Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: cancer stem cells—targeting the evil twin

Abstract

Classical antineoplastic treatments such as chemotherapy or radiation can efficiently eradicate the majority of proliferating and genetically unstable malignant cells within neoplastic lesions. There is increasing evidence, however, that these regimens frequently fail to eliminate a minor subpopulation of resistant tumor cells that have distinct features of somatic stem cells. These serve as a reservoir for disease recurrence, and are the origin of metastatic growth. These so-called cancer stem cells (CSCs) or cancer-initiating cells represent often a rare, highly self-renewing population within the tumor mass, which is thought to be the only one required for both initiation and maintenance of disease. Tumor-cell populations enriched for CSC activity were originally identified in leukemias, but have now also been uncovered in a number of solid cancers. Their marked resistance towards classical antitumor regimens is mediated by the combination of several critical features, including relative dormancy, efficient DNA repair, high expression of multidrug-resistance-type membrane transporters and protection by a hypoxic niche environment. We review the concept of CSCs with particular emphasis on the mechanism of therapy resistance, and discuss potential future therapeutic interventions with the goal of specifically eliminating CSCs in a clinical setting.

Key Points

  • Many human neoplasms are likely to contain an often minor population of cancer cells within the tumor mass called cancer stem cells (CSCs), which are the only cells required for both initiation and maintenance of the disease

  • CSCs have unlimited self-renewal activity, and also can give rise to a large number of more-differentiated cells, which generate the bulk of the tumor

  • CSCs can either originate from normal stem cells or from more-differentiated progenitors

  • Long-lived CSCs seem to be resistant to radiation and classical chemotherapy and thus serve as an often small but highly malignant reservoir of cells

  • Due to their potential for migration and seeding in specific tissue niches, these CSCs might also drive disease recurrence and metastatic growth even after a significant latency period

  • The mechanisms that allow CSCs to escape current therapies remains to be elucidated, but are likely to be caused by several inherent features of CSCs, which include relative quiescence/dormancy, expression of multi-drug resistance transporters, localization in a protective and hypoxic niche and highly effective DNA repair mechanisms

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model representing the cellular mechanisms responsible for CSC resistance towards radiation and antiproliferative chemotherapy and potential strategies to overcome such avoidance machinery.

Similar content being viewed by others

References

  1. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100: 157–168

    Article  CAS  PubMed  Google Scholar 

  2. Murphy MJ et al. (2005) More than just proliferation: Myc function in stem cells. Trends Cell Biol 15: 128–137

    Article  CAS  PubMed  Google Scholar 

  3. Blanpain C et al. (2007) Epithelial stem cells: turning over new leaves. Cell 128: 445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bruce WR and Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199: 79–80

    Article  CAS  PubMed  Google Scholar 

  5. Reya T et al. (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111

    Article  CAS  PubMed  Google Scholar 

  6. Wang JC and Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15: 494–501

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet D and Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737

    Article  CAS  PubMed  Google Scholar 

  8. Al-Hajj M et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh SK et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401

    Article  CAS  PubMed  Google Scholar 

  10. Hope KJ et al. (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5: 738–743

    Article  CAS  PubMed  Google Scholar 

  11. Wilson A et al. (2007) Dormant and self-renewing hematopoietic stem cells and their niches. Ann NY Acad Sci 1106: 64–75

    Article  CAS  PubMed  Google Scholar 

  12. Moore KA and Lemischka IR (2006) Stem cells and their niches. Science 311: 1880–1885

    Article  CAS  PubMed  Google Scholar 

  13. Wilson A and Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6: 93–106

    Article  CAS  PubMed  Google Scholar 

  14. Tan TT and Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19: 209–216

    Article  CAS  PubMed  Google Scholar 

  15. Li F et al. (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17: 3–14

    Article  CAS  PubMed  Google Scholar 

  16. Kaplan RN et al. (2007) Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 13: 72–81

    Article  CAS  PubMed  Google Scholar 

  17. Dar A et al. (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34: 967–975

    Article  CAS  PubMed  Google Scholar 

  18. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480

    Article  CAS  PubMed  Google Scholar 

  19. Beachy PA et al. (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432: 324–331

    Article  CAS  PubMed  Google Scholar 

  20. Smith MA et al. (2001) Stem cell factor: biology and relevance to clinical practice. Acta Haematol 105: 143–150

    Article  CAS  PubMed  Google Scholar 

  21. Cully M et al. (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6: 184–192

    Article  CAS  PubMed  Google Scholar 

  22. Koch U and Radtke F (2007) Notch and cancer: a double-edged sword. Cell Mol Life Sci 64: 2746–2762

    Article  CAS  PubMed  Google Scholar 

  23. Sparmann A and van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846–856

    Article  CAS  PubMed  Google Scholar 

  24. Jones PA and Baylin SB (2007) The epigenomics of cancer. Cell 128: 683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huntly BJ et al. (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6: 587–596

    Article  CAS  PubMed  Google Scholar 

  26. Krivtsov AV et al. (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442: 818–822

    Article  CAS  PubMed  Google Scholar 

  27. Kim CF et al. (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121: 823–835

    Article  CAS  PubMed  Google Scholar 

  28. Lapidot T et al. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648

    Article  CAS  PubMed  Google Scholar 

  29. O'Brien CA et al. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110

    Article  CAS  PubMed  Google Scholar 

  30. van Rhenen A et al. (2005) High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 11: 6520–6527

    Article  CAS  PubMed  Google Scholar 

  31. Klein CA and Holzel D (2006) Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5: 1788–1798

    Article  CAS  PubMed  Google Scholar 

  32. Pantel K and Alix-Panabieres C (2007) The clinical significance of circulating tumor cells. Nat Clin Pract Oncol 4: 62–63

    Article  PubMed  Google Scholar 

  33. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7: 834–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shmelkov SV et al. (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37: 715–719

    Article  CAS  PubMed  Google Scholar 

  35. Singh SK et al. (2004) Cancer stem cells in nervous system tumors. Oncogene 23: 7267–7273

    Article  CAS  PubMed  Google Scholar 

  36. Dirks PB (2006) Cancer: stem cells and brain tumours. Nature 444: 687–688

    Article  CAS  PubMed  Google Scholar 

  37. Ricci-Vitiani L et al. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115

    Article  CAS  PubMed  Google Scholar 

  38. Collins AT et al. (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951

    Article  CAS  PubMed  Google Scholar 

  39. Huttner WB and Kosodo Y (2005) Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr Opin Cell Biol 17: 648–657

    Article  CAS  PubMed  Google Scholar 

  40. Dubreuil V et al. (2007) Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol 176: 483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prince ME et al. (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104: 973–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li C et al. (2007) Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–1037

    Article  CAS  PubMed  Google Scholar 

  43. Ponti D et al. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65: 5506–5511

    Article  CAS  PubMed  Google Scholar 

  44. Sheridan C et al. (2006) CD44+/CD24– breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8: R59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shackleton M et al. (2006) Generation of a functional mammary gland from a single stem cell. Nature 439: 84–88

    Article  CAS  PubMed  Google Scholar 

  46. Stingl J et al. (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439: 993–997

    Article  CAS  PubMed  Google Scholar 

  47. Abraham BK et al. (2005) Prevalence of CD44+/CD24–/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11: 1154–1159

    CAS  PubMed  Google Scholar 

  48. Balic M et al. (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12: 5615–5621

    Article  CAS  PubMed  Google Scholar 

  49. Schabath H et al. (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119: 314–325

    Article  CAS  PubMed  Google Scholar 

  50. Fang D et al. (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65: 9328–9337

    Article  CAS  PubMed  Google Scholar 

  51. Patrawala L et al. (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67: 6796–6805

    Article  CAS  PubMed  Google Scholar 

  52. Gibbs CP et al. (2005) Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7: 967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu G et al. (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5: 67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Druker BJ et al. (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038–1042

    Article  CAS  PubMed  Google Scholar 

  55. Bhatia R et al. (2003) Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101: 4701–4707

    Article  CAS  PubMed  Google Scholar 

  56. Mauro MJ et al. (2004) Divergent clinical outcome in two CML patients who discontinued imatinib therapy after achieving a molecular remission. Leuk Res 28 (Suppl 1): S71–S73

    Article  CAS  PubMed  Google Scholar 

  57. Cortes J et al. (2004) Discontinuation of imatinib therapy after achieving a molecular response. Blood 104: 2204–2205

    Article  CAS  PubMed  Google Scholar 

  58. Diehn M and Clarke MF (2006) Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst 98: 1755–1757

    Article  PubMed  Google Scholar 

  59. Bao S et al. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760

    Article  CAS  PubMed  Google Scholar 

  60. Fleming WH et al. (1993) Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J Cell Biol 122: 897–902

    Article  CAS  PubMed  Google Scholar 

  61. Tumbar T et al. (2004) Defining the epithelial stem cell niche in skin. Science 303: 359–363

    Article  CAS  PubMed  Google Scholar 

  62. Guan Y et al. (2003) Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101: 3142–3149

    Article  CAS  PubMed  Google Scholar 

  63. Holyoake T et al. (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94: 2056–2064

    CAS  PubMed  Google Scholar 

  64. Graham SM et al. (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99: 319–325

    Article  CAS  PubMed  Google Scholar 

  65. Copland M et al. (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107: 4532–4539

    Article  CAS  PubMed  Google Scholar 

  66. Jorgensen HG et al. (2007) Nilotinib exerts equipotent anti-proliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109: 4016–4019

    Article  CAS  PubMed  Google Scholar 

  67. Karrison TG et al. (1999) Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 91: 80–85

    Article  CAS  PubMed  Google Scholar 

  68. Jorgensen HG et al. (2006) Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin Cancer Res 12: 626–633

    Article  CAS  PubMed  Google Scholar 

  69. Brown JM and Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58: 1408–1416

    CAS  PubMed  Google Scholar 

  70. Green SK et al. (1999) Adhesion-dependent multicellular drug resistance. Anticancer Drug Des 14: 153–168

    CAS  PubMed  Google Scholar 

  71. Ito K et al. (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12: 446–451

    Article  CAS  PubMed  Google Scholar 

  72. Brown JM and Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4: 437–447

    Article  CAS  PubMed  Google Scholar 

  73. von Pawel J et al. (2000) Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: a report of the international CATAPULT I study group. Cisplatin and tirapazamine in subjects with advanced previously untreated non-small-cell lung tumors. J Clin Oncol 18: 1351–1359

    Article  CAS  PubMed  Google Scholar 

  74. Rischin D et al. (2005) Tirapazamine, cisplatin, and radiation versus fluorouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J Clin Oncol 23: 79–87

    Article  CAS  PubMed  Google Scholar 

  75. Giaccia A et al. (2003) HIF-1 as a target for drug development. Nat Rev Drug Discov 2: 803–811

    Article  CAS  PubMed  Google Scholar 

  76. Kiel MJ et al. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121

    Article  CAS  PubMed  Google Scholar 

  77. Calabrese C et al. (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82

    Article  CAS  PubMed  Google Scholar 

  78. Tozer GM et al. (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5: 423–435

    Article  CAS  PubMed  Google Scholar 

  79. Kincade PW (1999) Blasting away leukemia. Nat Med 5: 619–620

    Article  CAS  PubMed  Google Scholar 

  80. Jin L et al. (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12: 1167–1174

    Article  CAS  PubMed  Google Scholar 

  81. Biedler JL and Riehm H (1970) Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res 30: 1174–1184

    CAS  PubMed  Google Scholar 

  82. Gros P et al. (1986) Isolation and characterization of DNA sequences amplified in multidrug-resistant hamster cells. Proc Natl Acad Sci USA 83: 337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roninson IB et al. (1986) Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA 83: 4538–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Donnenberg VS and Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45: 872–877

    Article  CAS  PubMed  Google Scholar 

  85. Dean M et al. (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275–284

    Article  CAS  PubMed  Google Scholar 

  86. Goodell MA et al. (2005) Isolation and characterization of side population cells. Methods Mol Biol 290: 343–352

    PubMed  Google Scholar 

  87. Chiba T et al. (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44: 240–251

    Article  CAS  PubMed  Google Scholar 

  88. Hirschmann-Jax C et al. (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101: 14228–14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Patrawala L et al. (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2– cancer cells are similarly tumorigenic. Cancer Res 65: 6207–6219

    Article  CAS  PubMed  Google Scholar 

  90. Szotek PP et al. (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 103: 11154–11159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Comerford KM et al. (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62: 3387–3394

    CAS  PubMed  Google Scholar 

  92. Modok S et al. (2006) Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol 6: 350–354

    Article  CAS  PubMed  Google Scholar 

  93. Pusztai L et al. (2005) Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 104: 682–691

    Article  CAS  PubMed  Google Scholar 

  94. Xu D et al. (2005) Delivery of MDR1 small interfering RNA by self-complementary recombinant adeno-associated virus vector. Mol Ther 11: 523–530

    Article  PubMed  CAS  Google Scholar 

  95. Piccirillo SG et al. (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761–765

    Article  CAS  PubMed  Google Scholar 

  96. Kelly PN et al. (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317: 337

    Article  CAS  PubMed  Google Scholar 

  97. Blair A and Sutherland HJ (2000) Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 28: 660–671

    Article  CAS  PubMed  Google Scholar 

  98. Jordan CT et al. (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14: 1777–1784

    Article  CAS  PubMed  Google Scholar 

  99. Cox CV et al. (2004) Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104: 2919–2925

    Article  CAS  PubMed  Google Scholar 

  100. Cox CV et al. (2007) Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109: 674–682

    Article  CAS  PubMed  Google Scholar 

  101. Hermann PC et al. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1: 313–323

    Article  CAS  PubMed  Google Scholar 

  102. Yang ZF et al. (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13: 153–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Christelle Adolphe and Dr Anne Wilson for critical comments on the manuscript and members of the Trumpp laboratory for numerous discussions. This work was supported by grants to AT from the Swiss National Science Foundation, the Swiss Cancer League and the EU-FP6 Program “INTACT” as well as by funds from the Helmholtz association to ODW and to the DKFZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Trumpp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trumpp, A., Wiestler, O. Mechanisms of Disease: cancer stem cells—targeting the evil twin. Nat Rev Clin Oncol 5, 337–347 (2008). https://doi.org/10.1038/ncponc1110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing