Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis

Abstract

The molecular pathways involved in the differentiation of hematopoietic progenitors are unknown. Here we report that chemokine-mediated interactions of megakaryocyte progenitors with sinusoidal bone marrow endothelial cells (BMECs) promote thrombopoietin (TPO)-independent platelet production. Megakaryocyte-active cytokines, including interleukin-6 (IL-6) and IL-11, did not induce platelet production in thrombocytopenic, TPO-deficient (Thpo−/−) or TPO receptor–deficient (Mpl−/−) mice. In contrast, megakaryocyte-active chemokines, including stromal-derived factor-1 (SDF-1) and fibroblast growth factor-4 (FGF-4), restored thrombopoiesis in Thpo−/− and Mpl−/− mice. FGF-4 and SDF-1 enhanced vascular cell adhesion molecule-1 (VCAM-1)- and very late antigen-4 (VLA-4)-mediated localization of CXCR4+ megakaryocyte progenitors to the vascular niche, promoting survival, maturation and platelet release. Disruption of the vascular niche or interference with megakaryocyte motility inhibited thrombopoiesis under physiological conditions and after myelosuppression. SDF-1 and FGF-4 diminished thrombocytopenia after myelosuppression. These data suggest that TPO supports progenitor cell expansion, whereas chemokine-mediated interaction of progenitors with the bone marrow vascular niche allows the progenitors to relocate to a microenvironment that is permissive and instructive for megakaryocyte maturation and thrombopoiesis. Progenitor-active chemokines offer a new strategy to restore hematopoiesis in a clinical setting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SDF-1 and FGF-4 restore platelet counts in TPO- or c-Mpl-deficient mice.
Figure 2: SDF-1 and FGF-4 increase interaction of megakaryocytes with sinusoidal BMECs.
Figure 3: SDF-1 and FGF-4 induce generation of polyploid megakaryocytes by increasing interaction with BMECs.
Figure 4: Targeted disruption of the vascular niche by blocking VE-cadherin impairs megakaryocyte adhesion to BMECs and thrombopoiesis.
Figure 5: Inhibition of CXCR4 and VE-cadherin signaling blocks physiological reconstitution of thrombopoiesis.
Figure 6: Chemokines ameliorate chemotherapy-induced thrombocytopenia in vivo.

Similar content being viewed by others

References

  1. de Sauvage, F.J. et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369, 533–538 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Lok, S. et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369, 565–568 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Kaushansky, K. et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 369, 568–571 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Kuter, D.J., Beeler, D.L. & Rosenberg, R.D. The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production. Proc. Natl. Acad. Sci. USA 91, 11104–11108 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartley, T.D. et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77, 1117–1124 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Gurney, A.L., Carver-Moore, K., de Sauvage, F.J. & Moore, M.W. Thrombocytopenia in c-mpl-deficient mice. Science 265, 1445–1447 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Gurney, A.L. & de Sauvage, F.J. Dissection of c-Mpl and thrombopoietin function: studies of knockout mice and receptor signal transduction. Stem Cells 14 (suppl. 1), 116–123 (1996).

    Article  PubMed  Google Scholar 

  8. Bunting, S. et al. Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood 90, 3423–3429 (1997).

    CAS  PubMed  Google Scholar 

  9. de Sauvage, F.J. et al. Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J. Exp. Med. 183, 651–656 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Zucker-Franklin, D. & Philipp, C.S. Platelet production in the pulmonary capillary bed: new ultrastructural evidence for an old concept. Am. J. Pathol. 157, 69–74 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tavassoli, M. & Aoki, M. Localization of megakaryocytes in the bone marrow. Blood Cells 15, 3–14 (1989).

    CAS  Google Scholar 

  12. Chen, Q., Solar, G., Eaton, D.L. & de Sauvage, F.J. IL-3 does not contribute to platelet production in c-Mpl-deficient mice. Stem Cells 16 (suppl. 2), 31–36 (1998).

    Article  PubMed  Google Scholar 

  13. Gainsford, T. et al. Cytokine production and function in c-mpl-deficient mice: no physiologic role for interleukin-3 in residual megakaryocyte and platelet production. Blood 91, 2745–2752 (1998).

    CAS  PubMed  Google Scholar 

  14. Gainsford, T. et al. The residual megakaryocyte and platelet production in c-mpl-deficient mice is not dependent on the actions of interleukin-6, interleukin-11, or leukemia inhibitory factor. Blood 95, 528–534 (2000).

    CAS  PubMed  Google Scholar 

  15. Hamada, T. et al. Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation. J. Exp. Med. 188, 539–548 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, J.F., Liu, Z.Y. & Groopman, J.E. The α-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood 92, 756–764 (1998).

    CAS  PubMed  Google Scholar 

  17. Riviere, C. et al. Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood 93, 1511–1523 (1999).

    CAS  PubMed  Google Scholar 

  18. Lane, W.J. et al. Stromal-derived factor 1-induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood 96, 4152–4159 (2000).

    CAS  PubMed  Google Scholar 

  19. Majka, M. et al. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood 96, 4142–4151 (2000).

    CAS  PubMed  Google Scholar 

  20. Konishi, H. et al. Effective prevention of thrombocytopenia in mice using adenovirus-mediated transfer of HST-1 (FGF-4) gene. J. Clin. Invest. 96, 1125–1130 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakamoto, H. et al. Adenovirus-mediated transfer of the HST-1 (FGF4) gene induces increased levels of platelet count in vivo. Proc. Natl. Acad. Sci. USA 91, 12368–12372 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Casella, I. et al. Autocrine-paracrine VEGF loops potentiate the maturation of megakaryocytic precursors through Flt1 receptor. Blood 101, 1316–1323 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Rafii, S. et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84, 10–19 (1994).

    CAS  PubMed  Google Scholar 

  24. Rafii, S. et al. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86, 3353–3363 (1995).

    CAS  PubMed  Google Scholar 

  25. Corada, M. et al. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97, 1679–1684 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Su, W.H., Chen, H.I. & Jen, C.J. Differential movements of VE-cadherin and PECAM-1 during transmigration of polymorphonuclear leukocytes through human umbilical vein endothelium. Blood 100, 3597–3603 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liao, F. et al. Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res. 62, 2567–2575 (2002).

    CAS  PubMed  Google Scholar 

  30. Avraham, H., Banu, N., Scadden, D.T., Abraham, J. & Groopman, J.E. Modulation of megakaryocytopoiesis by human basic fibroblast growth factor. Blood 83, 2126–2132 (1994).

    CAS  PubMed  Google Scholar 

  31. Avraham, H., Cowley, S., Chi, S.Y., Jiang, S. & Groopman, J.E. Characterization of adhesive interactions between human endothelial cells and megakaryocytes. J. Clin. Invest. 91, 2378–2384 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Avraham, H. et al. Interaction of human bone marrow fibroblasts with megakaryocytes: role of the c-kit ligand. Blood 80, 1679–1684 (1992).

    CAS  PubMed  Google Scholar 

  33. Levin, J. et al. Thrombocytopenic c-mpl−/− mice can produce a normal level of platelets after administration of 5-fluorouracil: the effect of age on the response. Blood 98, 1019–1027 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–851 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Kuter, D.J. & Begley, C.G. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 100, 3457–3469 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Kuter, D.J. Whatever happened to thrombopoietin? Transfusion 42, 279–283 (2002).

    Article  PubMed  Google Scholar 

  38. Vadhan-Raj, S. et al. Recombinant human thrombopoietin attenuates carboplatin-induced severe thrombocytopenia and the need for platelet transfusions in patients with gynecologic cancer. Ann. Intern. Med. 132, 364–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Mossuz, P., Schweitzer, A., Molla, A. & Berthier, R. Expression and function of receptors for extracellular matrix molecules in the differentiation of human megakaryocytes in vitro. Br. J. Haematol. 98, 819–827 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Hodohara, K., Fujii, N., Yamamoto, N. & Kaushansky, K. Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK). Blood 95, 769–775 (2000).

    CAS  PubMed  Google Scholar 

  41. Delehanty, L.L. et al. Stromal inhibition of megakaryocytic differentiation is associated with blockade of sustained Rap1 activation. Blood 101, 1744–1751 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Zweegman, S., Veenhof, M.A., Huijgens, P.C., Schuurhuis, G.J. & Drager, A.M. Regulation of megakaryocytopoiesis in an in vitro stroma model: preferential adhesion of megakaryocytic progenitors and subsequent inhibition of maturation. Exp. Hematol. 28, 401–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Rafii, S., Mohle, R., Shapiro, F., Frey, B.M. & Moore, M.A. Regulation of hematopoiesis by microvascular endothelium. Leuk. Lymphoma 27, 375–386 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Almeida-Porada, G. & Ascensao, J.L. Isolation, characterization, and biologic features of bone marrow endothelial cells. J. Lab. Clin. Med. 128, 399–407 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Schweitzer, K.M. et al. Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am. J. Pathol. 148, 165–175 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Masek, L.C., Sweetenham, J.W., Whitehouse, J.M. & Schumacher, U. Immuno-, lectin-, and enzyme-histochemical characterization of human bone marrow endothelium. Exp. Hematol. 22, 1203–1239 (1994).

    CAS  PubMed  Google Scholar 

  47. Mohle, R., Green, D., Moore, M.A., Nachman, R.L. & Rafii, S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc. Natl. Acad. Sci. USA 94, 663–668 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vadhan-Raj, S. et al. Importance of predosing of recombinant human thrombopoietin to reduce chemotherapy-induced early thrombocytopenia. J. Clin. Oncol. 21, 3158–3167 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Schabath, R. et al. The murine chemokine receptor CXCR4 is tightly regulated during T cell development and activation. J. Leukoc. Biol. 66, 996–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Forster, R. et al. Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J. Immunol. 160, 1522–1531 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.R. is supported by the National Heart, Lung, Blood Institute (R01 grants HL61849, HL66592, HL67839 and HL59312), the American Cancer Society (101396) and the Leukemia and Lymphoma Society. S.T.A. is supported by the W.M. Keck Foundation, the Dr. Ezekiel Marion Foster Medical Scientist Fellowship and National Institutes of Health MSTP grant GM07739 (Cornell/Rockefeller/ Sloan-Kettering MD-PhD program). D.L. is supported by National Cancer Institute grant ROI-CA-98234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Rafii.

Ethics declarations

Competing interests

The monoclonal antibody to VE-cadherin was generated by ImClone Systems.F.L., L.W., D.H.and P.E.are employees of ImClone Systems.S.R. received support for unrelated leukemia research from ImClone Systems.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avecilla, S., Hattori, K., Heissig, B. et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10, 64–71 (2004). https://doi.org/10.1038/nm973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing