Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice

Abstract

We recently reported that mice deficient in the programmed cell death-1 (PD-1) immunoinhibitory coreceptor develop autoimmune dilated cardiomyopathy (DCM), with production of high-titer autoantibodies against a heart-specific, 30-kDa protein. In this study, we purified the 30-kDa protein from heart extract and identified it as cardiac troponin I (cTnI), encoded by a gene in which mutations can cause familial hypertrophic cardiomyopathy (HCM). Administration of monoclonal antibodies to cTnI induced dilatation and dysfunction of hearts in wild-type mice. Monoclonal antibodies to cTnI stained the surface of cardiomyocytes and augmented the voltage-dependent L-type Ca2+ current of normal cardiomyocytes. These findings suggest that antibodies to cTnI induce heart dysfunction and dilatation by chronic stimulation of Ca2+ influx in cardiomyocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and identification of the 30-kDa autoantigen.
Figure 2: Immunological characterization of cTnI.
Figure 3: Hemodynamics.
Figure 4: Electrophysiological analyses.

Similar content being viewed by others

References

  1. Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93, 841–842 (1996).

    Article  CAS  Google Scholar 

  2. Cohn, J.N. et al. Report of the National Heart, Lung, and Blood Institute Special Emphasis Panel on heart failure research. Circulation 95, 766–770 (1997).

    Article  CAS  Google Scholar 

  3. Matsumori, A. et al. Epidemiologic and clinical characteristics of cardiomyopathies in Japan. Circ. J. 66, 323–236 (2002).

    Article  Google Scholar 

  4. Herskowitz, A., Neumann, D.A. & Ansari, A.A. Concepts of autoimmunity applied to idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 22, 1385–1388 (1993).

    Article  CAS  Google Scholar 

  5. Pankuweit, S. et al. Autoantibodies in sera of patients with myocarditis: characterization of the corresponding proteins by isoelectric focusing and N-terminal sequence analysis. J. Mol. Cell. Cardiol. 29, 77–84 (1997).

    Article  CAS  Google Scholar 

  6. Schultheiss, H.P. et al. The ADP/ATP carrier as a mitochondrial auto-antigen—facts and perspectives. Ann. NY Acad. Sci. 488, 44–64 (1986).

    Article  CAS  Google Scholar 

  7. Maisch, B. et al. Diagnostic relevance of humoral and cytotoxic immune reactions in primary and secondary dilated cardiomyopathy. Am. J. Cardiol. 52, 1072–1078 (1983).

    Article  CAS  Google Scholar 

  8. Neumann, D.A. et al. Circulating heart-reactive antibodies in patients with myocarditis or cardiomyopathy. J. Am. Coll. Cardiol. 16, 839–846 (1990).

    Article  CAS  Google Scholar 

  9. Staudt, A. et al. Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation 103, 2681–2686 (2001).

    Article  CAS  Google Scholar 

  10. Matsumori, A. & Kawai, C. An experimental model for congestive heart failure after encephalomyocarditis virus myocarditis in mice. Circulation 65, 1230–1235 (1982).

    Article  CAS  Google Scholar 

  11. Alvarez, F.L. et al. Heart-specific autoantibodies induced by coxsackievirus B3: identification of heart autoantigens. Clin. Immunol. Immunopathol. 43, 129–139 (1987).

    Article  CAS  Google Scholar 

  12. Matsui, S. et al. Peptides derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits. J. Mol. Cell. Cardiol. 29, 641–655 (1997).

    Article  CAS  Google Scholar 

  13. Neu, N. et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol. 139, 3630–3636 (1987).

    CAS  PubMed  Google Scholar 

  14. Neu, N., Ploier, B. & Ofner, C. Cardiac myosin-induced myocarditis. Heart autoantibodies are not involved in the induction of the disease. J. Immunol. 145, 4094–4100 (1990).

    CAS  PubMed  Google Scholar 

  15. Okazaki, T., Iwai Y., & Honjo, T. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr. Opin. Immunol. 14, 779–782 (2002).

    Article  CAS  Google Scholar 

  16. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  Google Scholar 

  17. Seidman, J.G. & Seidman, C. Cell 104, 557–567 (2001).

    Article  CAS  Google Scholar 

  18. Kimura, A. et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat. Genet. 16, 379–382 (1997).

    Article  CAS  Google Scholar 

  19. Solaro, R.J. Troponin I, stunning, hypertrophy, and failure of the heart. Circ. Res. 84, 122–124 (1999).

    Article  CAS  Google Scholar 

  20. Towbin, J.A. The role of cytoskeletal proteins in cardiomyopathies. Curr. Opin. Cell. Biol. 10, 131–139 (1998).

    Article  CAS  Google Scholar 

  21. Kamisago, M. et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 343, 1688–1696 (2000).

    Article  CAS  Google Scholar 

  22. Solaro, R.J. & Rarick, H.M. Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ. Res. 83, 471–480 (1998).

    Article  CAS  Google Scholar 

  23. Shou, W. et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391, 489–492 (1998).

    Article  CAS  Google Scholar 

  24. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  Google Scholar 

  25. Knollmann, B.C. et al. Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J. Physiol. 525, 483–498 (2000).

    Article  CAS  Google Scholar 

  26. Schultheiss, H.P. et al. Antibody-mediated enhancement of calcium permeability in cardiac myocytes. J. Exp. Med. 168, 2105–2119 (1988).

    Article  CAS  Google Scholar 

  27. Staudt, A. et al. β1-adrenoceptor antibodies induce positive inotropic response in isolated cardiomyocytes. Eur. J. Pharmacol. 423, 115–119 (2001).

    Article  CAS  Google Scholar 

  28. Felix, S.B. et al. Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J. Am. Coll. Cardiol. 39, 646–652 (2002).

    Article  CAS  Google Scholar 

  29. Murphy, A.M. et al. Transgenic mouse model of stunned myocardium. Science 287, 488–491 (2000).

    Article  CAS  Google Scholar 

  30. Keffer, J.H. Myocardial markers of injury. Evolution and insights. Am. J. Clin. Pathol. 105, 305–320 (1996).

    Article  CAS  Google Scholar 

  31. Schulze, K. et al. Disturbance of myocardial energy metabolism in experimental virus myocarditis by antibodies against the adenine nucleotide translocator. Cardiovasc. Res. 44, 91–100 (1999).

    Article  CAS  Google Scholar 

  32. Kobuke, K. et al. ESDN, a novel neuropilin-like membrane protein cloned from vascular cells with the longest secretory signal sequence among eukaryotes, is up-regulated after vascular injury. J. Biol. Chem. 276, 34105–34114 (2001).

    Article  CAS  Google Scholar 

  33. Mizoguchi, A. et al. Localization of rabphilin-3A on the synaptic vesicle. Biochem. Biophys. Res. Commun. 202, 1235–1243 (1994).

    Article  CAS  Google Scholar 

  34. Nishio, R. et al. Left ventricular pressure-volume relationship in a murine model of congestive heart failure due to acute viral myocarditis. J. Am. Coll. Cardiol. 40, 1506–1514 (2002).

    Article  Google Scholar 

  35. Takagi, S., Kihara, Y., Sasayama, S. & Mitsuiye, T. Slow inactivation of cardiac L-type Ca2+ channel induced by cold acclimation of guinea pig. Am. J. Physiol. 274, R348–R356 (1998).

    CAS  PubMed  Google Scholar 

  36. Isenberg, G. & Klockner, U. Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflugers. Arch. 395, 6–18 (1982).

    Article  CAS  Google Scholar 

  37. Powell, T. et al. Electrical properties of individual cells isolated from adult rat ventricular myocardium. J. Physiol. 302, 131–153 (1980).

    Article  CAS  Google Scholar 

  38. Hamill, O.P. et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers. Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Noma, K. Yamauchi-Takihara, K. Kobuke, T. Nakamura, I. Okazaki and members of the Honjo laboratory for helpful discussions; S. Shibayama, Y. Odagaki and M. Matsuo (Ono Pharmaceutical) and APRO Life Science Institute for assistance with antigen determination; and E. Inoue for technical assistance. This work was supported by a Center of Excellence Grant from the Ministry of Education, Science, Sports, Culture and Technology of Japan. J.W. is a research fellow of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasuku Honjo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okazaki, T., Tanaka, Y., Nishio, R. et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9, 1477–1483 (2003). https://doi.org/10.1038/nm955

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing