Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC

Abstract

We conducted a genome-wide association study of generalized vitiligo in the Chinese Han population by genotyping 1,117 cases and 1,429 controls. The 34 most promising SNPs were carried forward for replication in samples from individuals of the Chinese Han (5,910 cases and 9,916 controls) and Chinese Uygur (713 cases and 824 controls) populations. We identified two independent association signals within the major histocompatibility complex (MHC) region (rs11966200, Pcombined = 1.48 × 10−48, OR = 1.90; rs9468925, Pcombined = 2.21 × 10−33, OR = 0.74). Further analyses suggested that the strong association at rs11966200 might reflect the reported association of the HLA-A*3001, HLA-B*1302, HLA-C*0602 and HLA-DRB1*0701 alleles and that the association at rs9468925 might represent a previously unknown HLA susceptibility allele. We also identified one previously undescribed risk locus at 6q27 (rs2236313, Pcombined = 9.72 × 10−17, OR = 1.20), which contains three genes: RNASET2, FGFR1OP and CCR6. Our study provides new insights into the genetic basis of vitiligo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide association results from the initial GWAS.
Figure 2: Scatter plot of the evidence of association at 6q27 for vitiligo.

Similar content being viewed by others

References

  1. Hann, S.K. & Nordlund, J.J. Vitiligo (Blackwell Science, Oxford, UK, 2000).

  2. Das, S.K., Majumder, P.P., Chakraborty, R., Majumdar, T.K. & Haldar, B. Studies on vitiligo. I. Epidemiological profile in Calcutta, India. Genet. Epidemiol. 2, 71–78 (1985).

    Article  CAS  Google Scholar 

  3. Birlea, S.A., Fain, P.R. & Spritz, R.A. A Romanian population isolate with high frequency of vitiligo and associated autoimmune diseases. Arch. Dermatol. 144, 310–316 (2008).

    Article  Google Scholar 

  4. Taïeb, A. & Picardo, M. Clinical practice. Vitiligo. N. Engl. J. Med. 360, 160–169 (2009).

    Article  Google Scholar 

  5. Porter, J., Beuf, A.H., Nordlund, J.J. & Lerner, A.B. Psychological reaction to chronic skin disorders: a study of patients with vitiligo. Gen. Hosp. Psychiatry 1, 73–77 (1979).

    Article  CAS  Google Scholar 

  6. Alkhateeb, A., Fain, P.R., Thody, A., Bennett, D.C. & Spritz, R.A. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 16, 208–214 (2003).

    Article  Google Scholar 

  7. Dell'anna, M.L. & Picardo, M. A review and a new hypothesis for non-immunological pathogenetic mechanisms in vitiligo. Pigment Cell Res. 19, 406–411 (2006).

    Article  Google Scholar 

  8. Spritz, R.A. The genetics of generalized vitiligo. Curr. Dir. Autoimmun. 10, 244–257 (2008).

    Article  CAS  Google Scholar 

  9. Zhang, X.J. et al. Characteristics of genetic epidemiology and genetic models for vitiligo. J. Am. Acad. Dermatol. 51, 383–390 (2004).

    Article  Google Scholar 

  10. Nath, S.K. et al. Evidence for a susceptibility gene, SLEV1, on chromosome 17p13 in families with vitiligo-related systemic lupus erythematosus. Am. J. Hum. Genet. 69, 1401–1406 (2001).

    Article  CAS  Google Scholar 

  11. Alkhateeb, A. et al. Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3–p32.2. Hum. Mol. Genet. 11, 661–667 (2002).

    Article  CAS  Google Scholar 

  12. Spritz, R.A., Gowan, K., Bennett, D.C. & Fain, P.R. Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am. J. Hum. Genet. 74, 188–191 (2004).

    Article  CAS  Google Scholar 

  13. Chen, J.J. et al. A novel linkage to generalized vitiligo on 4q13–q21 identified in a genomewide linkage analysis of Chinese families. Am. J. Hum. Genet. 76, 1057–1065 (2005).

    Article  CAS  Google Scholar 

  14. Jin, Y. et al. NALP1 in vitiligo-associated multiple autoimmune disease. N. Engl. J. Med. 356, 1216–1225 (2007).

    Article  CAS  Google Scholar 

  15. Ren, Y. et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet. 5, e1000523 (2009).

    Article  Google Scholar 

  16. Jin, Y., Birlea, S.A., Fain, P.R. & Spritz, R.A. Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J. Invest. Dermatol. 127, 2558–2562 (2007).

    Article  CAS  Google Scholar 

  17. Zamani, M. et al. Linkage and association of HLA class II genes with vitiligo in a Dutch population. Br. J. Dermatol. 145, 90–94 (2001).

    Article  CAS  Google Scholar 

  18. Arcos-Burgos, M. et al. Vitiligo: complex segregation and linkage disequilibrium analyses with respect to microsatellite loci spanning the HLA. Hum. Genet. 110, 334–342 (2002).

    Article  CAS  Google Scholar 

  19. Jin, Y. et al. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N. Engl. J. Med. 362, 1686–1697 (2010).

    Article  CAS  Google Scholar 

  20. Liu, J.B. et al. Association of vitiligo with HLA-A2: a meta-analysis. J. Eur. Acad. Dermatol. Venereol. 21, 205–213 (2007).

    Article  Google Scholar 

  21. Zhang, X.J. et al. Association of HLA class I alleles with vitiligo in Chinese Hans. J. Dermatol. Sci. 35, 165–168 (2004).

    Article  Google Scholar 

  22. Taştan, H.B., Akar, A., Orkunoglu, F.E., Arca, E. & Inal, A. Association of HLA class I antigens and HLA class II alleles with vitiligo in a Turkish population. Pigment Cell Res. 17, 181–184 (2004).

    Article  Google Scholar 

  23. Han, J.W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    Article  CAS  Google Scholar 

  24. Zhang, X.J. et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat. Genet. 41, 205–210 (2009).

    Article  CAS  Google Scholar 

  25. Zhang, F.R. et al. Genomewide association study of leprosy. N. Engl. J. Med. 361, 2609–2618 (2009).

    Article  CAS  Google Scholar 

  26. Campomenosi, P. et al. Characterization of RNASET2, the first human member of the Rh/T2/S family of glycoproteins. Arch. Biochem. Biophys. 449, 17–26 (2006).

    Article  CAS  Google Scholar 

  27. Acquati, F. et al. Cloning and characterization of a senescence inducing and class II tumor suppressor gene in ovarian carcinoma at chromosome region 6q27. Oncogene 20, 980–988 (2001).

    Article  CAS  Google Scholar 

  28. Monti, L. et al. RNASET2 as a tumor antagonizing gene in a melanoma cancer model. Oncol. Res. 17, 69–74 (2008).

    Article  Google Scholar 

  29. Thompson, D.M. & Parker, R. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J. Cell Biol. 185, 43–50 (2009).

    Article  CAS  Google Scholar 

  30. Schallreuter, K.U. et al. In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J. Investig. Dermatol. Symp. Proc. 4, 91–96 (1999).

    Article  CAS  Google Scholar 

  31. Mikolajka, A. et al. Structure of the N-terminal domain of the FOP (FGFR1OP) protein and implications for its dimerization and centrosomal localization. J. Mol. Biol. 359, 863–875 (2006).

    Article  CAS  Google Scholar 

  32. Popovici, C. et al. The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood 93, 1381–1389 (1999).

    CAS  PubMed  Google Scholar 

  33. Acquaviva, C. et al. The centrosomal FOP protein is required for cell cycle progression and survival. Cell Cycle 8, 1217–1227 (2009).

    Article  CAS  Google Scholar 

  34. Schutyser, E., Struyf, S. & Van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 14, 409–426 (2003).

    Article  CAS  Google Scholar 

  35. Le Borgne, M. et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24, 191–201 (2006).

    Article  CAS  Google Scholar 

  36. Birlea, S.A., Gowan, K., Fain, P.R. & Spritz, R.A. Genome-wide association study of generalized vitiligo in an isolated European founder population identifies SMOC2, in close proximity to IDDM8. J. Invest. Dermatol. 130, 798–803 (2010).

    Article  CAS  Google Scholar 

  37. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  Google Scholar 

  38. Levy, C. et al. Identifying a common molecular mechanism for inhibition of MITF and STAT3 by PIAS3. Blood 107, 2839–2845 (2006).

    Article  CAS  Google Scholar 

  39. Garraway, L.A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  Google Scholar 

  40. Imielinski, M. et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat. Genet. 41, 1335–1340 (2009).

    Article  CAS  Google Scholar 

  41. Zhang, Z. et al. The analysis of genetics and associated autoimmune diseases in Chinese vitiligo patients. Arch. Dermatol. Res. 301, 167–173 (2009).

    Article  CAS  Google Scholar 

  42. Taïeb, A. & Picardo, M. The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force. Pigment Cell Res. 20, 27–35 (2007).

    Article  Google Scholar 

  43. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  44. Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959).

    CAS  PubMed  Google Scholar 

  45. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  Google Scholar 

  46. de Bakker, P.I. et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 38, 1166–1172 (2006).

    Article  CAS  Google Scholar 

  47. Browning, S.R. & Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all study participants. We also thank J.-J. Liu, J.-M. Chen and K. Seng Sim at the Genome Institute of Singapore for performing the imputation, association and LD analyses of HLA alleles. This study was supported in part by the Key Project of the Chinese National Natural Science Foundation (No. 30530670), the Cooperation Project of the Chinese Key National Natural Science Foundation for Overseas Youth (No. 30628021) and the Anhui Provincial Special Scientific Program (2007-7).

Author information

Authors and Affiliations

Authors

Contributions

X.-J.Z. conceived this study and obtained financial support; X.-J.Z., Y.Z. and S.Y. designed the study; C.Q., Y.-Q.R., L.-H.X. and L.-D.S. participated in the design and were responsible for sample selection, genotyping and project management; S.-M.Z., D.-Y.H., Yang Li, X.-F.T., S.-X.X., Y.-M.L., Q.X., J.-P.G., W.-L.H., C.N., T.-M.P., Yun Li, Y.-S.L. and Z.-Y.Y. conducted sample selection and managed data; A.-E.X., X.-H.G., H.-D.C., X.-M.P., R.-N.W., C.-Z.L., J.-B.L., T.-W.G., J.-Z.Z., X.-L.W., J.W., R.-Y.Y., L.L., J.-B.Y., Y.-W.L., X.-D.W., W.-S.H., Y.Y., Y.Z., W.-S.W., P.-L.D., K.L., X.-J.K., Y.-Q.L., L.S., Z.-F.L. and S.-Q.X. undertook recruitment, collected phenotype data, undertook related data handling and calculation and obtained biological samples; H.-Q.J., M.S., C.-Y.Z., Y.W., G.C., P.L., J.Z., H.C., M.L., X.Z., H.-Y.T., S.-M.H., S.Y. and C.-F.H. performed genotyping analyses; X.-B.Z., S.-Q.Z., X.-D.Z., X.-Y.Y. and F.-Y.Z. undertook data processing, statistical analysis and bioinformatics investigations; all the authors contributed to the final paper.

Corresponding authors

Correspondence to Youwen Zhou or Xue-Jun Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–4 (PDF 495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, C., Ren, YQ., Xiang, LH. et al. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet 42, 614–618 (2010). https://doi.org/10.1038/ng.603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing