Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria

Abstract

Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of interleukin 1β (IL-1β) and IL-18. Although infection with wild-type Salmonella typhimurium is lethal to mice, we show here that a strain that persistently expresses flagellin was cleared by the cytosolic flagellin-detection pathway through the activation of caspase-1 by the NLRC4 inflammasome; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1-induced pyroptotic cell death released bacteria from macrophages and exposed the bacteria to uptake and killing by reactive oxygen species in neutrophils. Similarly, activation of caspase-1 cleared unmanipulated Legionella pneumophila and Burkholderia thailandensis by cytokine-independent mechanisms. This demonstrates that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of flagellin-expressing S. typhimurium.
Figure 2: Flagellin expression attenuates S. typhimurium in vivo.
Figure 3: Different roles for ASC in NLRC4 signaling.
Figure 4: Evidence of pyroptosis in vivo.
Figure 5: ST-FliCON bacteria are released from macrophages and cleared by ROS.
Figure 6: ST-FliCON bacteria accumulate in neutrophils.
Figure 7: Sustained NLRC4 activation causes tissue damage.

Similar content being viewed by others

References

  1. Miao, E.A., Andersen-Nissen, E., Warren, S.E. & Aderem, A. TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 29, 275–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Szretter, K.J. et al. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J. Virol. 81, 2736–2744 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Schmitz, N., Kurrer, M., Bachmann, M.F. & Kopf, M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J. Virol. 79, 6441–6448 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozak, W. et al. Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1β-deficient mice. Am. J. Physiol. 269, R969–R977 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Van Der Sluijs, K.F. et al. Enhanced viral clearance in interleukin-18 gene-deficient mice after pulmonary infection with influenza A virus. Immunology 114, 112–120 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, B. et al. Interleukin-18 improves the early defence system against influenza virus infection by augmenting natural killer cell-mediated cytotoxicity. J. Gen. Virol. 85, 423–428 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Sansonetti, P.J. et al. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12, 581–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Bergsbaken, T., Fink, S.L. & Cookson, B.T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hueck, C.J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Miao, E.A. & Warren, S.E. Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome. J. Clin. Immunol. 30, 502–506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miao, E.A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. USA 107, 3076–3080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lara-Tejero, M. et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raupach, B., Peuschel, S.K., Monack, D.M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74, 4922–4926 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ibarra, J.A. & Steele-Mortimer, O. Salmonella–the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell. Microbiol. 11, 1579–1586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cummings, L.A., Wilkerson, W.D., Bergsbaken, T. & Cookson, B.T. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol. Microbiol. 61, 795–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Miao, E.A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Miggin, S.M. et al. NF-κB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc. Natl. Acad. Sci. USA 104, 3372–3377 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Franchi, L. et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur. J. Immunol. 37, 3030–3039 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Case, C.L., Shin, S. & Roy, C.R. Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect. Immun. 77, 1981–1991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sumimoto, H., Miyano, K. & Takeya, R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem. Biophys. Res. Commun. 338, 677–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Fischbach, M.A. et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl. Acad. Sci. USA 103, 16502–16507 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gunn, J.S. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 16, 284–290 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Bueno, S.M., Gonzalez, P.A., Schwebach, J.R. & Kalergis, A.M. T cell immunity evasion by virulent Salmonella enterica. Immunol. Lett. 111, 14–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Mariathasan, S., Weiss, D.S., Dixit, V.M. & Monack, D.M. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 202, 1043–1049 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duprez, L., Wirawan, E., Vanden Berghe, T. & Vandenabeele, P. Major cell death pathways at a glance. Microbes Infect. 11, 1050–1062 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Zychlinsky, A., Prevost, M.C. & Sansonetti, P.J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Schroder, K., Muruve, D.A. & Tschopp, J. Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome. Curr. Biol. 19, R262–R265 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Wu, J., Fernandes-Alnemri, T. & Alnemri, E.S. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J. Clin. Immunol. 30, 693–702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Warren, S.E. et al. Cutting edge: Cytosolic bacterial DNA activates the inflammasome via Aim2. J. Immunol. 185, 818–821 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Tsuchiya, K. et al. Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J. Immunol. 185, 1186–1195 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Sauer, J.D. et al. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7, 412–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rathinam, V.A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, S. et al. Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur. J. Immunol. 40, 1545–1551 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones, J.W. et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. USA 107, 9771–9776 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11, 385–393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Warren, S.E., Mao, D.P., Rodriguez, A.E., Miao, E.A. & Aderem, A. Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J. Immunol. 180, 7558–7564 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Craven, R.R. et al. Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One 4, e7446 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Munoz-Planillo, R., Franchi, L., Miller, L.S. & Nunez, G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J. Immunol. 183, 3942–3948 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beuzon, C.R., Unsworth, K.E. & Holden, D.W. In vivo genetic analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 type III secretion system contribute independently to Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 69, 7254–7261 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miao, E.A. et al. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol. 34, 850–864 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Shornick, L.P. et al. Mice deficient in IL-1β manifest impaired contact hypersensitivity to trinitrochlorobenzone. J. Exp. Med. 183, 1427–1436 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Uematsu, S. et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7, 868–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Beuzon, C.R. & Holden, D.W. Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect. 3, 1345–1352 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Rodriguez for managing the mouse colony and members of the Aderem laboratory for critical review of the manuscript. Supported by the US National Institutes of Health (U54 AI057141 and AI052286).

Author information

Authors and Affiliations

Authors

Contributions

E.A.M., I.A.L. and A.A. conceived of the research plan and wrote the manuscript; E.A.M., I.A.L., D.P.M., M.D., A.S. and M.D.W. planned and did experiments; and P.M.T. planned and did histological analyses.

Corresponding authors

Correspondence to Edward A Miao or Alan Aderem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 and Tables 1–3 (PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, E., Leaf, I., Treuting, P. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11, 1136–1142 (2010). https://doi.org/10.1038/ni.1960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing