka, K.P. & Grill, H.J. Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology 150, 5351–5361 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, P. et al. Melanocortin 4 receptors in the paraventricular nucleus modulate the adipose afferent reflex in rat. PLoS One 8, e80295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Albarado, D.C. et al. Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice. Endocrinology 145, 243–252 (2004).

    CAS  PubMed  Google Scholar 

  92. Nogueiras, R. et al. The central melanocortin system directly controls peripheral lipid metabolism. J. Clin. Invest. 117, 3475–3488 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Perez-Tilve, D. et al. Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nat. Neurosci. 13, 877–882 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Saper, C.B. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25, 433–469 (2002).

    CAS  PubMed  Google Scholar 

  95. Nagai, K. et al. Lesions in the lateral part of the dorsal parabrachial nucleus caused hyperphagia and obesity. J. Clin. Biochem. Nutr. 3, 102–112 (1987).

    Google Scholar 

  96. Becskei, C., Grabler, V., Edwards, G.L., Riediger, T. & Lutz, T.A. Lesion of the lateral parabrachial nucleus attenuates the anorectic effect of peripheral amylin and CCK. Brain Res. 1162, 76–84 (2007).

    CAS  PubMed  Google Scholar 

  97. Flak, J.N. et al. Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance. Nat. Neurosci. 17, 1744–1750 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Garfield, A.S. et al. A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia. Cell Metab. 20, 1030–1037 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Carter, M.E., Soden, M.E., Zweifel, L.S. & Palmiter, R.D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Carter, M.E., Han, S. & Palmiter, R.D. Parabrachial calcitonin gene-related peptide neurons mediate conditioned taste aversion. J. Neurosci. 35, 4582–4586 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Betley, J.N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Keys, A. Human starvation and its consequences. J. Am. Diet. Assoc. 22, 582–587 (1946).

    CAS  PubMed  Google Scholar 

  103. Berridge, K.C. Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179–209 (2004).

    CAS  PubMed  Google Scholar 

  104. Hull, C.L. Principles of Behavior: An Introduction to Behavior Theory (D. Appleton-Century, New York and London, 1943).

  105. Breit, A. et al. Alternative G protein coupling and biased agonism: new insights into melanocortin-4 receptor signalling. Mol. Cell. Endocrinol. 331, 232–240 (2011).

    CAS  PubMed  Google Scholar 

  106. Gantz, I. et al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15174–15179 (1993).

    CAS  PubMed  Google Scholar 

  107. Newman, E.A. et al. Activation of the melanocortin-4 receptor mobilizes intracellular free calcium in immortalized hypothalamic neurons. J. Surg. Res. 132, 201–207 (2006).

    CAS  PubMed  Google Scholar 

  108. Chai, B. et al. Melanocortin-4 receptor-mediated inhibition of apoptosis in immortalized hypothalamic neurons via mitogen-activated protein kinase. Peptides 27, 2846–2857 (2006).

    CAS  PubMed  Google Scholar 

  109. Daniels, D., Patten, C.S., Roth, J.D., Yee, D.K. & Fluharty, S.J. Melanocortin receptor signaling through mitogen-activated protein kinase in vitro and in rat hypothalamus. Brain Res. 986, 1–11 (2003).

    CAS  PubMed  Google Scholar 

  110. Vongs, A., Lynn, N.M. & Rosenblum, C.I. Activation of MAP kinase by MC4-R through PI3 kinase. Regul. Pept. 120, 113–118 (2004).

    CAS  PubMed  Google Scholar 

  111. Ghamari-Langroudi, M. et al. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature 520, 94–98 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, M. et al. Central nervous system imprinting of the G protein G(s)alpha and its role in metabolic regulation. Cell Metab. 9, 548–555 (2009).

    PubMed  PubMed Central  Google Scholar 

  113. Chen, M. et al. Gsα deficiency in the paraventricular nucleus of the hypothalamus partially contributes to obesity associated with Gsα mutations. Endocrinology 153, 4256–4265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Asai, M. et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 341, 275–278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sebag, J.A., Zhang, C., Hinkle, P.M., Bradshaw, A.M. & Cone, R.D. Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish. Science 341, 278–281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ollmann, M.M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    CAS  PubMed  Google Scholar 

  117. Yang, Y.K. et al. Characterization of Agouti-related protein binding to melanocortin receptors. Mol. Endocrinol. 13, 148–155 (1999).

    CAS  PubMed  Google Scholar 

  118. Corander, M.P., Rimmington, D., Challis, B.G., O'Rahilly, S. & Coll, A.P. Loss of agouti-related peptide does not significantly impact the phenotype of murine POMC deficiency. Endocrinology 152, 1819–1828 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tolle, V. & Low, M.J. In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes 57, 86–94 (2008).

    CAS  PubMed  Google Scholar 

  120. Breit, A. et al. The natural inverse agonist agouti-related protein induces arrestin-mediated endocytosis of melanocortin-3 and -4 receptors. J. Biol. Chem. 281, 37447–37456 (2006).

    CAS  PubMed  Google Scholar 

  121. Haskell-Luevano, C. & Monck, E.K. Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul. Pept. 99, 1–7 (2001).

    CAS  PubMed  Google Scholar 

  122. Nijenhuis, W.A., Oosterom, J. & Adan, R.A. AgRP(83–132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol. Endocrinol. 15, 164–171 (2001).

    CAS  PubMed  Google Scholar 

  123. Coll, A.P. “Are melanocortin receptors constitutively active in vivo?”. Eur. J. Pharmacol. 719, 202–207 (2013).

    CAS  PubMed  Google Scholar 

  124. Büch, T.R., Heling, D., Damm, E., Gudermann, T. & Breit, A. Pertussis toxin-sensitive signaling of melanocortin-4 receptors in hypothalamic GT1-7 cells defines agouti-related protein as a biased agonist. J. Biol. Chem. 284, 26411–26420 (2009).

    PubMed  PubMed Central  Google Scholar 

  125. Krude, H. et al. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J. Clin. Endocrinol. Metab. 88, 4633–4640 (2003).

    CAS  PubMed  Google Scholar 

  126. Farooqi, I.S. et al. Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes 55, 2549–2553 (2006).

    CAS  PubMed  Google Scholar 

  127. Vaisse, C. et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 106, 253–262 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Loos, R.J. et al. Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial; KORA; Nurses' Health Study; Diabetes Genetics Initiative; SardiNIA Study; Wellcome Trust Case Control Consortium; FUSION. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lee, E.C. & Carpino, P.A. Melanocortin-4 receptor modulators for the treatment of obesity: a patent analysis (2008–2014). Pharm. Pat. Anal. 4, 95–107 (2015).

    CAS  PubMed  Google Scholar 

  130. Fani, L., Bak, S., Delhanty, P., van Rossum, E.F. & van den Akker, E.L. The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int. J. Obes. (Lond.) 38, 163–169 (2014).

    CAS  Google Scholar 

  131. Kumar, K.G. et al. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides 30, 1892–1900 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kievit, P. et al. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 62, 490–497 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, K.Y. et al. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J. Clin. Endocrinol. Metab. 100, 1639–1645 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Weide, K. et al. Hyperphagia, not hypometabolism, causes early onset obesity in melanocortin-4 receptor knockout mice. Physiol. Genomics 13, 47–56 (2003).

    CAS  PubMed  Google Scholar 

  135. Zhang, Y. et al. Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB J. 19, 1482–1491 (2005).

    CAS  PubMed  Google Scholar 

  136. Chen, A.S. et al. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res. 9, 145–154 (2000).

    CAS  PubMed  Google Scholar 

  137. Marsh, D.J. et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. 21, 119–122 (1999).

    CAS  PubMed  Google Scholar 

  138. Fan, W. et al. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat. Neurosci. 7, 335–336 (2004).

    CAS  PubMed  Google Scholar 

  139. Tallam, L.S., da Silva, A.A. & Hall, J.E. Melanocortin-4 receptor mediates chronic cardiovascular and metabolic actions of leptin. Hypertension 48, 58–64 (2006).

    CAS  PubMed  Google Scholar 

  140. Arble, D.M. et al. The melanocortin-4 receptor integrates circadian light cues and metabolism. Endocrinology 156, 1685–1691 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a University of Edinburgh Chancellor's Fellowship (A.S.G.) and US National Institutes of Health grants to B.B.L. (R01 DK096010, R01 DK089044, R01 DK071051, R01 DK075632, R37 DK053477, BNORC Transgenic Core P30 DK046200, BADERC Transgenic Core P30 DK057521) and to M.J.K. (Intramural Research Program, NIDDK; DK075087, DK075090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael J Krashes or Alastair S Garfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krashes, M., Lowell, B. & Garfield, A. Melanocortin-4 receptor–regulated energy homeostasis. Nat Neurosci 19, 206–219 (2016). https://doi.org/10.1038/nn.4202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing