Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Emergence and global spread of epidemic healthcare-associated Clostridium difficile

Abstract

Epidemic C. difficile (027/BI/NAP1) has rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key events in evolutionary history leading to its emergence and the subsequent patterns of global spread remain unknown. Here, we define the global population structure of C. difficile 027/BI/NAP1 using whole-genome sequencing and phylogenetic analysis. We show that two distinct epidemic lineages, FQR1 and FQR2, not one as previously thought, emerged in North America within a relatively short period after acquiring the same fluoroquinolone resistance–conferring mutation and a highly related conjugative transposon. The two epidemic lineages showed distinct patterns of global spread, and the FQR2 lineage spread more widely, leading to healthcare-associated outbreaks in the UK, continental Europe and Australia. Our analysis identifies key genetic changes linked to the rapid transcontinental dissemination of epidemic C. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny of C. difficile 027/BI/NAP1 based on the genotype at core genome SNPs.
Figure 2: Transmission events inferred for epidemic C. difficile 027/BI/NAP1.

Similar content being viewed by others

References

  1. Bartlett, J.G. Clostridium difficile: progress and challenges. Ann. NY Acad. Sci. 1213, 62–69 (2010).

    Article  PubMed  Google Scholar 

  2. Kelly, C.P. & LaMont, J.T. Clostridium difficile—more difficult than ever. N. Engl. J. Med. 359, 1932–1940 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Kuijper, E.J., Coignard, B. & Tull, P. Emergence of Clostridium difficile–associated disease in North America and Europe. Clin. Microbiol. Infect. 12 (suppl. 6), 2–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Warny, M. et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 1079–1084 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Riggs, M.M. et al. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin. Infect. Dis. 45, 992–998 (2007).

    Article  PubMed  Google Scholar 

  6. Clements, A.C., Magalhaes, R.J., Tatem, A.J., Paterson, D.L. & Riley, T.V. Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infect. Dis. 10, 395–404 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. McDonald, L.C. et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N. Engl. J. Med. 353, 2433–2441 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Loo, V.G. et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile–associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 353, 2442–2449 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Muto, C.A. et al. A large outbreak of Clostridium difficile–associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect. Control Hosp. Epidemiol. 26, 273–280 (2005).

    Article  PubMed  Google Scholar 

  10. Pépin, J., Valiquette, L. & Cossette, B. Mortality attributable to nosocomial Clostridium difficile–associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173, 1037–1042 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. O'Connor, J.R., Johnson, S. & Gerding, D.N. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 136, 1913–1924 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Brazier, J.S. et al. Distribution and antimicrobial susceptibility patterns of Clostridium difficile PCR ribotypes in English hospitals, 2007–08. Euro Surveill. 13 pii: 19000 (2008).

  13. Bauer, M.P. et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377, 63–73 (2011).

    Article  PubMed  Google Scholar 

  14. Kuijper, E.J. et al. Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill. 13 pii: 18942 (2008).

  15. Richards, M. et al. Severe infection with Clostridium difficile PCR ribotype 027 acquired in Melbourne, Australia. Med. J. Aust. 194, 369–371 (2011).

    Article  PubMed  Google Scholar 

  16. Stabler, R.A. et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10, R102 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Croucher, N.J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris, S.R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pearson, T. et al. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc. Natl. Acad. Sci. USA 101, 13536–13541 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Spigaglia, P., Carattoli, A., Barbanti, F. & Mastrantonio, P. Detection of gyrA and gyrB mutations in Clostridium difficile isolates by real-time PCR. Mol. Cell. Probes 24, 61–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, H. et al. Emergence of Clostridium difficile ribotype 027 in Korea. Korean J. Lab. Med. 31, 191–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemey, P., Rambaut, A., Drummond, A.J. & Suchard, M.A. Bayesian phylogeography finds its roots. PLOS Comput. Biol. 5, e1000520 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dallal, R.M. et al. Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann. Surg. 235, 363–372 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  24. MacCannell, D.R. et al. Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. J. Clin. Microbiol. 44, 2147–2152 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Drummond, A.J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nyč, O., Pituch, H., Matejkova, J., Obuch-Woszczatynski, P. & Kuijper, E.J. Clostridium difficile PCR ribotype 176 in the Czech Republic and Poland. Lancet 377, 1407 (2011).

    Article  PubMed  Google Scholar 

  27. Brazier, J.S. Clostridium difficile: the anaerobe that made the grade. Anaerobe 18, 197–199 (2012).

    Article  PubMed  Google Scholar 

  28. Carter, G.P., Awad, M.M., Kelly, M.L., Rood, J.I. & Lyras, D. TcdB or not TcdB: a tale of two Clostridium difficile toxins. Future Microbiol. 6, 121–123 (2011).

    Article  PubMed  Google Scholar 

  29. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779–786 (2006).

    Article  PubMed  Google Scholar 

  30. He, M. et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl. Acad. Sci. USA 107, 7527–7532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brouwer, M.S.M., Warburton, P.J., Roberts, A.P., Mullany, P. & Allan, E. Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS ONE 6, e23014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Linder, J.A., Huang, E.S., Steinman, M.A., Gonzales, R. & Stafford, R.S. Fluoroquinolone prescribing in the United States: 1995 to 2002. Am. J. Med. 118, 259–268 (2005).

    Article  PubMed  Google Scholar 

  33. Köser, C.U. et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N. Engl. J. Med. 366, 2267–2275 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Kurtz, S. et al. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633–4642 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Posada, D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Huson, D.H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  PubMed  Google Scholar 

  41. Suchard, M.A., Weiss, R.E. & Sinsheimer, J.S. Bayesian selection of continuous-time Markov chain evolutionary models. Mol. Biol. Evol. 18, 1001–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carver, T.J. et al. ACT: the Artemis Comparison Tool. Bioinformatics 21, 3422–3423 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Morelli, G. et al. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat. Genet. 42, 1140–1143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Drummond, A.J., Rambaut, A., Shapiro, B. & Pybus, O.G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the European Study Group of Clostridium difficile (ESGCD), a working group of ESCMID (European Society of Clinical Microbiology and Infectious Diseases), including F. Barbut, T. Eckmanns, M.L. Lambert, F. Fitzpatrick, C. Wiuff, H. Pituch, P. Reichert, A.F. Widmer, F. Allerberger, D.W. Notermans, M. Delmée, R. Frei, O. Lyytikäinen, A. Ingebretsen and I.R. Poxton. We thank the Wellcome Trust Sanger Institute sequencing and informatics teams. This project was funded by the Wellcome Trust (grants 098051 and 086418), a Medical Research Council New Investigator Research Grant (T.D.L.; grant 93614) and the Scottish Infection Research Network. We acknowledge funding from the National Institute for Health Research (NIHR) Biomedical Research Centre in Liverpool. Both F.M. and P.R. were supported by the Liverpool BRC (Biomedical Research Centre). M.P. is an NIHR Senior Investigator.

Author information

Authors and Affiliations

Authors

Contributions

M.H. analyzed the data. T.D.L., M.H., G. Dougan, B.W.W. and J.P. were involved in the study design. F.M., P.R., L.E., D.J.P., M.J.M., D.F., K.B.B., S.D., J.B., D.B., J.E.C., G. Douce, D.G., H.J.K., T.H.K., H.K., M.S., T.L., S.M., E.B., S.J.P., N.M.B., T.R., G.S., M.W., M.P., E.K., P.H. and B.W.W. were involved in isolate collection and DNA extraction. T.R.C. contributed to Bayesian analysis. M.H., J.P., T.D.L., G. Dougan, T.R.C. and S.R.H. contributed to data interpretation. M.H., J.P., T.D.L. and G. Dougan wrote the manuscript.

Corresponding authors

Correspondence to Julian Parkhill or Trevor D Lawley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–6 and Supplementary Note (PDF 1606 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Miyajima, F., Roberts, P. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45, 109–113 (2013). https://doi.org/10.1038/ng.2478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing