Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection

Abstract

Polarization of macrophages to M1 or M2 cells is important for mounting responses against bacterial and helminth infections, respectively. Jumonji domain containing-3 (Jmjd3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in the activation of macrophages. Here we show that Jmjd3 is essential for M2 macrophage polarization in response to helminth infection and chitin, though Jmjd3 is dispensable for M1 responses. Furthermore, Jmjd3 (also known as Kdm6b) is essential for proper bone marrow macrophage differentiation, and this function depends on demethylase activity of Jmjd3. Jmjd3 deficiency affected trimethylation of H3K27 in only a limited number of genes. Among them, we identified Irf4 as encoding a key transcription factor that controls M2 macrophage polarization. Collectively, these results show that Jmjd3-mediated H3K27 demethylation is crucial for regulating M2 macrophage development leading to anti-helminth host responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Jmjd3 is dispensable for induction of M1 macrophage polarization.
Figure 2: Crucial role of Jmjd3 in M2 macrophage polarization in response to chitin administration.
Figure 3: Crucial role of Jmjd3 in the responses to N. brasiliensis infection.
Figure 4: Impaired M2 macrophage marker expression in Jmjd3−/− bone marrow cells.
Figure 5: Jmjd3 is required for the cell-cycle progression of M-BMMs.
Figure 6: Genome-wide H3K27me3 modifications in M-BMMs.
Figure 7: Irf4 is a Jmjd3 target gene responsible for controlling M2 macrophage marker expression.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Beutler, B. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol. Rev. 227, 248–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Benoit, M., Desnues, B. & Mege, J.L. Macrophage polarization in bacterial infections. J. Immunol. 181, 3733–3739 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Nair, M.G., Guild, K.J. & Artis, D. Novel effector molecules in type 2 inflammation: lessons drawn from helminth infection and allergy. J. Immunol. 177, 1393–1399 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Nair, M.G. et al. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect. Immun. 73, 385–394 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Verreck, F.A. et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. USA 101, 4560–4565 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez, F.O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303–7311 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Fleetwood, A.J., Lawrence, T., Hamilton, J.A. & Cook, A.D. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 178, 5245–5252 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Fleetwood, A.J., Dinh, H., Cook, A.D., Hertzog, P.J. & Hamilton, J.A. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J. Leukoc. Biol. 86, 411–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto, M. et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430, 218–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Kayama, H. et al. Class-specific regulation of pro-inflammatory genes by MyD88 pathways and IκBζ. J. Biol. Chem. 283, 12468–12477 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Charo, I.F. Macrophage polarization and insulin resistance: PPARγ in control. Cell Metab. 6, 96–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Hong, S. et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl. Acad. Sci. USA 104, 18439–18444 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lan, F. et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689–694 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130, 1083–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. De Santa, F. et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 28, 3341–3352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barradas, M. et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev. 23, 1177–1182 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agger, K. et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 23, 1171–1176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bowman, S.M. & Free, S.J. The structure and synthesis of the fungal cell wall. Bioessays 28, 799–808 (2006).

    Article  PubMed  Google Scholar 

  32. Reese, T.A. et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447, 92–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kreider, T., Anthony, R.M., Urban, J.F. Jr. & Gause, W.C. Alternatively activated macrophages in helminth infections. Curr. Opin. Immunol. 19, 448–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishii, M. et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114, 3244–3254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Da Silva, C.A., Hartl, D., Liu, W., Lee, C.G. & Elias, J.A. TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J. Immunol. 181, 4279–4286 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Ahyi, A.N., Chang, H.C., Dent, A.L., Nutt, S.L. & Kaplan, M.H. IFN regulatory factor 4 regulates the expression of a subset of TH2 cytokines. J. Immunol. 183, 1598–1606 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7, 773–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Honma, K. et al. Interferon regulatory factor 4 differentially regulates the production of TH2 cytokines in naive vs. effector/memory CD4+ T cells. Proc. Natl. Acad. Sci. USA 105, 15890–15895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Honma, K. et al. Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proc. Natl. Acad. Sci. USA 102, 16001–16006 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Negishi, H. et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc. Natl. Acad. Sci. USA 102, 15989–15994 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saitoh, T. et al. TWEAK induces NF-κB2 p100 processing and long lasting NF-κB activation. J. Biol. Chem. 278, 36005–36012 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the colleagues in our laboratory, E. Kamada for secretarial assistance and Y. Fujiwara, M. Kumagai, R. Abe, N. Kitagaki and S. Yumikura for technical assistance. This work was supported by the Special Coordination Funds of the Japanese Ministry of Education, Culture, Sports, Science and Technology, and grants from the Ministry of Health, Labour and Welfare in Japan, the Global Center of Excellence Programs of Osaka University and Nagasaki University and the US National Institutes of Health (P01 AI070167). Computational time was provided by the Super Computer System at the Human Genome Center, Institute of Medical Science, The University of Tokyo. A.V. was partly supported by a Japanese government scholarship.

Author information

Authors and Affiliations

Authors

Contributions

T. Satoh and O.T. designed and performed experiments. Y.K., T. Miyake, K.M., T.O. and T. Saitoh performed experiments. A.V., Y.T., D.M.S. and K. Nakai analyzed ChIP-Seq data. K. Yasuda and K. Nakanishi performed N. brasiliensis infection experiments. K.H., T. Matsuyama and K. Yui provided Irf4−/− mice. T.T. performed histological examination. O.T., T. Satoh and S.A. wrote the manuscript. S.A. supervised the project. A.V. and K.Y. contributed equally to this work.

Corresponding author

Correspondence to Shizuo Akira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 637 kb)

Supplementary Table 1

Gene expression profiles in WT and Jmjd3−/− M-BMM with and without LPS stimulation. (XLS 1329 kb)

Supplementary Table 2

Gene expression profiles in WT and Jmjd3−/− M-BMM with and without LPS stimulation. (XLS 1965 kb)

Supplementary Table 3

Gene H3K27 methylation status and expression in WT and Jmjd3−/− M-BMM. (XLS 2344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, T., Takeuchi, O., Vandenbon, A. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11, 936–944 (2010). https://doi.org/10.1038/ni.1920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing