Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insensitivity to anti–Müllerian hormone due to a mutation in the human anti–Müllerian hormone receptor

Abstract

Anti–Müllerian hormone (AMH) and its receptor are involved in the regression of Müllerian ducts in male fetuses. We have now cloned and mapped the human AMH receptor gene and provide genetic proof that it is required for AMH signalling, by identifying a mutation in the AMH receptor in a patient with persistent Müllerian duct syndrome. The mutation destroys the invariant dinucleotide at the 5′ end of the second intron, generating two abnormal mRNAs, one missing the second exon, required for ligand binding, and the other incorporating the first 12 bases of the second intron. The similar phenotypes observed in AMH–deficient and AMH receptor–deficient individuals indicate that the AMH signalling machinery is remarkably simple, consisting of one ligand and one type II receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jost, A. Problems of fetal endocrinology: the gonadal and hypophyseal hormones. Recent Prog. Horm. Res. 8, 379–418 (1953).

    Google Scholar 

  2. Imbeaud, S., Carré-Eusèbe, D., Rey, R., Belville, C., Josso, N. & Picard, J.Y. Molecular genetics of the persistent Müllerian duct syndrome: a study of 19 families. Hum. molec. Genet. 3, 125–131 (1994).

    Article  CAS  Google Scholar 

  3. Baarends, W.M. et al. A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the müllerian duct. Development 120, 189–197 (1994).

    CAS  Google Scholar 

  4. di Clemente, N. et al. Cloning, expression and alternative splicing of the receptor for anti-Müllerian hormone. Molec. Endocrinol. 8, 1006–1020 (1994).

    CAS  Google Scholar 

  5. Massagué, J. Receptors for the TGF-βfamily Cell 69, 1067–1070 (1992).

    Article  Google Scholar 

  6. sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  7. Kariya, Y., Kato, K., Hayashizaki, Y., Himeno, S., Tarui, S. & Matsubara, K. Revision of consensus sequence of human Alu repeats. Gene 53, 1–10 (1987).

    Article  CAS  Google Scholar 

  8. Matzuk, M.M. & Bradley, A. Structure of the mouse activin receptor type II gene. Biochem. biophys. Res. Commun. 185, 404–413 (1992).

    Article  CAS  Google Scholar 

  9. Humphries, D.E., Bloom, B.B., Fine, A. & Goldstein, R.H. Structure and expression of the promoter for the human type II transforming growth factor-β receptor. Biochem. biophys. Res. Commun. 203, 1020–1027 (1994).

    Article  CAS  Google Scholar 

  10. Shen, W.H., Moore, C.C.D., Ikeda, Y., Parker, K.L. & Ingraham, H.A. Nuclear receptor steroidogenic factor 1 regulates the mullerian inhibiting substance gene: A link to the sex determination cascade. Cell 77, 651–661 (1994).

    Article  Google Scholar 

  11. Harley, V.R., Lovell-Badge, R. & Goodfellow, P.N. Definition of a consensus DNA binding site for SRY. Nucl. Acids Res. 22, 1500–1501 (1994).

    Article  CAS  Google Scholar 

  12. Wrana, J.L. et al. Two transmembrane serine/threonine kinases from Drosophila melanogaster form an activin receptor complex. Molec. cell. Biol. 14, 944–950 (1994).

    Article  CAS  Google Scholar 

  13. Gustafson, M.L. et al. Müllerian inhibiting substance as a marker for ovarian sex-cord tumor. New Engl. J. Med. 326, 466–471 (1992).

    Article  CAS  Google Scholar 

  14. Guerrier, D. et al. The persistent Müerian duct syndrome: a molecular approach. J. clin. Endocrinol. Metab. 68, 46–52 (1989).

    Article  CAS  Google Scholar 

  15. Behringer, R.R., Finegold, M.J. & Cate, R.L. Müllerian-inhibiting substance function during mammalian sexual development. Cell 79, 415–425 (1994).

    Article  CAS  Google Scholar 

  16. di Clemente, N. et al. Inhibitory effect of AMH upon the expression of aromatase and LH receptors by cultured granulosa cells of rat and porcine immature ovaries. Endocrine 2, 553–558 (1994).

    CAS  Google Scholar 

  17. Josso, N. et al. 1993 Anti-Müllerian hormone, the Jost factor. Recent Prog. Horm. Res. 48, 1–59 (1993).

    CAS  PubMed  Google Scholar 

  18. Attisano, L., Wrana, J.L., Cheifetz, S. & Massagué, J. Novel activin receptors: distinct genes and alternative messenger RNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 68, 97–108 (1992).

    Article  CAS  Google Scholar 

  19. Koenig, B.B. et al. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Molec. cell. Biol. 14, 5961–5974 (1994).

    Article  CAS  Google Scholar 

  20. Lin, H.Y., Wang, X.F., Ngeaton, E., Weinberg, R.A. & Lodish, H.F. Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase. Cell 68, 775–785 (1992).

    Article  CAS  Google Scholar 

  21. Wilson, C.A. et al. Müllerian inhibiting substance requires its N-terminal domain for maintenance of biological activity, a novel finding within the TGF-β superfamily. Molec. Endocrinol. 7, 247–257 (1993).

    CAS  Google Scholar 

  22. Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in messenger RNA splice junctions of human genes - causes and consequences. Hum. Genet. 90, 41–54 (1992).

    Article  CAS  Google Scholar 

  23. Talerico, M. & Berget, S.M. Effect of 5′ splice mutations on splicing of the preceding intron. Molec. cell. Biol. 10, 6299–6305 (1990).

    Article  CAS  Google Scholar 

  24. Parkinson, D.B. & Thakker, R.V. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nature Genet. 1, 149–152 (1992).

    Article  CAS  Google Scholar 

  25. Stover, M.L., Primorac, D., Liu, S.C., McKinstry, M.B. & Rowe, D.W. Defective splicing of messenger RNA from one COL1A1 allele of type-I collagen in nondeforming (type-I) osteogenesis imperfecta. J. clin. Invest. 92, 1994–2002 (1993).

    Article  CAS  Google Scholar 

  26. Treisman, R., Proudfoot, N.J., Shander, M. & Maniatis, T. A single-base change at a splice site in a β0-thalassemic gene causes abnormal RNA splicing. Cell 29, 903–911 (1982).

    Article  CAS  Google Scholar 

  27. Harada, N. et al. Biochemical and molecular genetic analyses on placental aromatase (pP-450AROM) deficiency. J. biol. Chem. 267, 4781–4785 (1992).

    CAS  PubMed  Google Scholar 

  28. Yen, P.M. & Chin, W.W. Minireview: Molecular mechanisms of dominant negative activity by nuclear hormone receptors. Molec. Endocrinol. 8, 1450–1454 (1994).

    CAS  Google Scholar 

  29. Brand, T. & Schneider, M.D. Inactive type II and type I receptors for TGF-β are dominant inhibitors of TGF-β-dependent transcription. J. biol. Chem. 270, 8274–8284 (1995).

    Article  CAS  Google Scholar 

  30. Cárcamo, J., Zentella, A. & Massagué, J. Disruption of transforming growth factor-β signaling by a mutation that prevents transphosphorylation within the receptor complex. Molec. cell. Biol. 15, 1573–1581 (1995).

    Article  Google Scholar 

  31. Hemmati-Brivanlou, A. & Melton, D.A. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614 (1992).

    Article  CAS  Google Scholar 

  32. Suzuki, A. et al. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. natn. Acad. Sci. U.S.A. 91, 10255–10259 (1994).

    Article  CAS  Google Scholar 

  33. Matzuk, M.M., Kumar, T.R. & Bradley, A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374, 356–360 (1995).

    Article  CAS  Google Scholar 

  34. Picon, R. Action du testicule foetal sur le développement in vitro des canaux de Müller chez le rat. Archs. Anat. microsc. Morphol. Exp. 58, 1–19 (1969).

    CAS  Google Scholar 

  35. Carré-Eusèbe, D., Imbeaud, S., Harbison, M., New, M.I., Josso, N. & Picard, J.Y. Variants of the anti-Müllerian hormone gene in a compound heterozygote with the persistent Müllerian duct syndrome and his family. Hum. Genet. 90, 389–394 (1992).

    Article  Google Scholar 

  36. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  37. Glisin, V., Crkvenjakov, R. & Byus, C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13, 2633–2637 (1974).

    Article  CAS  Google Scholar 

  38. Benton, W.D. & Davis, R.W. Screening lambda gt recombinant clones by hybridization to single plaques in situ. Science 196, 180–182 (1977).

    Article  CAS  Google Scholar 

  39. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: a Laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  40. Burke, J.F. High sensitivity S1 mapping with single-stranded (32P)DNA probes synthesized from bacteriophage M13 mp templates. Gene 30, 63–68 (1984).

    Article  CAS  Google Scholar 

  41. Barsoum, J. Introduction of stable high-copy number DNA into Chinese hamster ovary cells by electroporation. DNA 9, 293–300 (1990).

    Article  CAS  Google Scholar 

  42. Pepinsky, R.B. et al. Proteolytic processing of Müllerian inhibiting substance produces a transforming growth factor-β-ike fragment. J. biol. Chem. 263, 18961–18965 (1988).

    CAS  PubMed  Google Scholar 

  43. Lottenberg, R., Christensen, C.M., Jackson, P.L. & Coleman, P.L. Assay of coagulation proteases using peptide chromogenic and fluorogenic substrates. Methods Enzymol. 80, 341–361 (1981).

    Article  CAS  Google Scholar 

  44. di Clemente, N. et al. A quantitative and interspecific test for biological activity of anti-Müllerian hormone: the fetal ovary aromatase assay. Development 114, 721–727 (1992).

    CAS  PubMed  Google Scholar 

  45. Redinbaugh, M.G. & Turley, R.B. Adaptation of the bicinchoninic acid protein assay for use with microtiter plates and sucrose gradient fractions. Analyt. Biochem. 153, 267–271 (1986).

    Article  CAS  Google Scholar 

  46. Knebelmann, B. et al. Anti-Müllerian hormone Bruxelles: a nonsense mutation associated with the persistent Müllerian duct syndrome. Proc. natn. Acad. Sci. U.S.A. 88, 3767–3771 (1991).

    Article  CAS  Google Scholar 

  47. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  Google Scholar 

  48. Myers, R.M., Tilly, K. & Maniatis, T. Fine structure genetic analysis of a β-globin promoter. Science 232, 613–618 (1986).

    Article  CAS  Google Scholar 

  49. Wall, L., deBoer, E. & Grosveld, F. The human β-globin gene 3′ enhancer contains multiple binding sites for an erythroid-specific protein. Genes Dev. 2, 1089–1100 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbeaud, S., Faure, E., Lamarre, I. et al. Insensitivity to anti–Müllerian hormone due to a mutation in the human anti–Müllerian hormone receptor. Nat Genet 11, 382–388 (1995). https://doi.org/10.1038/ng1295-382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1295-382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing