Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients

Abstract

Carnitine palmitoyltransferase (CPT) II deficiency is the most common inherited disorder of lipid metabolism affecting skeletal muscle. We have identified a missense mutation (Ser113Leu) in one patient with the classical muscular symptomatology. Transfection experiments in COS cells demonstrate that the mutation drastically depresses the catalytic activity of CPT II. The mutation results in normal synthesis but a markedly reduced steady–state level of the protein, indicating decreased stability of mutant CPT II. The Ser113Leu mutation is the most frequent cause of CPT II deficiency. The mutation can be detected easily by restriction analysis enabling molecular diagnosis of most patients and identification of heterozygous carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McGarry, J.D. et al. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes/Metabol. Rev. 5, 271–284 (1989).

    Article  CAS  Google Scholar 

  2. Layzer, R.B. How muscles use fuel. New Engl. J. Med. 324, 411–412 (1991).

    Article  CAS  Google Scholar 

  3. Felig, P. & Wahren, J. Fuel homeostasis in exercise. New Engl. J. Med. 293, 1078–1084 (1975).

    Article  CAS  Google Scholar 

  4. DiDonato, S. Disorders of lipid metabolism affecting skeletal muscle. In Myology 2nd edn (eds Engel, A.G. & Franzini-Armstrong, C.) (McGraw-Hill, New York, in the press).

  5. Bremer, J. & Osmundsen, H. Fatty acid oxidation and its regulation. In Fatty Acid Metabolism and Its Regulation (ed. Numa, S.) 113–154 (Elsevier, New York, 1984).

    Chapter  Google Scholar 

  6. Bieber, L.L. Carnitine. A. Rev. Biochem. 57, 261–283 (1988).

    Article  CAS  Google Scholar 

  7. Woeltje, K.F. et al. Inter-tissue and inter-species characteristics of the mitochondrial carnitine palmitoyltransferase enzyme system. J. biol. Chem. 265, 10714–10719 (1990).

    CAS  PubMed  Google Scholar 

  8. McKusick, V.A. Mendelian Inheritance in Man 10th edn (Johns Hopkins University Press, Baltimore, 1992).

    Google Scholar 

  9. DiMauro, S. & Papadimitriou, A. Carnitine palmitoyltransferase deficiency. In Myology 1st edn (eds Engel, A.G. & Banker, B.Q.) 1697–1708 (McGraw-Hill, New York, 1986).

    Google Scholar 

  10. DiMauro, S. & Melis-DiMauro, P. Muscle carnitine palmitoyltransferase deficiency and myoglobinuria. Science 182, 929–931 (1973).

    Article  CAS  Google Scholar 

  11. Demaugre, F. et al. Hepatic and muscular presentations of carnitine palmitoyltransferase deficiency: two distinct entities. Pediatr. Res. 24, 308–311 (1988).

    Article  CAS  Google Scholar 

  12. DiDonato, S. et al. Heterogeneity of carnitine-palmitoyltransferase deficiency. J. neurol. Sci. 50, 207–215 (1981).

    Article  CAS  Google Scholar 

  13. Demaugre, F. et al. Infantile form of carnitine palmitoyltransferase II deficiency with hepatomuscular symptoms and sudden death. Physiopathological approach to carnitine palmitoyltransferase II deficiencies. J. clin. Invest. 87, 859–864 (1991).

    Article  CAS  Google Scholar 

  14. Zinn, A.B. & Hoppel, C.L. An unusual form of carnitine palmitoyltransferase B (CPT-B) deficiency associated with neonatal cardiomyopathy and renal dysorganogenesis. Am. J. hum. Genet. 49, A109 (1991).

    Google Scholar 

  15. Witt, D.R. et al. Carnitine palmitoyl transferase-type 2 deficiency: two new cases and successful prenatal diagnosis. Am. J. hum. Genet. 49, A109 (1991).

    Google Scholar 

  16. Hug, G., Bove, K.E. & Soukup, S. Lethal neonatal multiorgan deficiency of carnitine palmitoyltransferase II. New Engl. J. Med. 325, 1862–1864 (1991).

    Article  CAS  Google Scholar 

  17. Taroni, F. et al. Biochemical and molecular studies of carnitine palmitoyltransferase II deficiency with hepatocardiomyopathic presentation. In New Developments in Fatty Acid Oxidation (eds Coates, P.M. & Tanaka, K.) 521–531 (Wiley-Liss, New York, 1992).

    Google Scholar 

  18. Finocchiaro, G. et al. cDNA cloning, sequence analysis and chromosomal localization of human carnitine palmitoyltransferase. Proc. natn. Acad. Sci. U.S.A. 88, 661–665 (correction 10981) (1991).

    Article  CAS  Google Scholar 

  19. Minoletti, F. et al. Localization of the human gene for carnitine palmitoyltransferase to 1p13-p11 by non-radioactive in situ hybridization. Genomics 13, 1372–1374 (1992).

    Article  CAS  Google Scholar 

  20. Taroni, F. et al. Molecular characterization of inherited carnitine palmitoyltransferase II deficiency. Proc. natn. Acad. Sci. U.S.A. 89, 8429–8433 (1992).

    Article  CAS  Google Scholar 

  21. Gellera, C. et al. Molecular study of lethal neonatal carnitine palmitoyltransferase II (CPTII) deficiency. Am. J. hum. Genet. 51, A168 (1992).

    Google Scholar 

  22. Bonnefont, J.P., Cepanec, C., Munnich, A., Saudubray, J.P. & Demaugre, F. Infantile form of CPT II deficiency: identification of a missense mutation in the CPT II gene. Am. J. hum. Genet. 51, A165 (1992).

    Google Scholar 

  23. Verderio, E. et al. Two novel sequence polymorphisms of the human carnitine palmitoyltransferase II (CPT1) gene. Hum. molec. Genet. 2, 334 (1993).

    Article  CAS  Google Scholar 

  24. Singh, R. et al. A case of carnitine palmitoyltransferase II deficiency in human skeletal muscle. FEBS Lett. 241, 126–130 (1988).

    Article  CAS  Google Scholar 

  25. Silver, J. Inverse polymerase chain reaction. In PCR: A Practical Approach (eds McPherson, M.J., Quirke, P. & Taylor, G.R.) 137–146 (Oxford University Press, New York, 1991).

    Google Scholar 

  26. Tonin, P., Lewis, P., Servidei, S. & DiMauro, S. Metabolic causes of myoglobinuria. Ann. Neurol. 27, 181–185 (1990).

    Article  CAS  Google Scholar 

  27. Creighton, T.E. Proteins: Structures and Molecular Properties 2nd edn 108–114 (Freeman, New York, 1993).

    Google Scholar 

  28. Woeltje, K.F. et al. Cloning, sequencing, and expression of a cDNA encoding rat liver mitochondrial carnitine palmitoyltransferase II. J. biol. Chem. 265, 10720–10725 (1990).

    CAS  PubMed  Google Scholar 

  29. Rechsteiner, M., Rogers, S. & Rote, K. Protein structure and intracellular stability. Trends biochem. Sci. 12, 390–394 (1987).

    CAS  Google Scholar 

  30. Isaya, G. et al. Mitochondrial import and processing of mutant human ornithine transcarbamylase precursors in cultured cells. Molec. cell. Biol. 8, 5150–5158 (1988).

    Article  CAS  Google Scholar 

  31. Zierz, S. & Engel, A.G. Regulatory properties of a mutant carnitine palmitoyltransferase in human skeletal muscle. Eur. J. Biochem. 149, 207–214 (1985).

    Article  CAS  Google Scholar 

  32. Kerner, J. & Bieber, L.L. Isolation of a malonyl-CoA-sensitive CPT/ß-oxidation enzyme complex from heart mitochondria. Biochemistry 29, 4326–4334 (1990).

    Article  CAS  Google Scholar 

  33. DiDonato, S. et al. Muscle carnitine palmityltransferase deficiency: a case with enzyme deficiency in cultured fibroblasts. A. Neurol. 4, 465–467 (1978).

    Article  CAS  Google Scholar 

  34. Mongini, T. et al. Myoglobinuria and camitine palmitoyl transferase deficiency in father and son. J. Neurol. 238, 323–324 (1991).

    Article  CAS  Google Scholar 

  35. Chu, G., Hayakawa, H. & Berg, P. Electroporation for the efficient transfection of mammalian cells with DNA. Nucl. Acids Res. 15, 1311–1326 (1987).

    Article  CAS  Google Scholar 

  36. Taroni, F. & Rosenberg, L.E. The precursor of the biotin-binding subunit of mammalian propionyl-CoA carboxylase can be translocated into mitochondria as apo- or holoprotein. J. biol. Chem. 266, 13267–13271 (1991).

    CAS  PubMed  Google Scholar 

  37. DiDonato, S. et al. Normalization of short-chain acylcoenzyme A dehydroge-nase after riboflavin treatment in a girl with multiple acylcoenzyme A dehydrogenase-deficient myopathy. Ann. Neurol. 25, 479–484 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taroni, F., Verderio, E., Dworzak, F. et al. Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nat Genet 4, 314–320 (1993). https://doi.org/10.1038/ng0793-314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0793-314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing